blk-mq.c 80.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
37
#include "blk-mq-sched.h"
38
#include "blk-rq-qos.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
67
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

91 92 93 94 95
struct mq_hang {
	struct hd_struct *part;
	unsigned int *hang;
};

96 97 98 99 100 101
static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

102 103 104 105 106 107 108 109 110
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
111 112 113 114 115 116 117
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
static void blk_mq_check_hang_rw(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct mq_hang *mh = priv;
	u64 now = ktime_get_ns();
	u64 duration;

	duration = div_u64(now - rq->start_time_ns, NSEC_PER_MSEC);
	if (duration < rq->q->rq_hang_threshold)
		return;

	if (!mh->part->partno || rq->part == mh->part)
		mh->hang[rq_data_dir(rq)]++;
}

void blk_mq_in_hang_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int hang[2])
{
	struct mq_hang mh = { .part = part, .hang = hang, };

	hang[0] = hang[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_hang_rw, &mh);
}

165
void blk_freeze_queue_start(struct request_queue *q)
166
{
167
	int freeze_depth;
168

169 170
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
171
		percpu_ref_kill(&q->q_usage_counter);
172 173
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
174
	}
175
}
176
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177

178
void blk_mq_freeze_queue_wait(struct request_queue *q)
179
{
180
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181
}
182
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183

184 185 186 187 188 189 190 191
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192

193 194 195 196
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
197
void blk_freeze_queue(struct request_queue *q)
198
{
199 200 201 202 203 204 205
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
206
	blk_freeze_queue_start(q);
207 208
	if (!q->mq_ops)
		blk_drain_queue(q);
209 210
	blk_mq_freeze_queue_wait(q);
}
211 212 213 214 215 216 217 218 219

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
220
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
221

222
void blk_mq_unfreeze_queue(struct request_queue *q)
223
{
224
	int freeze_depth;
225

226 227 228
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
229
		percpu_ref_reinit(&q->q_usage_counter);
230
		wake_up_all(&q->mq_freeze_wq);
231
	}
232
}
233
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
234

235 236 237 238 239 240
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
241
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
242 243 244
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

245
/**
246
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
247 248 249
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
250 251 252
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
253 254 255 256 257 258 259
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

260
	blk_mq_quiesce_queue_nowait(q);
261

262 263
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
264
			synchronize_srcu(hctx->srcu);
265 266 267 268 269 270 271 272
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

273 274 275 276 277 278 279 280 281
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
282
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
283

284 285
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
286 287 288
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

289 290 291 292 293 294 295 296 297 298
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

299 300 301 302 303 304
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

305
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
306
		unsigned int tag, unsigned int op, u64 alloc_time_ns)
307
{
308 309
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
310
	req_flags_t rq_flags = 0;
311

312 313 314 315
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
316
		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
317
			rq_flags = RQF_MQ_INFLIGHT;
318 319 320 321 322 323 324
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

325
	/* csd/requeue_work/fifo_time is initialized before use */
326 327
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
328
	rq->rq_flags = rq_flags;
329
	rq->cpu = -1;
330
	rq->cmd_flags = op;
331 332
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
333
	if (blk_queue_io_stat(data->q))
334
		rq->rq_flags |= RQF_IO_STAT;
335
	INIT_LIST_HEAD(&rq->queuelist);
336 337 338 339
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
340 341 342
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
343
	rq->start_time_ns = ktime_get_ns();
344
	rq->io_start_time_ns = 0;
345 346 347 348 349 350 351
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
352
	rq->__deadline = 0;
353 354

	INIT_LIST_HEAD(&rq->timeout_list);
355 356
	rq->timeout = 0;

357 358 359 360
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

361 362 363 364
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

365
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
366
	refcount_set(&rq->ref, 1);
367
	return rq;
368 369
}

370 371 372 373 374 375
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
376
	unsigned int tag;
377
	bool put_ctx_on_error = false;
378
	u64 alloc_time_ns = 0;
379 380

	blk_queue_enter_live(q);
381 382 383 384 385

	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

386
	data->q = q;
387 388 389 390
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
391 392
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
393 394
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
395 396 397 398 399 400

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
401 402
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
403
		 */
404 405
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
406
			e->type->ops.mq.limit_depth(op, data);
407 408
	} else {
		blk_mq_tag_busy(data->hctx);
409 410
	}

411 412
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
413 414
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
415 416
			data->ctx = NULL;
		}
417 418
		blk_queue_exit(q);
		return NULL;
419 420
	}

421
	rq = blk_mq_rq_ctx_init(data, tag, op, alloc_time_ns);
422 423
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
424
		if (e && e->type->ops.mq.prepare_request) {
425 426 427
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

428 429
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
430
		}
431 432 433
	}
	data->hctx->queued++;
	return rq;
434 435
}

436
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
437
		blk_mq_req_flags_t flags)
438
{
439
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
440
	struct request *rq;
441
	int ret;
442

443
	ret = blk_queue_enter(q, flags);
444 445
	if (ret)
		return ERR_PTR(ret);
446

447
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
448
	blk_queue_exit(q);
449

450
	if (!rq)
451
		return ERR_PTR(-EWOULDBLOCK);
452

453 454
	blk_mq_put_ctx(alloc_data.ctx);

455 456 457
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
458 459
	return rq;
}
460
EXPORT_SYMBOL(blk_mq_alloc_request);
461

462
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
463
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
464
{
465
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
466
	struct request *rq;
467
	unsigned int cpu;
M
Ming Lin 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

482
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
483 484 485
	if (ret)
		return ERR_PTR(ret);

486 487 488 489
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
490 491 492 493
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
494
	}
495
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
496
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
497

498
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
499
	blk_queue_exit(q);
500

501 502 503 504
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
505 506 507
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

508
void __blk_mq_free_request(struct request *rq)
K
Keith Busch 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

523
void blk_mq_free_request(struct request *rq)
524 525
{
	struct request_queue *q = rq->q;
526 527 528 529
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

530
	if (rq->rq_flags & RQF_ELVPRIV) {
531 532 533 534 535 536 537
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
538

539
	ctx->rq_completed[rq_is_sync(rq)]++;
540
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
541
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
542

543 544 545
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

546
	rq_qos_done(q, rq);
547

S
Shaohua Li 已提交
548 549 550
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

K
Keith Busch 已提交
551 552 553
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
554
}
J
Jens Axboe 已提交
555
EXPORT_SYMBOL_GPL(blk_mq_free_request);
556

557
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
558
{
559 560
	u64 now = ktime_get_ns();

561 562
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
563
		blk_stat_add(rq, now);
564 565
	}

566
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
567

C
Christoph Hellwig 已提交
568
	if (rq->end_io) {
569
		rq_qos_done(rq->q, rq);
570
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
571 572 573
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
574
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
575
	}
576
}
577
EXPORT_SYMBOL(__blk_mq_end_request);
578

579
void blk_mq_end_request(struct request *rq, blk_status_t error)
580 581 582
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
583
	__blk_mq_end_request(rq, error);
584
}
585
EXPORT_SYMBOL(blk_mq_end_request);
586

587
static void __blk_mq_complete_request_remote(void *data)
588
{
589
	struct request *rq = data;
590

591
	rq->q->softirq_done_fn(rq);
592 593
}

594
static void __blk_mq_complete_request(struct request *rq)
595 596
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
597
	bool shared = false;
598 599
	int cpu;

600
	if (!blk_mq_mark_complete(rq))
K
Keith Busch 已提交
601
		return;
602 603 604
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
605
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
606 607 608
		rq->q->softirq_done_fn(rq);
		return;
	}
609 610

	cpu = get_cpu();
C
Christoph Hellwig 已提交
611 612 613 614
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
615
		rq->csd.func = __blk_mq_complete_request_remote;
616 617
		rq->csd.info = rq;
		rq->csd.flags = 0;
618
		smp_call_function_single_async(ctx->cpu, &rq->csd);
619
	} else {
620
		rq->q->softirq_done_fn(rq);
621
	}
622 623
	put_cpu();
}
624

625
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
626
	__releases(hctx->srcu)
627 628 629 630
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
631
		srcu_read_unlock(hctx->srcu, srcu_idx);
632 633 634
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
635
	__acquires(hctx->srcu)
636
{
637 638 639
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
640
		rcu_read_lock();
641
	} else
642
		*srcu_idx = srcu_read_lock(hctx->srcu);
643 644
}

645 646 647 648 649 650 651 652
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
653
void blk_mq_complete_request(struct request *rq)
654
{
K
Keith Busch 已提交
655
	if (unlikely(blk_should_fake_timeout(rq->q)))
656
		return;
K
Keith Busch 已提交
657
	__blk_mq_complete_request(rq);
658 659
}
EXPORT_SYMBOL(blk_mq_complete_request);
660

661 662
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
663
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
664 665 666
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

667
void blk_mq_start_request(struct request *rq)
668 669 670
{
	struct request_queue *q = rq->q;

671 672
	blk_mq_sched_started_request(rq);

673 674
	trace_block_rq_issue(q, rq);

675
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
676 677 678 679
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
680
		rq->rq_flags |= RQF_STATS;
681
		rq_qos_issue(q, rq);
682 683
	}

684
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
685

686
	blk_add_timer(rq);
K
Keith Busch 已提交
687
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
688 689 690 691 692 693 694 695 696

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
697
}
698
EXPORT_SYMBOL(blk_mq_start_request);
699

700
static void __blk_mq_requeue_request(struct request *rq)
701 702 703
{
	struct request_queue *q = rq->q;

704 705
	blk_mq_put_driver_tag(rq);

706
	trace_block_rq_requeue(q, rq);
707
	rq_qos_requeue(q, rq);
708

K
Keith Busch 已提交
709 710
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
711
		rq->rq_flags &= ~RQF_TIMED_OUT;
712 713 714
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
715 716
}

717
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
718 719 720
{
	__blk_mq_requeue_request(rq);

721 722 723
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

724
	BUG_ON(blk_queued_rq(rq));
725
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
726 727 728
}
EXPORT_SYMBOL(blk_mq_requeue_request);

729 730 731
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
732
		container_of(work, struct request_queue, requeue_work.work);
733 734 735
	LIST_HEAD(rq_list);
	struct request *rq, *next;

736
	spin_lock_irq(&q->requeue_lock);
737
	list_splice_init(&q->requeue_list, &rq_list);
738
	spin_unlock_irq(&q->requeue_lock);
739 740

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
741
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
742 743
			continue;

744
		rq->rq_flags &= ~RQF_SOFTBARRIER;
745
		list_del_init(&rq->queuelist);
746 747 748 749 750 751 752 753 754
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
			blk_mq_request_bypass_insert(rq, false);
		else
			blk_mq_sched_insert_request(rq, true, false, false);
755 756 757 758 759
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
760
		blk_mq_sched_insert_request(rq, false, false, false);
761 762
	}

763
	blk_mq_run_hw_queues(q, false);
764 765
}

766 767
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
768 769 770 771 772 773
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
774
	 * request head insertion from the workqueue.
775
	 */
776
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
777 778 779

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
780
		rq->rq_flags |= RQF_SOFTBARRIER;
781 782 783 784 785
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
786 787 788

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
789 790 791 792 793
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
794
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
795 796 797
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

798 799 800
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
801 802
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
803 804 805
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

806 807
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
808 809
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
810
		return tags->rqs[tag];
811
	}
812 813

	return NULL;
814 815 816
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

817
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
818
{
819
	req->rq_flags |= RQF_TIMED_OUT;
820 821 822 823 824 825 826
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
827
	}
828 829

	blk_add_timer(req);
830
}
831

K
Keith Busch 已提交
832
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
833
{
K
Keith Busch 已提交
834
	unsigned long deadline;
835

K
Keith Busch 已提交
836 837
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
838 839
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
840

K
Keith Busch 已提交
841 842 843
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
844

K
Keith Busch 已提交
845 846 847 848 849
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
850 851
}

K
Keith Busch 已提交
852
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
853 854
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

876
	/*
K
Keith Busch 已提交
877 878 879 880
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
881
	 */
K
Keith Busch 已提交
882
	if (blk_mq_req_expired(rq, next))
883
		blk_mq_rq_timed_out(rq, reserved);
884 885 886 887

	if (is_flush_rq(rq, hctx))
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
K
Keith Busch 已提交
888
		__blk_mq_free_request(rq);
889 890
}

891
static void blk_mq_timeout_work(struct work_struct *work)
892
{
893 894
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
895
	unsigned long next = 0;
896
	struct blk_mq_hw_ctx *hctx;
897
	int i;
898

899 900 901 902 903 904 905 906 907
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
908
	 * blk_freeze_queue_start, and the moment the last request is
909 910 911 912
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
913 914
		return;

K
Keith Busch 已提交
915
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
916

K
Keith Busch 已提交
917 918
	if (next != 0) {
		mod_timer(&q->timeout, next);
919
	} else {
920 921 922 923 924 925
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
926 927 928 929 930
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
931
	}
932
	blk_queue_exit(q);
933 934
}

935 936 937 938 939 940 941 942 943 944 945 946 947
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
948
	sbitmap_clear_bit(sb, bitnr);
949 950 951 952
	spin_unlock(&ctx->lock);
	return true;
}

953 954 955 956
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
957
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
958
{
959 960 961 962
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
963

964
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
965
}
966
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
967

968 969 970 971 972 973 974 975 976 977 978 979 980
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
981
	if (!list_empty(&ctx->rq_list)) {
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1007 1008 1009 1010
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1011

1012
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1013 1014
}

1015
bool blk_mq_get_driver_tag(struct request *rq)
1016 1017 1018 1019
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1020
		.flags = BLK_MQ_REQ_NOWAIT,
1021
	};
1022
	bool shared;
1023

1024 1025
	if (rq->tag != -1)
		goto done;
1026

1027 1028 1029
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1030
	shared = blk_mq_tag_busy(data.hctx);
1031 1032
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1033
		if (shared) {
1034 1035 1036
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1037 1038 1039
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1040 1041
done:
	return rq->tag != -1;
1042 1043
}

1044 1045
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1046 1047 1048 1049 1050
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1051
	spin_lock(&hctx->dispatch_wait_lock);
1052
	list_del_init(&wait->entry);
1053 1054
	spin_unlock(&hctx->dispatch_wait_lock);

1055 1056 1057 1058
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1059 1060
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1061 1062
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1063 1064
 * marking us as waiting.
 */
1065
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1066
				 struct request *rq)
1067
{
1068
	struct wait_queue_head *wq;
1069 1070
	wait_queue_entry_t *wait;
	bool ret;
1071

1072 1073 1074
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1075

1076 1077 1078 1079 1080 1081 1082 1083
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1084
		return blk_mq_get_driver_tag(rq);
1085 1086
	}

1087
	wait = &hctx->dispatch_wait;
1088 1089 1090
	if (!list_empty_careful(&wait->entry))
		return false;

1091 1092 1093 1094
	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1095
	if (!list_empty(&wait->entry)) {
1096 1097
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1098
		return false;
1099 1100
	}

1101 1102
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1103

1104
	/*
1105 1106 1107
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1108
	 */
1109
	ret = blk_mq_get_driver_tag(rq);
1110
	if (!ret) {
1111 1112
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1113
		return false;
1114
	}
1115 1116 1117 1118 1119 1120

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1121 1122
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1123 1124

	return true;
1125 1126
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1156 1157
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1158 1159 1160
/*
 * Returns true if we did some work AND can potentially do more.
 */
1161
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1162
			     bool got_budget)
1163
{
1164
	struct blk_mq_hw_ctx *hctx;
1165
	struct request *rq, *nxt;
1166
	bool no_tag = false;
1167
	int errors, queued;
1168
	blk_status_t ret = BLK_STS_OK;
1169

1170 1171 1172
	if (list_empty(list))
		return false;

1173 1174
	WARN_ON(!list_is_singular(list) && got_budget);

1175 1176 1177
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1178
	errors = queued = 0;
1179
	do {
1180
		struct blk_mq_queue_data bd;
1181

1182
		rq = list_first_entry(list, struct request, queuelist);
1183 1184 1185 1186 1187

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

1188
		if (!blk_mq_get_driver_tag(rq)) {
1189
			/*
1190
			 * The initial allocation attempt failed, so we need to
1191 1192 1193 1194
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1195
			 */
1196
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1197
				blk_mq_put_dispatch_budget(hctx);
1198 1199 1200 1201 1202 1203
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1204 1205 1206 1207
				break;
			}
		}

1208 1209
		list_del_init(&rq->queuelist);

1210
		bd.rq = rq;
1211 1212 1213 1214 1215 1216 1217 1218 1219

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1220
			bd.last = !blk_mq_get_driver_tag(nxt);
1221
		}
1222 1223

		ret = q->mq_ops->queue_rq(hctx, &bd);
1224
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1225 1226
			/*
			 * If an I/O scheduler has been configured and we got a
1227 1228
			 * driver tag for the next request already, free it
			 * again.
1229 1230 1231 1232 1233
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1234
			list_add(&rq->queuelist, list);
1235
			__blk_mq_requeue_request(rq);
1236
			break;
1237 1238 1239
		}

		if (unlikely(ret != BLK_STS_OK)) {
1240
			errors++;
1241
			blk_mq_end_request(rq, BLK_STS_IOERR);
1242
			continue;
1243 1244
		}

1245
		queued++;
1246
	} while (!list_empty(list));
1247

1248
	hctx->dispatched[queued_to_index(queued)]++;
1249 1250 1251 1252 1253

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1254
	if (!list_empty(list)) {
1255 1256
		bool needs_restart;

1257
		spin_lock(&hctx->lock);
1258
		list_splice_init(list, &hctx->dispatch);
1259
		spin_unlock(&hctx->lock);
1260

1261
		/*
1262 1263 1264
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1265
		 *
1266 1267 1268 1269
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1270
		 *
1271 1272 1273 1274 1275 1276 1277
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1278
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1279
		 *   and dm-rq.
1280 1281 1282 1283
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1284
		 */
1285 1286
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1287
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1288
			blk_mq_run_hw_queue(hctx, true);
1289 1290
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1291

1292
		blk_mq_update_dispatch_busy(hctx, true);
1293
		return false;
1294 1295
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1296

1297 1298 1299 1300 1301 1302 1303
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1304
	return (queued + errors) != 0;
1305 1306
}

1307 1308 1309 1310
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1311 1312 1313
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1327
	 */
1328 1329 1330 1331 1332 1333 1334
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1335

1336 1337 1338 1339 1340 1341
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1342
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1343

1344 1345 1346
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1347 1348
}

1349 1350 1351 1352 1353 1354 1355 1356 1357
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1358 1359 1360 1361 1362 1363 1364 1365
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1366
	bool tried = false;
1367
	int next_cpu = hctx->next_cpu;
1368

1369 1370
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1371 1372

	if (--hctx->next_cpu_batch <= 0) {
1373
select_cpu:
1374
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1375
				cpu_online_mask);
1376
		if (next_cpu >= nr_cpu_ids)
1377
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1378 1379 1380
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1381 1382 1383 1384
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1385
	if (!cpu_online(next_cpu)) {
1386 1387 1388 1389 1390 1391 1392 1393 1394
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1395
		hctx->next_cpu = next_cpu;
1396 1397 1398
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1399 1400 1401

	hctx->next_cpu = next_cpu;
	return next_cpu;
1402 1403
}

1404 1405
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1406
{
1407
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1408 1409
		return;

1410
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1411 1412
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1413
			__blk_mq_run_hw_queue(hctx);
1414
			put_cpu();
1415 1416
			return;
		}
1417

1418
		put_cpu();
1419
	}
1420

1421 1422
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1423 1424 1425 1426 1427 1428 1429 1430
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1431
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1432
{
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1444 1445 1446 1447
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1448 1449

	if (need_run) {
1450 1451 1452 1453 1454
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1455
}
O
Omar Sandoval 已提交
1456
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1457

1458
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1459 1460 1461 1462 1463
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1464
		if (blk_mq_hctx_stopped(hctx))
1465 1466
			continue;

1467
		blk_mq_run_hw_queue(hctx, async);
1468 1469
	}
}
1470
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1492 1493 1494
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1495
 * BLK_STS_RESOURCE is usually returned.
1496 1497 1498 1499 1500
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1501 1502
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1503
	cancel_delayed_work(&hctx->run_work);
1504

1505
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1506
}
1507
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1508

1509 1510 1511
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1512
 * BLK_STS_RESOURCE is usually returned.
1513 1514 1515 1516 1517
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1518 1519
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1520 1521 1522 1523 1524
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1525 1526 1527
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1528 1529 1530
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1531

1532
	blk_mq_run_hw_queue(hctx, false);
1533 1534 1535
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1556
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1557 1558 1559 1560
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1561 1562
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1563 1564 1565
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1566
static void blk_mq_run_work_fn(struct work_struct *work)
1567 1568 1569
{
	struct blk_mq_hw_ctx *hctx;

1570
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1571

1572
	/*
M
Ming Lei 已提交
1573
	 * If we are stopped, don't run the queue.
1574
	 */
M
Ming Lei 已提交
1575
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1576
		return;
1577 1578 1579 1580

	__blk_mq_run_hw_queue(hctx);
}

1581 1582 1583
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1584
{
J
Jens Axboe 已提交
1585 1586
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1587 1588
	lockdep_assert_held(&ctx->lock);

1589 1590
	trace_block_rq_insert(hctx->queue, rq);

1591 1592 1593 1594
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1595
}
1596

1597 1598
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1599 1600 1601
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1602 1603
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1604
	__blk_mq_insert_req_list(hctx, rq, at_head);
1605 1606 1607
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1608 1609 1610 1611
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1612
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1613 1614 1615 1616 1617 1618 1619 1620
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1621 1622
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1623 1624
}

1625 1626
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1627 1628

{
1629 1630
	struct request *rq;

1631 1632 1633 1634
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1635
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1636
		BUG_ON(rq->mq_ctx != ctx);
1637
		trace_block_rq_insert(hctx->queue, rq);
1638
	}
1639 1640 1641

	spin_lock(&ctx->lock);
	list_splice_tail_init(list, &ctx->rq_list);
1642
	blk_mq_hctx_mark_pending(hctx, ctx);
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1679
				trace_block_unplug(this_q, depth, !from_schedule);
1680 1681 1682
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1699
		trace_block_unplug(this_q, depth, !from_schedule);
1700 1701
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1702 1703 1704 1705 1706
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1707
	blk_init_request_from_bio(rq, bio);
1708

S
Shaohua Li 已提交
1709 1710
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1711
	blk_account_io_start(rq, true);
1712 1713
}

1714 1715
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1716 1717 1718 1719
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1720 1721
}

1722 1723 1724
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1725 1726 1727 1728
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1729
		.last = true,
1730
	};
1731
	blk_qc_t new_cookie;
1732
	blk_status_t ret;
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1744
		blk_mq_update_dispatch_busy(hctx, false);
1745 1746 1747
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1748
	case BLK_STS_DEV_RESOURCE:
1749
		blk_mq_update_dispatch_busy(hctx, true);
1750 1751 1752
		__blk_mq_requeue_request(rq);
		break;
	default:
1753
		blk_mq_update_dispatch_busy(hctx, false);
1754 1755 1756 1757 1758 1759 1760 1761 1762
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1763 1764
						blk_qc_t *cookie,
						bool bypass_insert)
1765 1766
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1767 1768
	bool run_queue = true;

1769 1770 1771 1772
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1773
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1774 1775
	 * and avoid driver to try to dispatch again.
	 */
1776
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1777
		run_queue = false;
1778
		bypass_insert = false;
M
Ming Lei 已提交
1779 1780
		goto insert;
	}
1781

1782
	if (q->elevator && !bypass_insert)
1783 1784
		goto insert;

1785
	if (!blk_mq_get_dispatch_budget(hctx))
1786 1787
		goto insert;

1788
	if (!blk_mq_get_driver_tag(rq)) {
1789
		blk_mq_put_dispatch_budget(hctx);
1790
		goto insert;
1791
	}
1792

1793
	return __blk_mq_issue_directly(hctx, rq, cookie);
1794
insert:
1795 1796
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1797

1798
	blk_mq_request_bypass_insert(rq, run_queue);
1799
	return BLK_STS_OK;
1800 1801
}

1802 1803 1804
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1805
	blk_status_t ret;
1806
	int srcu_idx;
1807

1808
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1809

1810
	hctx_lock(hctx, &srcu_idx);
1811

1812
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1813
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1814
		blk_mq_request_bypass_insert(rq, true);
1815 1816 1817
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1818
	hctx_unlock(hctx, srcu_idx);
1819 1820
}

1821
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1834 1835
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
	while (!list_empty(list)) {
		blk_status_t ret;
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
		ret = blk_mq_request_issue_directly(rq);
		if (ret != BLK_STS_OK) {
1847 1848
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
1849 1850
				blk_mq_request_bypass_insert(rq,
							list_empty(list));
1851 1852 1853
				break;
			}
			blk_mq_end_request(rq, ret);
1854 1855 1856 1857
		}
	}
}

1858
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1859
{
1860
	const int is_sync = op_is_sync(bio->bi_opf);
1861
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1862
	struct blk_mq_alloc_data data = { .flags = 0 };
1863
	struct request *rq;
1864
	unsigned int request_count = 0;
1865
	struct blk_plug *plug;
1866
	struct request *same_queue_rq = NULL;
1867
	blk_qc_t cookie;
1868 1869 1870

	blk_queue_bounce(q, &bio);

1871
	blk_queue_split(q, &bio);
1872

1873
	if (!bio_integrity_prep(bio))
1874
		return BLK_QC_T_NONE;
1875

1876 1877 1878
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1879

1880 1881 1882
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

1883
	rq_qos_throttle(q, bio, NULL);
J
Jens Axboe 已提交
1884

1885 1886
	trace_block_getrq(q, bio, bio->bi_opf);

1887
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1888
	if (unlikely(!rq)) {
1889
		rq_qos_cleanup(q, bio);
1890 1891
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1892
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1893 1894
	}

1895
	rq_qos_track(q, rq, bio);
1896

1897
	cookie = request_to_qc_t(data.hctx, rq);
1898

1899
	plug = current->plug;
1900
	if (unlikely(is_flush_fua)) {
1901
		blk_mq_put_ctx(data.ctx);
1902
		blk_mq_bio_to_request(rq, bio);
1903 1904 1905 1906

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1907
	} else if (plug && q->nr_hw_queues == 1) {
1908 1909
		struct request *last = NULL;

1910
		blk_mq_put_ctx(data.ctx);
1911
		blk_mq_bio_to_request(rq, bio);
1912 1913 1914 1915 1916 1917 1918

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1919 1920 1921
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1922
		if (!request_count)
1923
			trace_block_plug(q);
1924 1925
		else
			last = list_entry_rq(plug->mq_list.prev);
1926

1927 1928
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1929 1930
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1931
		}
1932

1933
		list_add_tail(&rq->queuelist, &plug->mq_list);
1934
	} else if (plug && !blk_queue_nomerges(q)) {
1935
		blk_mq_bio_to_request(rq, bio);
1936 1937

		/*
1938
		 * We do limited plugging. If the bio can be merged, do that.
1939 1940
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1941 1942
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1943
		 */
1944 1945 1946 1947 1948 1949
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1950 1951
		blk_mq_put_ctx(data.ctx);

1952 1953 1954
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1955 1956
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1957
		}
1958 1959
	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
			!data.hctx->dispatch_busy)) {
1960
		blk_mq_put_ctx(data.ctx);
1961 1962
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1963
	} else {
1964
		blk_mq_put_ctx(data.ctx);
1965
		blk_mq_bio_to_request(rq, bio);
1966
		blk_mq_sched_insert_request(rq, false, true, true);
1967
	}
1968

1969
	return cookie;
1970 1971
}

1972 1973
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1974
{
1975
	struct page *page;
1976

1977
	if (tags->rqs && set->ops->exit_request) {
1978
		int i;
1979

1980
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1981 1982 1983
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1984
				continue;
1985
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1986
			tags->static_rqs[i] = NULL;
1987
		}
1988 1989
	}

1990 1991
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1992
		list_del_init(&page->lru);
1993 1994 1995 1996 1997
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1998 1999
		__free_pages(page, page->private);
	}
2000
}
2001

2002 2003
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2004
	kfree(tags->rqs);
2005
	tags->rqs = NULL;
J
Jens Axboe 已提交
2006 2007
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2008

2009
	blk_mq_free_tags(tags);
2010 2011
}

2012 2013 2014 2015
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2016
{
2017
	struct blk_mq_tags *tags;
2018
	int node;
2019

2020 2021 2022 2023 2024
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2025
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2026 2027
	if (!tags)
		return NULL;
2028

2029
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2030
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2031
				 node);
2032 2033 2034 2035
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2036

2037 2038 2039
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2040 2041 2042 2043 2044 2045
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2046 2047 2048 2049 2050 2051 2052 2053
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2065
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2066 2067 2068
	return 0;
}

2069 2070 2071 2072 2073
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2074 2075 2076 2077 2078
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2079 2080 2081

	INIT_LIST_HEAD(&tags->page_list);

2082 2083 2084 2085
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2086
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2087
				cache_line_size());
2088
	left = rq_size * depth;
2089

2090
	for (i = 0; i < depth; ) {
2091 2092 2093 2094 2095
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2096
		while (this_order && left < order_to_size(this_order - 1))
2097 2098 2099
			this_order--;

		do {
2100
			page = alloc_pages_node(node,
2101
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2102
				this_order);
2103 2104 2105 2106 2107 2108 2109 2110 2111
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2112
			goto fail;
2113 2114

		page->private = this_order;
2115
		list_add_tail(&page->lru, &tags->page_list);
2116 2117

		p = page_address(page);
2118 2119 2120 2121
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2122
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2123
		entries_per_page = order_to_size(this_order) / rq_size;
2124
		to_do = min(entries_per_page, depth - i);
2125 2126
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2127 2128 2129
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2130 2131 2132
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2133 2134
			}

2135 2136 2137 2138
			p += rq_size;
			i++;
		}
	}
2139
	return 0;
2140

2141
fail:
2142 2143
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2144 2145
}

J
Jens Axboe 已提交
2146 2147 2148 2149 2150
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2151
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2152
{
2153
	struct blk_mq_hw_ctx *hctx;
2154 2155 2156
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2157
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2158
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2159 2160 2161 2162 2163 2164 2165 2166 2167

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2168
		return 0;
2169

J
Jens Axboe 已提交
2170 2171 2172
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2173 2174

	blk_mq_run_hw_queue(hctx, true);
2175
	return 0;
2176 2177
}

2178
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2179
{
2180 2181
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2182 2183
}

2184
/* hctx->ctxs will be freed in queue's release handler */
2185 2186 2187 2188
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2189 2190
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2191

2192
	if (set->ops->exit_request)
2193
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2194

2195 2196 2197
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2198
	blk_mq_remove_cpuhp(hctx);
2199 2200
}

M
Ming Lei 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2210
		blk_mq_debugfs_unregister_hctx(hctx);
2211
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2212 2213 2214
	}
}

2215 2216 2217
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2218
{
2219 2220 2221 2222 2223 2224
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2225
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2226 2227 2228
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2229
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2230

2231
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2232 2233

	hctx->tags = set->tags[hctx_idx];
2234 2235

	/*
2236 2237
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2238
	 */
2239
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2240
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2241 2242
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2243

2244 2245
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2246
		goto free_ctxs;
2247

2248
	hctx->nr_ctx = 0;
2249

2250
	spin_lock_init(&hctx->dispatch_wait_lock);
2251 2252 2253
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2254 2255 2256
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2257

2258 2259
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2260
	if (!hctx->fq)
2261
		goto exit_hctx;
2262

2263
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2264
		goto free_fq;
2265

2266
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2267
		init_srcu_struct(hctx->srcu);
2268

2269
	return 0;
2270

2271
 free_fq:
2272
	blk_free_flush_queue(hctx->fq);
2273 2274 2275
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2276
 free_bitmap:
2277
	sbitmap_free(&hctx->ctx_map);
2278 2279 2280
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2281
	blk_mq_remove_cpuhp(hctx);
2282 2283
	return -1;
}
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2303
		hctx = blk_mq_map_queue(q, i);
2304
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2305
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2306 2307 2308
	}
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2331 2332 2333 2334 2335
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2336 2337
}

2338
static void blk_mq_map_swqueue(struct request_queue *q)
2339
{
2340
	unsigned int i, hctx_idx;
2341 2342
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2343
	struct blk_mq_tag_set *set = q->tag_set;
2344

2345 2346 2347 2348 2349
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2350
	queue_for_each_hw_ctx(q, hctx, i) {
2351
		cpumask_clear(hctx->cpumask);
2352
		hctx->nr_ctx = 0;
2353
		hctx->dispatch_from = NULL;
2354 2355 2356
	}

	/*
2357
	 * Map software to hardware queues.
2358 2359
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2360
	 */
2361
	for_each_possible_cpu(i) {
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2375
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2376
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2377

2378
		cpumask_set_cpu(i, hctx->cpumask);
2379 2380 2381
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2382

2383 2384
	mutex_unlock(&q->sysfs_lock);

2385
	queue_for_each_hw_ctx(q, hctx, i) {
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2401

M
Ming Lei 已提交
2402 2403 2404
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2405 2406 2407 2408 2409
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2410
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2411

2412 2413 2414
		/*
		 * Initialize batch roundrobin counts
		 */
2415
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2416 2417
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2418 2419
}

2420 2421 2422 2423
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2424
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2425 2426 2427 2428
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2429
	queue_for_each_hw_ctx(q, hctx, i) {
2430
		if (shared)
2431
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2432
		else
2433 2434 2435 2436
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2437 2438
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2439 2440
{
	struct request_queue *q;
2441

2442 2443
	lockdep_assert_held(&set->tag_list_lock);

2444 2445
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2446
		queue_set_hctx_shared(q, shared);
2447 2448 2449 2450 2451 2452 2453 2454 2455
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2456
	list_del_rcu(&q->tag_set_list);
2457 2458 2459 2460 2461 2462
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2463
	mutex_unlock(&set->tag_list_lock);
2464
	INIT_LIST_HEAD(&q->tag_set_list);
2465 2466 2467 2468 2469 2470 2471 2472
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2473

2474 2475 2476 2477 2478
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2479 2480 2481 2482 2483 2484
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2485
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2486

2487 2488 2489
	mutex_unlock(&set->tag_list_lock);
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2530 2531 2532
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2533
		kobject_put(&hctx->kobj);
2534
	}
2535

2536 2537
	q->mq_map = NULL;

2538 2539
	kfree(q->queue_hw_ctx);

2540 2541 2542 2543 2544
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
2545 2546
}

2547
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2548 2549 2550
{
	struct request_queue *uninit_q, *q;

2551
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2563 2564 2565 2566
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2567
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2568 2569 2570 2571 2572 2573 2574 2575 2576
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
			node);
	if (!hctx)
		return NULL;

	if (!zalloc_cpumask_var_node(&hctx->cpumask,
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				node)) {
		kfree(hctx);
		return NULL;
	}

	atomic_set(&hctx->nr_active, 0);
	hctx->numa_node = node;
	hctx->queue_num = hctx_idx;

	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
		free_cpumask_var(hctx->cpumask);
		kfree(hctx);
		return NULL;
	}
	blk_mq_hctx_kobj_init(hctx);

	return hctx;
}

K
Keith Busch 已提交
2610 2611
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2612
{
2613
	int i, j, end;
K
Keith Busch 已提交
2614
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2615

2616 2617
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2618
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2619
		int node;
2620
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
2621 2622

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2623 2624 2625 2626 2627 2628 2629
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
2630

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
			if (hctxs[i]) {
				blk_mq_exit_hctx(q, set, hctxs[i], i);
				kobject_put(&hctxs[i]->kobj);
			}
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
2645
		}
2646
	}
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
2659

2660
	for (; j < end; j++) {
K
Keith Busch 已提交
2661 2662 2663
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2664 2665
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2666 2667 2668 2669 2670 2671
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
2672
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2673 2674 2675 2676 2677
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2678 2679 2680
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2681
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2682 2683
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2684 2685 2686
	if (!q->poll_cb)
		goto err_exit;

2687
	if (blk_mq_alloc_ctxs(q))
M
Ming Lin 已提交
2688
		goto err_exit;
K
Keith Busch 已提交
2689

2690 2691 2692
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2693
	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
K
Keith Busch 已提交
2694 2695
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
2696
		goto err_sys_init;
K
Keith Busch 已提交
2697

2698
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2699 2700 2701 2702

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2703

2704
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2705
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2706 2707 2708

	q->nr_queues = nr_cpu_ids;

2709
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2710

2711
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2712
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2713

2714 2715
	q->sg_reserved_size = INT_MAX;

2716
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2717 2718 2719
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2720
	blk_queue_make_request(q, blk_mq_make_request);
2721

2722 2723 2724 2725 2726
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2727 2728 2729 2730 2731
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2732 2733
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2734

2735
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2736
	blk_mq_add_queue_tag_set(set, q);
2737
	blk_mq_map_swqueue(q);
2738

2739 2740 2741
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2742
		ret = elevator_init_mq(q);
2743 2744 2745 2746
		if (ret)
			return ERR_PTR(ret);
	}

2747
	return q;
2748

2749
err_hctxs:
K
Keith Busch 已提交
2750
	kfree(q->queue_hw_ctx);
2751 2752
err_sys_init:
	blk_mq_sysfs_deinit(q);
M
Ming Lin 已提交
2753 2754
err_exit:
	q->mq_ops = NULL;
2755 2756
	return ERR_PTR(-ENOMEM);
}
2757
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2758

2759 2760
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
2761
{
M
Ming Lei 已提交
2762
	struct blk_mq_tag_set	*set = q->tag_set;
2763

2764
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2765
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2766 2767
}

2768 2769 2770 2771
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2772 2773
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2774 2775 2776 2777 2778 2779
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2780
		blk_mq_free_rq_map(set->tags[i]);
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2820 2821
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	if (set->ops->map_queues) {
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
2837
		blk_mq_clear_mq_map(set);
2838

2839
		return set->ops->map_queues(set);
2840
	} else
2841 2842 2843
		return blk_mq_map_queues(set);
}

2844 2845 2846
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
2847
 * requested depth down, if it's too large. In that case, the set
2848 2849
 * value will be stored in set->queue_depth.
 */
2850 2851
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2852 2853
	int ret;

B
Bart Van Assche 已提交
2854 2855
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2856 2857
	if (!set->nr_hw_queues)
		return -EINVAL;
2858
	if (!set->queue_depth)
2859 2860 2861 2862
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2863
	if (!set->ops->queue_rq)
2864 2865
		return -EINVAL;

2866 2867 2868
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2869 2870 2871 2872 2873
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2874

2875 2876 2877 2878 2879 2880 2881 2882 2883
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2884 2885 2886 2887 2888
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2889

2890
	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2891 2892
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2893
		return -ENOMEM;
2894

2895
	ret = -ENOMEM;
2896 2897
	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
				   GFP_KERNEL, set->numa_node);
2898 2899 2900
	if (!set->mq_map)
		goto out_free_tags;

2901
	ret = blk_mq_update_queue_map(set);
2902 2903 2904 2905 2906
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2907
		goto out_free_mq_map;
2908

2909 2910 2911
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2912
	return 0;
2913 2914 2915 2916 2917

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2918 2919
	kfree(set->tags);
	set->tags = NULL;
2920
	return ret;
2921 2922 2923 2924 2925 2926 2927
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2928 2929
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2930

2931 2932 2933
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2934
	kfree(set->tags);
2935
	set->tags = NULL;
2936 2937 2938
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2939 2940 2941 2942 2943 2944
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2945
	if (!set)
2946 2947
		return -EINVAL;

2948
	blk_mq_freeze_queue(q);
2949
	blk_mq_quiesce_queue(q);
2950

2951 2952
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2953 2954
		if (!hctx->tags)
			continue;
2955 2956 2957 2958
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2959
		if (!hctx->sched_tags) {
2960
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2961 2962 2963 2964 2965
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2966 2967
		if (ret)
			break;
2968 2969
		if (q->elevator && q->elevator->type->ops.mq.depth_updated)
			q->elevator->type->ops.mq.depth_updated(hctx);
2970 2971 2972 2973 2974
	}

	if (!ret)
		q->nr_requests = nr;

2975
	blk_mq_unquiesce_queue(q);
2976 2977
	blk_mq_unfreeze_queue(q);

2978 2979 2980
	return ret;
}

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3051 3052
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3053 3054
{
	struct request_queue *q;
3055
	LIST_HEAD(head);
3056
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3057

3058 3059
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
3060 3061 3062 3063 3064 3065 3066
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3067 3068 3069 3070
	/*
	 * Sync with blk_mq_queue_tag_busy_iter.
	 */
	synchronize_rcu();
3071 3072 3073 3074 3075 3076 3077 3078
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3079

3080 3081 3082 3083 3084
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3085
	prev_nr_hw_queues = set->nr_hw_queues;
K
Keith Busch 已提交
3086
	set->nr_hw_queues = nr_hw_queues;
3087
	blk_mq_update_queue_map(set);
3088
fallback:
K
Keith Busch 已提交
3089 3090
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3091 3092 3093 3094 3095 3096 3097
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
			blk_mq_map_queues(set);
			goto fallback;
		}
3098 3099 3100 3101 3102 3103
		blk_mq_map_swqueue(q);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3104 3105
	}

3106 3107 3108 3109
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3110 3111 3112
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3113 3114 3115 3116 3117 3118 3119

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3120 3121
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3122 3123 3124 3125
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3126
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3148
	int bucket;
3149

3150 3151 3152 3153
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3154 3155
}

3156 3157 3158 3159 3160
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3161
	int bucket;
3162 3163 3164 3165 3166

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3167
	if (!blk_poll_stats_enable(q))
3168 3169 3170 3171 3172 3173 3174 3175
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3176 3177
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3178
	 */
3179 3180 3181 3182 3183 3184
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3185 3186 3187 3188

	return ret;
}

3189
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3190
				     struct blk_mq_hw_ctx *hctx,
3191 3192 3193 3194
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3195
	unsigned int nsecs;
3196 3197
	ktime_t kt;

J
Jens Axboe 已提交
3198
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3199 3200 3201
		return false;

	/*
3202
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3203 3204 3205 3206
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
3207
	if (q->poll_nsec > 0)
3208 3209 3210 3211 3212
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3213 3214
		return false;

J
Jens Axboe 已提交
3215
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3216 3217 3218 3219 3220

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3221
	kt = nsecs;
3222 3223 3224 3225 3226 3227 3228

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3229
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

3244 3245
static bool blk_mq_poll_hybrid(struct request_queue *q,
			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
J
Jens Axboe 已提交
3246
{
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	struct request *rq;

	if (q->poll_nsec == -1)
		return false;

	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else {
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}

	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
}

C
Christoph Hellwig 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
/**
 * blk_poll - poll for IO completions
 * @q:  the queue
 * @cookie: cookie passed back at IO submission time
 * @spin: whether to spin for completions
 *
 * Description:
 *    Poll for completions on the passed in queue. Returns number of
 *    completed entries found. If @spin is true, then blk_poll will continue
 *    looping until at least one completion is found, unless the task is
 *    otherwise marked running (or we need to reschedule).
 */
int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3282 3283
{
	struct blk_mq_hw_ctx *hctx;
J
Jens Axboe 已提交
3284 3285
	long state;

C
Christoph Hellwig 已提交
3286 3287
	if (!blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3288 3289
		return 0;

C
Christoph Hellwig 已提交
3290 3291 3292
	if (current->plug)
		blk_flush_plug_list(current->plug, false);

3293 3294
	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];

3295 3296 3297 3298 3299 3300 3301
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3302
	if (blk_mq_poll_hybrid(q, hctx, cookie))
3303
		return 1;
3304

J
Jens Axboe 已提交
3305 3306 3307 3308 3309 3310 3311 3312
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

3313
		ret = q->mq_ops->poll(hctx, -1U);
J
Jens Axboe 已提交
3314 3315 3316
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
3317
			return ret;
J
Jens Axboe 已提交
3318 3319 3320 3321 3322 3323
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
3324
			return 1;
3325
		if (ret < 0 || !spin)
J
Jens Axboe 已提交
3326 3327 3328 3329
			break;
		cpu_relax();
	}

3330
	__set_current_state(TASK_RUNNING);
3331
	return 0;
J
Jens Axboe 已提交
3332
}
C
Christoph Hellwig 已提交
3333
EXPORT_SYMBOL_GPL(blk_poll);
J
Jens Axboe 已提交
3334

3335 3336
static int __init blk_mq_init(void)
{
3337 3338
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3339 3340 3341
	return 0;
}
subsys_initcall(blk_mq_init);