blk-mq.c 77.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98 99 100 101 102 103 104 105 106
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
107 108 109 110 111 112 113
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

114
	inflight[0] = inflight[1] = 0;
115 116 117
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139
	int freeze_depth;
140

141 142
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
143
		percpu_ref_kill(&q->q_usage_counter);
144 145
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
146
	}
147
}
148
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149

150
void blk_mq_freeze_queue_wait(struct request_queue *q)
151
{
152
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155

156 157 158 159 160 161 162 163
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164

165 166 167 168
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
169
void blk_freeze_queue(struct request_queue *q)
170
{
171 172 173 174 175 176 177
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
178
	blk_freeze_queue_start(q);
179 180
	if (!q->mq_ops)
		blk_drain_queue(q);
181 182
	blk_mq_freeze_queue_wait(q);
}
183 184 185 186 187 188 189 190 191

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193

194
void blk_mq_unfreeze_queue(struct request_queue *q)
195
{
196
	int freeze_depth;
197

198 199 200
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
201
		percpu_ref_reinit(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
}
205
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206

207 208 209 210 211 212
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
213
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 215 216
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

217
/**
218
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 220 221
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
222 223 224
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
225 226 227 228 229 230 231
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

232
	blk_mq_quiesce_queue_nowait(q);
233

234 235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
236
			synchronize_srcu(hctx->srcu);
237 238 239 240 241 242 243 244
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

245 246 247 248 249 250 251 252 253
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
254
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255

256 257
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
258 259 260
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

261 262 263 264 265 266 267 268 269 270
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

271 272 273 274 275 276
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

277 278
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282
	req_flags_t rq_flags = 0;
283

284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
289
			rq_flags = RQF_MQ_INFLIGHT;
290 291 292 293 294 295 296
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

297
	/* csd/requeue_work/fifo_time is initialized before use */
298 299
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
300
	rq->rq_flags = rq_flags;
301
	rq->cpu = -1;
302
	rq->cmd_flags = op;
303 304
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
305
	if (blk_queue_io_stat(data->q))
306
		rq->rq_flags |= RQF_IO_STAT;
307
	INIT_LIST_HEAD(&rq->queuelist);
308 309 310 311
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
312
	rq->start_time_ns = ktime_get_ns();
313
	rq->io_start_time_ns = 0;
314 315 316 317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
321
	rq->__deadline = 0;
322 323

	INIT_LIST_HEAD(&rq->timeout_list);
324 325
	rq->timeout = 0;

326 327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

330 331 332 333
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

334 335
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
336 337
}

338 339 340 341 342 343
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
344
	unsigned int tag;
345
	bool put_ctx_on_error = false;
346 347 348

	blk_queue_enter_live(q);
	data->q = q;
349 350 351 352
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
353 354
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
355 356
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
357 358 359 360 361 362

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
363 364
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
365
		 */
366 367
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
368
			e->type->ops.mq.limit_depth(op, data);
369 370
	}

371 372
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
373 374
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
375 376
			data->ctx = NULL;
		}
377 378
		blk_queue_exit(q);
		return NULL;
379 380
	}

381
	rq = blk_mq_rq_ctx_init(data, tag, op);
382 383
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
384
		if (e && e->type->ops.mq.prepare_request) {
385 386 387
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

388 389
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
390
		}
391 392 393
	}
	data->hctx->queued++;
	return rq;
394 395
}

396
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
397
		blk_mq_req_flags_t flags)
398
{
399
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
400
	struct request *rq;
401
	int ret;
402

403
	ret = blk_queue_enter(q, flags);
404 405
	if (ret)
		return ERR_PTR(ret);
406

407
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
408
	blk_queue_exit(q);
409

410
	if (!rq)
411
		return ERR_PTR(-EWOULDBLOCK);
412

413 414
	blk_mq_put_ctx(alloc_data.ctx);

415 416 417
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
418 419
	return rq;
}
420
EXPORT_SYMBOL(blk_mq_alloc_request);
421

422
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
423
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
424
{
425
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
426
	struct request *rq;
427
	unsigned int cpu;
M
Ming Lin 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

442
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
443 444 445
	if (ret)
		return ERR_PTR(ret);

446 447 448 449
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
450 451 452 453
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
454
	}
455
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
456
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
457

458
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
459
	blk_queue_exit(q);
460

461 462 463 464
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
465 466 467
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

468
void blk_mq_free_request(struct request *rq)
469 470
{
	struct request_queue *q = rq->q;
471 472 473 474 475
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

476
	if (rq->rq_flags & RQF_ELVPRIV) {
477 478 479 480 481 482 483
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
484

485
	ctx->rq_completed[rq_is_sync(rq)]++;
486
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
487
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
488

489 490 491
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

492
	wbt_done(q->rq_wb, rq);
493

S
Shaohua Li 已提交
494 495 496
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

497
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
498 499 500
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
501
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
502
	blk_mq_sched_restart(hctx);
503
	blk_queue_exit(q);
504
}
J
Jens Axboe 已提交
505
EXPORT_SYMBOL_GPL(blk_mq_free_request);
506

507
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
508
{
509 510
	u64 now = ktime_get_ns();

511 512
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
513
		blk_stat_add(rq, now);
514 515
	}

516
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
517

C
Christoph Hellwig 已提交
518
	if (rq->end_io) {
519
		wbt_done(rq->q->rq_wb, rq);
520
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
521 522 523
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
524
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
525
	}
526
}
527
EXPORT_SYMBOL(__blk_mq_end_request);
528

529
void blk_mq_end_request(struct request *rq, blk_status_t error)
530 531 532
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
533
	__blk_mq_end_request(rq, error);
534
}
535
EXPORT_SYMBOL(blk_mq_end_request);
536

537
static void __blk_mq_complete_request_remote(void *data)
538
{
539
	struct request *rq = data;
540

541
	rq->q->softirq_done_fn(rq);
542 543
}

544
static void __blk_mq_complete_request(struct request *rq)
545 546
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
547
	bool shared = false;
548 549
	int cpu;

550
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
551
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
552

553 554 555
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
556
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
557 558 559
		rq->q->softirq_done_fn(rq);
		return;
	}
560 561

	cpu = get_cpu();
C
Christoph Hellwig 已提交
562 563 564 565
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
566
		rq->csd.func = __blk_mq_complete_request_remote;
567 568
		rq->csd.info = rq;
		rq->csd.flags = 0;
569
		smp_call_function_single_async(ctx->cpu, &rq->csd);
570
	} else {
571
		rq->q->softirq_done_fn(rq);
572
	}
573 574
	put_cpu();
}
575

576
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
577
	__releases(hctx->srcu)
578 579 580 581
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
582
		srcu_read_unlock(hctx->srcu, srcu_idx);
583 584 585
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
586
	__acquires(hctx->srcu)
587
{
588 589 590
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
591
		rcu_read_lock();
592
	} else
593
		*srcu_idx = srcu_read_lock(hctx->srcu);
594 595
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

626 627 628 629 630 631 632 633
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
634
void blk_mq_complete_request(struct request *rq)
635
{
636
	struct request_queue *q = rq->q;
637 638
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
639 640

	if (unlikely(blk_should_fake_timeout(q)))
641
		return;
642

643 644 645 646 647 648 649 650 651 652 653
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
654
	hctx_lock(hctx, &srcu_idx);
655
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
656
		__blk_mq_complete_request(rq);
657
	hctx_unlock(hctx, srcu_idx);
658 659
}
EXPORT_SYMBOL(blk_mq_complete_request);
660

661 662
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
663
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
664 665 666
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

667
void blk_mq_start_request(struct request *rq)
668 669 670
{
	struct request_queue *q = rq->q;

671 672
	blk_mq_sched_started_request(rq);

673 674
	trace_block_rq_issue(q, rq);

675
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
676 677 678 679
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
680
		rq->rq_flags |= RQF_STATS;
681
		wbt_issue(q->rq_wb, rq);
682 683
	}

684
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
685

686
	/*
687 688 689 690
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
691
	 *
692 693 694 695
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
696
	 */
697 698 699 700 701 702 703 704
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();
705 706 707 708 709 710 711 712 713

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
714
}
715
EXPORT_SYMBOL(blk_mq_start_request);
716

717
/*
T
Tejun Heo 已提交
718 719 720
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
721
 */
722
static void __blk_mq_requeue_request(struct request *rq)
723 724 725
{
	struct request_queue *q = rq->q;

726 727
	blk_mq_put_driver_tag(rq);

728
	trace_block_rq_requeue(q, rq);
729
	wbt_requeue(q->rq_wb, rq);
730

T
Tejun Heo 已提交
731
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
732
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
733 734 735
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
736 737
}

738
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
739 740 741
{
	__blk_mq_requeue_request(rq);

742 743 744
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

745
	BUG_ON(blk_queued_rq(rq));
746
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
747 748 749
}
EXPORT_SYMBOL(blk_mq_requeue_request);

750 751 752
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
753
		container_of(work, struct request_queue, requeue_work.work);
754 755 756
	LIST_HEAD(rq_list);
	struct request *rq, *next;

757
	spin_lock_irq(&q->requeue_lock);
758
	list_splice_init(&q->requeue_list, &rq_list);
759
	spin_unlock_irq(&q->requeue_lock);
760 761

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
762
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
763 764
			continue;

765
		rq->rq_flags &= ~RQF_SOFTBARRIER;
766
		list_del_init(&rq->queuelist);
767
		blk_mq_sched_insert_request(rq, true, false, false);
768 769 770 771 772
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
773
		blk_mq_sched_insert_request(rq, false, false, false);
774 775
	}

776
	blk_mq_run_hw_queues(q, false);
777 778
}

779 780
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
781 782 783 784 785 786
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
787
	 * request head insertion from the workqueue.
788
	 */
789
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
790 791 792

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
793
		rq->rq_flags |= RQF_SOFTBARRIER;
794 795 796 797 798
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
799 800 801

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
802 803 804 805 806
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
807
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
808 809 810
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

811 812 813
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
814 815
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
816 817 818
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

819 820
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
821 822
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
823
		return tags->rqs[tag];
824
	}
825 826

	return NULL;
827 828 829
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

830
struct blk_mq_timeout_data {
831 832
	unsigned long next;
	unsigned int next_set;
833
	unsigned int nr_expired;
834 835
};

836
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
837
{
J
Jens Axboe 已提交
838
	const struct blk_mq_ops *ops = req->q->mq_ops;
839
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
840

841
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
842

843
	if (ops->timeout)
844
		ret = ops->timeout(req, reserved);
845 846 847 848 849 850

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
851 852 853 854 855 856
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
857 858 859 860 861 862 863 864
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
865
}
866

867 868 869 870
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
871 872
	unsigned long gstate, deadline;
	int start;
873

874
	might_sleep();
875

T
Tejun Heo 已提交
876
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
877
		return;
878

879 880 881 882
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
883
		deadline = blk_rq_deadline(rq);
884 885 886 887
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
888

889 890 891 892 893 894
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
895 896
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
897 898
		data->next_set = 1;
	}
899 900
}

901 902 903 904 905 906 907 908 909 910
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
911 912
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
913 914 915
		blk_mq_rq_timed_out(rq, reserved);
}

916
static void blk_mq_timeout_work(struct work_struct *work)
917
{
918 919
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
920 921 922
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
923
		.nr_expired	= 0,
924
	};
925
	struct blk_mq_hw_ctx *hctx;
926
	int i;
927

928 929 930 931 932 933 934 935 936
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
937
	 * blk_freeze_queue_start, and the moment the last request is
938 939 940 941
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
942 943
		return;

944
	/* scan for the expired ones and set their ->aborted_gstate */
945
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
946

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
963
				synchronize_srcu(hctx->srcu);
964 965 966 967 968 969 970 971 972 973

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

974 975 976
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
977
	} else {
978 979 980 981 982 983
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
984 985 986 987 988
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
989
	}
990
	blk_queue_exit(q);
991 992
}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
1006
	sbitmap_clear_bit(sb, bitnr);
1007 1008 1009 1010
	spin_unlock(&ctx->lock);
	return true;
}

1011 1012 1013 1014
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1015
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1016
{
1017 1018 1019 1020
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1021

1022
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1023
}
1024
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1065 1066 1067 1068
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1069

1070
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1071 1072
}

1073 1074
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1075 1076 1077 1078 1079 1080 1081
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1082 1083
	might_sleep_if(wait);

1084 1085
	if (rq->tag != -1)
		goto done;
1086

1087 1088 1089
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1090 1091
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1092 1093 1094 1095
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1096 1097 1098
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1099 1100 1101 1102
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1103 1104
}

1105 1106
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1107 1108 1109 1110 1111
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1112
	list_del_init(&wait->entry);
1113 1114 1115 1116
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1117 1118
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1119 1120
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1121 1122 1123 1124
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1125
{
1126
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1127
	struct sbq_wait_state *ws;
1128 1129
	wait_queue_entry_t *wait;
	bool ret;
1130

1131
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1132 1133 1134
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1135 1136 1137 1138 1139 1140 1141 1142 1143
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1144 1145
	}

1146 1147 1148 1149 1150 1151 1152 1153
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1154 1155
	}

1156 1157 1158
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1159
	/*
1160 1161 1162
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1163
	 */
1164
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1165
	if (!ret) {
1166
		spin_unlock(&this_hctx->lock);
1167
		return false;
1168
	}
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1180 1181
}

1182 1183
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1184
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1185
			     bool got_budget)
1186
{
1187
	struct blk_mq_hw_ctx *hctx;
1188
	struct request *rq, *nxt;
1189
	bool no_tag = false;
1190
	int errors, queued;
1191
	blk_status_t ret = BLK_STS_OK;
1192

1193 1194 1195
	if (list_empty(list))
		return false;

1196 1197
	WARN_ON(!list_is_singular(list) && got_budget);

1198 1199 1200
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1201
	errors = queued = 0;
1202
	do {
1203
		struct blk_mq_queue_data bd;
1204

1205
		rq = list_first_entry(list, struct request, queuelist);
1206 1207 1208 1209 1210 1211

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1212
			/*
1213
			 * The initial allocation attempt failed, so we need to
1214 1215 1216 1217
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1218
			 */
1219
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1220
				blk_mq_put_dispatch_budget(hctx);
1221 1222 1223 1224 1225 1226
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1227 1228 1229 1230
				break;
			}
		}

1231 1232
		list_del_init(&rq->queuelist);

1233
		bd.rq = rq;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1245 1246

		ret = q->mq_ops->queue_rq(hctx, &bd);
1247
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1248 1249
			/*
			 * If an I/O scheduler has been configured and we got a
1250 1251
			 * driver tag for the next request already, free it
			 * again.
1252 1253 1254 1255 1256
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1257
			list_add(&rq->queuelist, list);
1258
			__blk_mq_requeue_request(rq);
1259
			break;
1260 1261 1262
		}

		if (unlikely(ret != BLK_STS_OK)) {
1263
			errors++;
1264
			blk_mq_end_request(rq, BLK_STS_IOERR);
1265
			continue;
1266 1267
		}

1268
		queued++;
1269
	} while (!list_empty(list));
1270

1271
	hctx->dispatched[queued_to_index(queued)]++;
1272 1273 1274 1275 1276

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1277
	if (!list_empty(list)) {
1278 1279
		bool needs_restart;

1280
		spin_lock(&hctx->lock);
1281
		list_splice_init(list, &hctx->dispatch);
1282
		spin_unlock(&hctx->lock);
1283

1284
		/*
1285 1286 1287
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1288
		 *
1289 1290 1291 1292
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1293
		 *
1294 1295 1296 1297 1298 1299 1300
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1301
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1302
		 *   and dm-rq.
1303 1304 1305 1306
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1307
		 */
1308 1309
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1310
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1311
			blk_mq_run_hw_queue(hctx, true);
1312 1313
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1314
	}
1315

1316
	return (queued + errors) != 0;
1317 1318
}

1319 1320 1321 1322
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1323 1324 1325
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1339
	 */
1340 1341 1342 1343 1344 1345 1346
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1347

1348 1349 1350 1351 1352 1353
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1354
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1355

1356 1357 1358
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1359 1360
}

1361 1362 1363 1364 1365 1366 1367 1368 1369
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1370 1371 1372 1373 1374 1375 1376 1377
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1378
	bool tried = false;
1379
	int next_cpu = hctx->next_cpu;
1380

1381 1382
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1383 1384

	if (--hctx->next_cpu_batch <= 0) {
1385
select_cpu:
1386
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1387
				cpu_online_mask);
1388
		if (next_cpu >= nr_cpu_ids)
1389
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1390 1391 1392
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1393 1394 1395 1396
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1397
	if (!cpu_online(next_cpu)) {
1398 1399 1400 1401 1402 1403 1404 1405 1406
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1407
		hctx->next_cpu = next_cpu;
1408 1409 1410
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1411 1412 1413

	hctx->next_cpu = next_cpu;
	return next_cpu;
1414 1415
}

1416 1417
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1418
{
1419
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1420 1421
		return;

1422
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1423 1424
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1425
			__blk_mq_run_hw_queue(hctx);
1426
			put_cpu();
1427 1428
			return;
		}
1429

1430
		put_cpu();
1431
	}
1432

1433 1434
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1435 1436 1437 1438 1439 1440 1441 1442
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1443
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1444
{
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1456 1457 1458 1459
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1460 1461

	if (need_run) {
1462 1463 1464 1465 1466
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1467
}
O
Omar Sandoval 已提交
1468
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1469

1470
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1471 1472 1473 1474 1475
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1476
		if (blk_mq_hctx_stopped(hctx))
1477 1478
			continue;

1479
		blk_mq_run_hw_queue(hctx, async);
1480 1481
	}
}
1482
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1504 1505 1506
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1507
 * BLK_STS_RESOURCE is usually returned.
1508 1509 1510 1511 1512
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1513 1514
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1515
	cancel_delayed_work(&hctx->run_work);
1516

1517
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1518
}
1519
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1520

1521 1522 1523
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1524
 * BLK_STS_RESOURCE is usually returned.
1525 1526 1527 1528 1529
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1530 1531
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1532 1533 1534 1535 1536
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1537 1538 1539
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1540 1541 1542
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1543

1544
	blk_mq_run_hw_queue(hctx, false);
1545 1546 1547
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1568
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1569 1570 1571 1572
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1573 1574
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1575 1576 1577
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1578
static void blk_mq_run_work_fn(struct work_struct *work)
1579 1580 1581
{
	struct blk_mq_hw_ctx *hctx;

1582
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1583

1584
	/*
M
Ming Lei 已提交
1585
	 * If we are stopped, don't run the queue.
1586
	 */
M
Ming Lei 已提交
1587
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1588
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1589 1590 1591 1592

	__blk_mq_run_hw_queue(hctx);
}

1593 1594 1595
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1596
{
J
Jens Axboe 已提交
1597 1598
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1599 1600
	lockdep_assert_held(&ctx->lock);

1601 1602
	trace_block_rq_insert(hctx->queue, rq);

1603 1604 1605 1606
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1607
}
1608

1609 1610
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1611 1612 1613
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1614 1615
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1616
	__blk_mq_insert_req_list(hctx, rq, at_head);
1617 1618 1619
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1620 1621 1622 1623
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1624
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1625 1626 1627 1628 1629 1630 1631 1632
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1633 1634
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1635 1636
}

1637 1638
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1650
		BUG_ON(rq->mq_ctx != ctx);
1651
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1652
		__blk_mq_insert_req_list(hctx, rq, false);
1653
	}
1654
	blk_mq_hctx_mark_pending(hctx, ctx);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1691 1692 1693 1694
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1711 1712 1713
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1714 1715 1716 1717 1718
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1719
	blk_init_request_from_bio(rq, bio);
1720

S
Shaohua Li 已提交
1721 1722
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1723
	blk_account_io_start(rq, true);
1724 1725
}

1726 1727
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1728 1729 1730 1731
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1732 1733
}

1734 1735 1736
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1737 1738 1739 1740
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1741
		.last = true,
1742
	};
1743
	blk_qc_t new_cookie;
1744
	blk_status_t ret;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1759
	case BLK_STS_DEV_RESOURCE:
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1772 1773
						blk_qc_t *cookie,
						bool bypass_insert)
1774 1775
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1776 1777
	bool run_queue = true;

1778 1779 1780 1781
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1782
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1783 1784
	 * and avoid driver to try to dispatch again.
	 */
1785
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1786
		run_queue = false;
1787
		bypass_insert = false;
M
Ming Lei 已提交
1788 1789
		goto insert;
	}
1790

1791
	if (q->elevator && !bypass_insert)
1792 1793
		goto insert;

1794
	if (!blk_mq_get_dispatch_budget(hctx))
1795 1796
		goto insert;

1797 1798
	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
		blk_mq_put_dispatch_budget(hctx);
1799
		goto insert;
1800
	}
1801

1802
	return __blk_mq_issue_directly(hctx, rq, cookie);
1803
insert:
1804 1805
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1806

1807
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1808
	return BLK_STS_OK;
1809 1810
}

1811 1812 1813
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1814
	blk_status_t ret;
1815
	int srcu_idx;
1816

1817
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1818

1819
	hctx_lock(hctx, &srcu_idx);
1820

1821
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1822
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1823
		blk_mq_sched_insert_request(rq, false, true, false);
1824 1825 1826
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1827
	hctx_unlock(hctx, srcu_idx);
1828 1829
}

1830
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1843 1844
}

1845
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1846
{
1847
	const int is_sync = op_is_sync(bio->bi_opf);
1848
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1849
	struct blk_mq_alloc_data data = { .flags = 0 };
1850
	struct request *rq;
1851
	unsigned int request_count = 0;
1852
	struct blk_plug *plug;
1853
	struct request *same_queue_rq = NULL;
1854
	blk_qc_t cookie;
J
Jens Axboe 已提交
1855
	unsigned int wb_acct;
1856 1857 1858

	blk_queue_bounce(q, &bio);

1859
	blk_queue_split(q, &bio);
1860

1861
	if (!bio_integrity_prep(bio))
1862
		return BLK_QC_T_NONE;
1863

1864 1865 1866
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1867

1868 1869 1870
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1871 1872
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1873 1874
	trace_block_getrq(q, bio, bio->bi_opf);

1875
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1876 1877
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1878 1879
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1880
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1881 1882
	}

1883
	wbt_track(rq, wb_acct);
1884

1885
	cookie = request_to_qc_t(data.hctx, rq);
1886

1887
	plug = current->plug;
1888
	if (unlikely(is_flush_fua)) {
1889
		blk_mq_put_ctx(data.ctx);
1890
		blk_mq_bio_to_request(rq, bio);
1891 1892 1893 1894

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1895
	} else if (plug && q->nr_hw_queues == 1) {
1896 1897
		struct request *last = NULL;

1898
		blk_mq_put_ctx(data.ctx);
1899
		blk_mq_bio_to_request(rq, bio);
1900 1901 1902 1903 1904 1905 1906

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1907 1908 1909
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1910
		if (!request_count)
1911
			trace_block_plug(q);
1912 1913
		else
			last = list_entry_rq(plug->mq_list.prev);
1914

1915 1916
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1917 1918
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1919
		}
1920

1921
		list_add_tail(&rq->queuelist, &plug->mq_list);
1922
	} else if (plug && !blk_queue_nomerges(q)) {
1923
		blk_mq_bio_to_request(rq, bio);
1924 1925

		/*
1926
		 * We do limited plugging. If the bio can be merged, do that.
1927 1928
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1929 1930
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1931
		 */
1932 1933 1934 1935 1936 1937
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1938 1939
		blk_mq_put_ctx(data.ctx);

1940 1941 1942
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1943 1944
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1945
		}
1946
	} else if (q->nr_hw_queues > 1 && is_sync) {
1947
		blk_mq_put_ctx(data.ctx);
1948 1949
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1950
	} else {
1951
		blk_mq_put_ctx(data.ctx);
1952
		blk_mq_bio_to_request(rq, bio);
1953
		blk_mq_sched_insert_request(rq, false, true, true);
1954
	}
1955

1956
	return cookie;
1957 1958
}

1959 1960
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1961
{
1962
	struct page *page;
1963

1964
	if (tags->rqs && set->ops->exit_request) {
1965
		int i;
1966

1967
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1968 1969 1970
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1971
				continue;
1972
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1973
			tags->static_rqs[i] = NULL;
1974
		}
1975 1976
	}

1977 1978
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1979
		list_del_init(&page->lru);
1980 1981 1982 1983 1984
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1985 1986
		__free_pages(page, page->private);
	}
1987
}
1988

1989 1990
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1991
	kfree(tags->rqs);
1992
	tags->rqs = NULL;
J
Jens Axboe 已提交
1993 1994
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1995

1996
	blk_mq_free_tags(tags);
1997 1998
}

1999 2000 2001 2002
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2003
{
2004
	struct blk_mq_tags *tags;
2005
	int node;
2006

2007 2008 2009 2010 2011
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2012
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2013 2014
	if (!tags)
		return NULL;
2015

2016
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2017
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2018
				 node);
2019 2020 2021 2022
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2023

J
Jens Axboe 已提交
2024 2025
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2026
				 node);
J
Jens Axboe 已提交
2027 2028 2029 2030 2031 2032
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2033 2034 2035 2036 2037 2038 2039 2040
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
2054 2055 2056 2057 2058 2059 2060
	/*
	 * start gstate with gen 1 instead of 0, otherwise it will be equal
	 * to aborted_gstate, and be identified timed out by
	 * blk_mq_terminate_expired.
	 */
	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);

2061 2062 2063
	return 0;
}

2064 2065 2066 2067 2068
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2069 2070 2071 2072 2073
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2074 2075 2076

	INIT_LIST_HEAD(&tags->page_list);

2077 2078 2079 2080
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2081
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2082
				cache_line_size());
2083
	left = rq_size * depth;
2084

2085
	for (i = 0; i < depth; ) {
2086 2087 2088 2089 2090
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2091
		while (this_order && left < order_to_size(this_order - 1))
2092 2093 2094
			this_order--;

		do {
2095
			page = alloc_pages_node(node,
2096
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2097
				this_order);
2098 2099 2100 2101 2102 2103 2104 2105 2106
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2107
			goto fail;
2108 2109

		page->private = this_order;
2110
		list_add_tail(&page->lru, &tags->page_list);
2111 2112

		p = page_address(page);
2113 2114 2115 2116
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2117
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2118
		entries_per_page = order_to_size(this_order) / rq_size;
2119
		to_do = min(entries_per_page, depth - i);
2120 2121
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2122 2123 2124
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2125 2126 2127
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2128 2129
			}

2130 2131 2132 2133
			p += rq_size;
			i++;
		}
	}
2134
	return 0;
2135

2136
fail:
2137 2138
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2139 2140
}

J
Jens Axboe 已提交
2141 2142 2143 2144 2145
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2146
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2147
{
2148
	struct blk_mq_hw_ctx *hctx;
2149 2150 2151
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2152
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2153
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2154 2155 2156 2157 2158 2159 2160 2161 2162

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2163
		return 0;
2164

J
Jens Axboe 已提交
2165 2166 2167
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2168 2169

	blk_mq_run_hw_queue(hctx, true);
2170
	return 0;
2171 2172
}

2173
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2174
{
2175 2176
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2177 2178
}

2179
/* hctx->ctxs will be freed in queue's release handler */
2180 2181 2182 2183
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2184 2185
	blk_mq_debugfs_unregister_hctx(hctx);

2186 2187
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2188

2189
	if (set->ops->exit_request)
2190
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2191

2192 2193
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2194 2195 2196
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2197
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2198
		cleanup_srcu_struct(hctx->srcu);
2199

2200
	blk_mq_remove_cpuhp(hctx);
2201
	blk_free_flush_queue(hctx->fq);
2202
	sbitmap_free(&hctx->ctx_map);
2203 2204
}

M
Ming Lei 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2214
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2215 2216 2217
	}
}

2218 2219 2220
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2221
{
2222 2223 2224 2225 2226 2227
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2228
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2229 2230 2231
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2232
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2233

2234
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2235 2236

	hctx->tags = set->tags[hctx_idx];
2237 2238

	/*
2239 2240
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2241
	 */
2242
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2243 2244 2245
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2246

2247 2248
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2249
		goto free_ctxs;
2250

2251
	hctx->nr_ctx = 0;
2252

2253 2254 2255
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2256 2257 2258
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2259

2260 2261 2262
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2263 2264
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2265
		goto sched_exit_hctx;
2266

2267
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2268
		goto free_fq;
2269

2270
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2271
		init_srcu_struct(hctx->srcu);
2272

2273 2274
	blk_mq_debugfs_register_hctx(q, hctx);

2275
	return 0;
2276

2277 2278
 free_fq:
	kfree(hctx->fq);
2279 2280
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2281 2282 2283
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2284
 free_bitmap:
2285
	sbitmap_free(&hctx->ctx_map);
2286 2287 2288
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2289
	blk_mq_remove_cpuhp(hctx);
2290 2291
	return -1;
}
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2311
		hctx = blk_mq_map_queue(q, i);
2312
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2313
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2314 2315 2316
	}
}

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2339 2340 2341 2342 2343
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2344 2345
}

2346
static void blk_mq_map_swqueue(struct request_queue *q)
2347
{
2348
	unsigned int i, hctx_idx;
2349 2350
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2351
	struct blk_mq_tag_set *set = q->tag_set;
2352

2353 2354 2355 2356 2357
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2358
	queue_for_each_hw_ctx(q, hctx, i) {
2359
		cpumask_clear(hctx->cpumask);
2360
		hctx->nr_ctx = 0;
2361
		hctx->dispatch_from = NULL;
2362 2363 2364
	}

	/*
2365
	 * Map software to hardware queues.
2366 2367
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2368
	 */
2369
	for_each_possible_cpu(i) {
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2383
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2384
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2385

2386
		cpumask_set_cpu(i, hctx->cpumask);
2387 2388 2389
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2390

2391 2392
	mutex_unlock(&q->sysfs_lock);

2393
	queue_for_each_hw_ctx(q, hctx, i) {
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2409

M
Ming Lei 已提交
2410 2411 2412
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2413 2414 2415 2416 2417
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2418
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2419

2420 2421 2422
		/*
		 * Initialize batch roundrobin counts
		 */
2423
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2424 2425
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2426 2427
}

2428 2429 2430 2431
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2432
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2433 2434 2435 2436
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2437
	queue_for_each_hw_ctx(q, hctx, i) {
2438 2439 2440
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2441
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2442 2443 2444
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2445
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2446
		}
2447 2448 2449
	}
}

2450 2451
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2452 2453
{
	struct request_queue *q;
2454

2455 2456
	lockdep_assert_held(&set->tag_list_lock);

2457 2458
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2459
		queue_set_hctx_shared(q, shared);
2460 2461 2462 2463 2464 2465 2466 2467 2468
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2469 2470
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2471 2472 2473 2474 2475 2476
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2477
	mutex_unlock(&set->tag_list_lock);
2478 2479

	synchronize_rcu();
2480 2481 2482 2483 2484 2485 2486 2487
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2488

2489 2490 2491 2492 2493
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2494 2495 2496 2497 2498 2499
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2500
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2501

2502 2503 2504
	mutex_unlock(&set->tag_list_lock);
}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2517 2518 2519
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2520
		kobject_put(&hctx->kobj);
2521
	}
2522

2523 2524
	q->mq_map = NULL;

2525 2526
	kfree(q->queue_hw_ctx);

2527 2528 2529 2530 2531 2532
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2533 2534 2535
	free_percpu(q->queue_ctx);
}

2536
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2537 2538 2539
{
	struct request_queue *uninit_q, *q;

2540
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2552 2553 2554 2555
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2556
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2557 2558 2559 2560 2561 2562 2563 2564 2565
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2566 2567
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2568
{
K
Keith Busch 已提交
2569 2570
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2571

K
Keith Busch 已提交
2572
	blk_mq_sysfs_unregister(q);
2573 2574 2575

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2576
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2577
		int node;
2578

K
Keith Busch 已提交
2579 2580 2581 2582
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2583
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2584
					GFP_KERNEL, node);
2585
		if (!hctxs[i])
K
Keith Busch 已提交
2586
			break;
2587

2588
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2589 2590 2591 2592 2593
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2594

2595
		atomic_set(&hctxs[i]->nr_active, 0);
2596
		hctxs[i]->numa_node = node;
2597
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2598 2599 2600 2601 2602 2603 2604 2605

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2606
	}
K
Keith Busch 已提交
2607 2608 2609 2610
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2611 2612
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2613 2614 2615 2616 2617 2618 2619
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2620
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2621 2622 2623 2624 2625 2626
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2627 2628 2629
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2630
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2631 2632
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2633 2634 2635
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2636 2637
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2638
		goto err_exit;
K
Keith Busch 已提交
2639

2640 2641 2642
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2643 2644 2645 2646 2647
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2648
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2649 2650 2651 2652

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2653

2654
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2655
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2656 2657 2658

	q->nr_queues = nr_cpu_ids;

2659
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2660

2661
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2662
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2663

2664 2665
	q->sg_reserved_size = INT_MAX;

2666
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2667 2668 2669
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2670
	blk_queue_make_request(q, blk_mq_make_request);
2671 2672
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2673

2674 2675 2676 2677 2678
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2679 2680 2681 2682 2683
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2684 2685
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2686

2687
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2688
	blk_mq_add_queue_tag_set(set, q);
2689
	blk_mq_map_swqueue(q);
2690

2691 2692 2693 2694 2695 2696 2697 2698
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2699
	return q;
2700

2701
err_hctxs:
K
Keith Busch 已提交
2702
	kfree(q->queue_hw_ctx);
2703
err_percpu:
K
Keith Busch 已提交
2704
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2705 2706
err_exit:
	q->mq_ops = NULL;
2707 2708
	return ERR_PTR(-ENOMEM);
}
2709
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2710 2711 2712

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2713
	struct blk_mq_tag_set	*set = q->tag_set;
2714

2715
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2716
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2717 2718 2719
}

/* Basically redo blk_mq_init_queue with queue frozen */
2720
static void blk_mq_queue_reinit(struct request_queue *q)
2721
{
2722
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2723

2724
	blk_mq_debugfs_unregister_hctxs(q);
2725 2726
	blk_mq_sysfs_unregister(q);

2727 2728
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2729 2730
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2731
	 */
2732
	blk_mq_map_swqueue(q);
2733

2734
	blk_mq_sysfs_register(q);
2735
	blk_mq_debugfs_register_hctxs(q);
2736 2737
}

2738 2739 2740 2741
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2742 2743
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2744 2745 2746 2747 2748 2749
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2750
		blk_mq_free_rq_map(set->tags[i]);
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2790 2791
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2811
		return set->ops->map_queues(set);
2812
	} else
2813 2814 2815
		return blk_mq_map_queues(set);
}

2816 2817 2818 2819 2820 2821
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2822 2823
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2824 2825
	int ret;

B
Bart Van Assche 已提交
2826 2827
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2828 2829
	if (!set->nr_hw_queues)
		return -EINVAL;
2830
	if (!set->queue_depth)
2831 2832 2833 2834
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2835
	if (!set->ops->queue_rq)
2836 2837
		return -EINVAL;

2838 2839 2840
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2841 2842 2843 2844 2845
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2846

2847 2848 2849 2850 2851 2852 2853 2854 2855
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2856 2857 2858 2859 2860
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2861

K
Keith Busch 已提交
2862
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2863 2864
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2865
		return -ENOMEM;
2866

2867 2868 2869
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2870 2871 2872
	if (!set->mq_map)
		goto out_free_tags;

2873
	ret = blk_mq_update_queue_map(set);
2874 2875 2876 2877 2878
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2879
		goto out_free_mq_map;
2880

2881 2882 2883
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2884
	return 0;
2885 2886 2887 2888 2889

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2890 2891
	kfree(set->tags);
	set->tags = NULL;
2892
	return ret;
2893 2894 2895 2896 2897 2898 2899
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2900 2901
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2902

2903 2904 2905
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2906
	kfree(set->tags);
2907
	set->tags = NULL;
2908 2909 2910
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2911 2912 2913 2914 2915 2916
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2917
	if (!set)
2918 2919
		return -EINVAL;

2920
	blk_mq_freeze_queue(q);
2921
	blk_mq_quiesce_queue(q);
2922

2923 2924
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2925 2926
		if (!hctx->tags)
			continue;
2927 2928 2929 2930
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2931
		if (!hctx->sched_tags) {
2932
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2933 2934 2935 2936 2937
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2938 2939 2940 2941 2942 2943 2944
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2945
	blk_mq_unquiesce_queue(q);
2946 2947
	blk_mq_unfreeze_queue(q);

2948 2949 2950
	return ret;
}

2951 2952
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2953 2954 2955
{
	struct request_queue *q;

2956 2957
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2967
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2968 2969
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2970
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2971 2972 2973 2974 2975
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2976 2977 2978 2979 2980 2981 2982

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2983 2984
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2985 2986 2987 2988
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2989
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3011
	int bucket;
3012

3013 3014 3015 3016
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3017 3018
}

3019 3020 3021 3022 3023
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3024
	int bucket;
3025 3026 3027 3028 3029

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3030
	if (!blk_poll_stats_enable(q))
3031 3032 3033 3034 3035 3036 3037 3038
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3039 3040
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3041
	 */
3042 3043 3044 3045 3046 3047
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3048 3049 3050 3051

	return ret;
}

3052
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3053
				     struct blk_mq_hw_ctx *hctx,
3054 3055 3056 3057
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3058
	unsigned int nsecs;
3059 3060
	ktime_t kt;

J
Jens Axboe 已提交
3061
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3079 3080
		return false;

J
Jens Axboe 已提交
3081
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3082 3083 3084 3085 3086

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3087
	kt = nsecs;
3088 3089 3090 3091 3092 3093 3094

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3095
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3110 3111 3112 3113 3114
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3115 3116 3117 3118 3119 3120 3121
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3122
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3123 3124
		return true;

J
Jens Axboe 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3150
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3151 3152 3153
	return false;
}

3154
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3155 3156 3157 3158
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3159
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3160 3161 3162
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3163 3164
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3165
	else {
3166
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3167 3168 3169 3170 3171 3172 3173 3174 3175
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3176 3177 3178 3179

	return __blk_mq_poll(hctx, rq);
}

3180 3181
static int __init blk_mq_init(void)
{
3182 3183
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3184 3185 3186
	return 0;
}
subsys_initcall(blk_mq_init);