blk-mq.c 71.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67 68
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129 130
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
131
	}
132
}
133
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134

135
void blk_mq_freeze_queue_wait(struct request_queue *q)
136
{
137
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138
}
139
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140

141 142 143 144 145 146 147 148
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149

150 151 152 153
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
154
void blk_freeze_queue(struct request_queue *q)
155
{
156 157 158 159 160 161 162
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
163
	blk_freeze_queue_start(q);
164 165
	blk_mq_freeze_queue_wait(q);
}
166 167 168 169 170 171 172 173 174

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
175
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
176

177
void blk_mq_unfreeze_queue(struct request_queue *q)
178
{
179
	int freeze_depth;
180

181 182 183
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
184
		percpu_ref_reinit(&q->q_usage_counter);
185
		wake_up_all(&q->mq_freeze_wq);
186
	}
187
}
188
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

204
/**
205
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206 207 208
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
209 210 211
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
212 213 214 215 216 217 218
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

219
	blk_mq_quiesce_queue_nowait(q);
220

221 222
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
223
			synchronize_srcu(hctx->queue_rq_srcu);
224 225 226 227 228 229 230 231
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

232 233 234 235 236 237 238 239 240
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
241 242 243
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
244
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
245
	spin_unlock_irqrestore(q->queue_lock, flags);
246

247 248
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
249 250 251
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

252 253 254 255 256 257 258 259 260 261
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

262 263 264 265 266 267
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

268 269
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
270
{
271 272 273
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

274 275
	rq->rq_flags = 0;

276 277 278 279 280 281 282 283 284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

289 290
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
291 292
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
293
	rq->cmd_flags = op;
294
	if (blk_queue_io_stat(data->q))
295
		rq->rq_flags |= RQF_IO_STAT;
296 297 298 299 300 301
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
302
	rq->start_time = jiffies;
303 304
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
305
	set_start_time_ns(rq);
306 307 308 309 310 311 312 313 314 315 316
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
317 318
	rq->timeout = 0;

319 320 321 322
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

323 324
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
325 326
}

327 328 329 330 331 332
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
333
	unsigned int tag;
334
	bool put_ctx_on_error = false;
335 336 337

	blk_queue_enter_live(q);
	data->q = q;
338 339 340 341
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
342 343
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
344 345
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
346 347 348 349 350 351 352 353

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
354 355
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
356 357
	}

358 359
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
360 361
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
362 363
			data->ctx = NULL;
		}
364 365
		blk_queue_exit(q);
		return NULL;
366 367
	}

368
	rq = blk_mq_rq_ctx_init(data, tag, op);
369 370
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
371
		if (e && e->type->ops.mq.prepare_request) {
372 373 374
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

375 376
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
377
		}
378 379 380
	}
	data->hctx->queued++;
	return rq;
381 382
}

383
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
384
		unsigned int flags)
385
{
386
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
387
	struct request *rq;
388
	int ret;
389

390
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
391 392
	if (ret)
		return ERR_PTR(ret);
393

394
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
395
	blk_queue_exit(q);
396

397
	if (!rq)
398
		return ERR_PTR(-EWOULDBLOCK);
399

400 401
	blk_mq_put_ctx(alloc_data.ctx);

402 403 404
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
405 406
	return rq;
}
407
EXPORT_SYMBOL(blk_mq_alloc_request);
408

409 410
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
411
{
412
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
413
	struct request *rq;
414
	unsigned int cpu;
M
Ming Lin 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

433 434 435 436
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
437 438 439 440
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
441
	}
442 443
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
444

445
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
446
	blk_queue_exit(q);
447

448 449 450 451
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
452 453 454
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

455
void blk_mq_free_request(struct request *rq)
456 457
{
	struct request_queue *q = rq->q;
458 459 460 461 462
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

463
	if (rq->rq_flags & RQF_ELVPRIV) {
464 465 466 467 468 469 470
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
471

472
	ctx->rq_completed[rq_is_sync(rq)]++;
473
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
474
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
475

476 477 478
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
479
	wbt_done(q->rq_wb, &rq->issue_stat);
480

S
Shaohua Li 已提交
481 482 483
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

484
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
485
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
486 487 488
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
489
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
490
	blk_mq_sched_restart(hctx);
491
	blk_queue_exit(q);
492
}
J
Jens Axboe 已提交
493
EXPORT_SYMBOL_GPL(blk_mq_free_request);
494

495
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
496
{
M
Ming Lei 已提交
497 498
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
499
	if (rq->end_io) {
J
Jens Axboe 已提交
500
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
501
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
502 503 504
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
505
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
506
	}
507
}
508
EXPORT_SYMBOL(__blk_mq_end_request);
509

510
void blk_mq_end_request(struct request *rq, blk_status_t error)
511 512 513
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
514
	__blk_mq_end_request(rq, error);
515
}
516
EXPORT_SYMBOL(blk_mq_end_request);
517

518
static void __blk_mq_complete_request_remote(void *data)
519
{
520
	struct request *rq = data;
521

522
	rq->q->softirq_done_fn(rq);
523 524
}

525
static void __blk_mq_complete_request(struct request *rq)
526 527
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
528
	bool shared = false;
529 530
	int cpu;

531 532 533 534 535 536 537
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
538
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
539 540 541
		rq->q->softirq_done_fn(rq);
		return;
	}
542 543

	cpu = get_cpu();
C
Christoph Hellwig 已提交
544 545 546 547
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
548
		rq->csd.func = __blk_mq_complete_request_remote;
549 550
		rq->csd.info = rq;
		rq->csd.flags = 0;
551
		smp_call_function_single_async(ctx->cpu, &rq->csd);
552
	} else {
553
		rq->q->softirq_done_fn(rq);
554
	}
555 556
	put_cpu();
}
557 558 559 560 561 562 563 564 565

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
566
void blk_mq_complete_request(struct request *rq)
567
{
568 569 570
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
571
		return;
572
	if (!blk_mark_rq_complete(rq))
573
		__blk_mq_complete_request(rq);
574 575
}
EXPORT_SYMBOL(blk_mq_complete_request);
576

577 578 579 580 581 582
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

583
void blk_mq_start_request(struct request *rq)
584 585 586
{
	struct request_queue *q = rq->q;

587 588
	blk_mq_sched_started_request(rq);

589 590
	trace_block_rq_issue(q, rq);

591
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
592
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
593
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
594
		wbt_issue(q->rq_wb, &rq->issue_stat);
595 596
	}

597
	blk_add_timer(rq);
598

599
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
600

601 602 603 604 605
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
606 607 608 609
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
610
	 */
611 612 613 614 615 616 617 618 619 620 621 622
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
623
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
624
	}
625 626 627 628 629 630 631 632 633

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
634
}
635
EXPORT_SYMBOL(blk_mq_start_request);
636

637 638
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
639
 * flag isn't set yet, so there may be race with timeout handler,
640 641 642 643 644 645
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
646
static void __blk_mq_requeue_request(struct request *rq)
647 648 649
{
	struct request_queue *q = rq->q;

650 651
	blk_mq_put_driver_tag(rq);

652
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
653
	wbt_requeue(q->rq_wb, &rq->issue_stat);
654
	blk_mq_sched_requeue_request(rq);
655

656 657 658 659
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
660 661
}

662
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
663 664 665 666
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
667
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
668 669 670
}
EXPORT_SYMBOL(blk_mq_requeue_request);

671 672 673
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
674
		container_of(work, struct request_queue, requeue_work.work);
675 676 677
	LIST_HEAD(rq_list);
	struct request *rq, *next;

678
	spin_lock_irq(&q->requeue_lock);
679
	list_splice_init(&q->requeue_list, &rq_list);
680
	spin_unlock_irq(&q->requeue_lock);
681 682

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
683
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
684 685
			continue;

686
		rq->rq_flags &= ~RQF_SOFTBARRIER;
687
		list_del_init(&rq->queuelist);
688
		blk_mq_sched_insert_request(rq, true, false, false, true);
689 690 691 692 693
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
694
		blk_mq_sched_insert_request(rq, false, false, false, true);
695 696
	}

697
	blk_mq_run_hw_queues(q, false);
698 699
}

700 701
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
702 703 704 705 706 707 708 709
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
710
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
711 712 713

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
714
		rq->rq_flags |= RQF_SOFTBARRIER;
715 716 717 718 719
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
720 721 722

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
723 724 725 726 727
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
728
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
729 730 731
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

732 733 734
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
735 736
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
737 738 739
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

740 741
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
742 743
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
744
		return tags->rqs[tag];
745
	}
746 747

	return NULL;
748 749 750
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

751
struct blk_mq_timeout_data {
752 753
	unsigned long next;
	unsigned int next_set;
754 755
};

756
void blk_mq_rq_timed_out(struct request *req, bool reserved)
757
{
J
Jens Axboe 已提交
758
	const struct blk_mq_ops *ops = req->q->mq_ops;
759
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
760 761 762 763 764 765 766

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
767
	 * both flags will get cleared. So check here again, and ignore
768 769
	 * a timeout event with a request that isn't active.
	 */
770 771
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
772

773
	if (ops->timeout)
774
		ret = ops->timeout(req, reserved);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
790
}
791

792 793 794 795
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
796
	unsigned long deadline;
797

798
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
799
		return;
800

801 802 803 804 805 806 807 808
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

809 810 811 812 813 814 815 816 817 818 819 820 821
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
822 823 824 825 826 827 828 829 830 831
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
832
			blk_mq_rq_timed_out(rq, reserved);
833 834 835
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
836 837
		data->next_set = 1;
	}
838 839
}

840
static void blk_mq_timeout_work(struct work_struct *work)
841
{
842 843
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
844 845 846 847 848
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
849

850 851 852 853 854 855 856 857 858
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
859
	 * blk_freeze_queue_start, and the moment the last request is
860 861 862 863
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
864 865
		return;

866
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
867

868 869 870
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
871
	} else {
872 873
		struct blk_mq_hw_ctx *hctx;

874 875 876 877 878
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
879
	}
880
	blk_queue_exit(q);
881 882
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

901 902 903 904
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
905
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
906
{
907 908 909 910
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
911

912
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
913
}
914
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
915

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

955 956 957 958
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
959

960
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
961 962
}

963 964
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
965 966 967 968 969 970 971
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

972 973
	might_sleep_if(wait);

974 975
	if (rq->tag != -1)
		goto done;
976

977 978 979
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

980 981
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
982 983 984 985
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
986 987 988
		data.hctx->tags->rqs[rq->tag] = rq;
	}

989 990 991 992
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
993 994
}

995 996
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
997 998 999 1000 1001
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1002
	list_del_init(&wait->entry);
1003 1004 1005 1006
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1007 1008
static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx **hctx,
				     struct request *rq)
1009
{
1010 1011
	struct blk_mq_hw_ctx *this_hctx = *hctx;
	wait_queue_entry_t *wait = &this_hctx->dispatch_wait;
1012 1013
	struct sbq_wait_state *ws;

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
	}

	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1026
	/*
1027 1028 1029
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1030
	 */
1031 1032
	if (!blk_mq_get_driver_tag(rq, hctx, false)) {
		spin_unlock(&this_hctx->lock);
1033
		return false;
1034
	}
1035 1036

	/*
1037 1038
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
1039
	 */
1040 1041 1042 1043
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);
1044 1045 1046
	return true;
}

1047
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1048
			     bool got_budget)
1049
{
1050
	struct blk_mq_hw_ctx *hctx;
1051
	struct request *rq, *nxt;
1052
	bool no_tag = false;
1053
	int errors, queued;
1054

1055 1056 1057
	if (list_empty(list))
		return false;

1058 1059
	WARN_ON(!list_is_singular(list) && got_budget);

1060 1061 1062
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1063
	errors = queued = 0;
1064
	do {
1065
		struct blk_mq_queue_data bd;
1066
		blk_status_t ret;
1067

1068
		rq = list_first_entry(list, struct request, queuelist);
1069
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1070
			/*
1071
			 * The initial allocation attempt failed, so we need to
1072 1073 1074 1075
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1076
			 */
1077
			if (!blk_mq_dispatch_wait_add(&hctx, rq)) {
1078 1079
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1080
				no_tag = true;
1081 1082 1083 1084
				break;
			}
		}

1085 1086
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1087
			break;
1088
		}
1089

1090 1091
		list_del_init(&rq->queuelist);

1092
		bd.rq = rq;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1104 1105

		ret = q->mq_ops->queue_rq(hctx, &bd);
1106
		if (ret == BLK_STS_RESOURCE) {
1107 1108 1109 1110 1111 1112 1113 1114
			/*
			 * If an I/O scheduler has been configured and we got a
			 * driver tag for the next request already, free it again.
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1115
			list_add(&rq->queuelist, list);
1116
			__blk_mq_requeue_request(rq);
1117
			break;
1118 1119 1120
		}

		if (unlikely(ret != BLK_STS_OK)) {
1121
			errors++;
1122
			blk_mq_end_request(rq, BLK_STS_IOERR);
1123
			continue;
1124 1125
		}

1126
		queued++;
1127
	} while (!list_empty(list));
1128

1129
	hctx->dispatched[queued_to_index(queued)]++;
1130 1131 1132 1133 1134

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1135
	if (!list_empty(list)) {
1136
		spin_lock(&hctx->lock);
1137
		list_splice_init(list, &hctx->dispatch);
1138
		spin_unlock(&hctx->lock);
1139

1140
		/*
1141 1142 1143
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1144
		 *
1145 1146 1147 1148
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1149
		 *
1150 1151 1152 1153 1154 1155 1156
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1157
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1158
		 *   and dm-rq.
1159
		 */
1160 1161
		if (!blk_mq_sched_needs_restart(hctx) ||
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1162
			blk_mq_run_hw_queue(hctx, true);
1163
	}
1164

1165
	return (queued + errors) != 0;
1166 1167
}

1168 1169 1170 1171
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1172 1173 1174 1175
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1176 1177 1178
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1179 1180 1181 1182 1183 1184
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1185 1186
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1187
		blk_mq_sched_dispatch_requests(hctx);
1188 1189
		rcu_read_unlock();
	} else {
1190 1191
		might_sleep();

1192
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1193
		blk_mq_sched_dispatch_requests(hctx);
1194
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1195 1196 1197
	}
}

1198 1199 1200 1201 1202 1203 1204 1205
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1206 1207
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1208 1209

	if (--hctx->next_cpu_batch <= 0) {
1210
		int next_cpu;
1211 1212 1213 1214 1215 1216 1217 1218 1219

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1220
	return hctx->next_cpu;
1221 1222
}

1223 1224
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1225
{
1226 1227 1228 1229
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1230 1231
		return;

1232
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1233 1234
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1235
			__blk_mq_run_hw_queue(hctx);
1236
			put_cpu();
1237 1238
			return;
		}
1239

1240
		put_cpu();
1241
	}
1242

1243 1244 1245
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1257
}
O
Omar Sandoval 已提交
1258
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1259

1260
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1261 1262 1263 1264 1265
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1266
		if (!blk_mq_hctx_has_pending(hctx) ||
1267
		    blk_mq_hctx_stopped(hctx))
1268 1269
			continue;

1270
		blk_mq_run_hw_queue(hctx, async);
1271 1272
	}
}
1273
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1295 1296 1297
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1298
 * BLK_STS_RESOURCE is usually returned.
1299 1300 1301 1302 1303
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1304 1305
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1306
	cancel_delayed_work(&hctx->run_work);
1307

1308
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1309
}
1310
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1311

1312 1313 1314
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1315
 * BLK_STS_RESOURCE is usually returned.
1316 1317 1318 1319 1320
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1321 1322
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1323 1324 1325 1326 1327
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1328 1329 1330
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1331 1332 1333
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1334

1335
	blk_mq_run_hw_queue(hctx, false);
1336 1337 1338
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1359
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1360 1361 1362 1363
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1364 1365
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1366 1367 1368
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1369
static void blk_mq_run_work_fn(struct work_struct *work)
1370 1371 1372
{
	struct blk_mq_hw_ctx *hctx;

1373
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1374

1375 1376 1377 1378 1379 1380 1381 1382
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1383

1384 1385 1386
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1387 1388 1389 1390

	__blk_mq_run_hw_queue(hctx);
}

1391 1392 1393

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1394
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1395
		return;
1396

1397 1398 1399 1400 1401
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1402
	blk_mq_stop_hw_queue(hctx);
1403 1404 1405 1406
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1407 1408 1409
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1410 1411 1412
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1413
{
J
Jens Axboe 已提交
1414 1415
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1416 1417
	lockdep_assert_held(&ctx->lock);

1418 1419
	trace_block_rq_insert(hctx->queue, rq);

1420 1421 1422 1423
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1424
}
1425

1426 1427
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1428 1429 1430
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1431 1432
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1433
	__blk_mq_insert_req_list(hctx, rq, at_head);
1434 1435 1436
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1437 1438 1439 1440
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1441
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1442 1443 1444 1445 1446 1447 1448 1449
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1450 1451
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1452 1453
}

1454 1455
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1467
		BUG_ON(rq->mq_ctx != ctx);
1468
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1469
		__blk_mq_insert_req_list(hctx, rq, false);
1470
	}
1471
	blk_mq_hctx_mark_pending(hctx, ctx);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1508 1509 1510 1511
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1528 1529 1530
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1531 1532 1533 1534 1535
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1536
	blk_init_request_from_bio(rq, bio);
1537

S
Shaohua Li 已提交
1538 1539
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1540
	blk_account_io_start(rq, true);
1541 1542
}

1543 1544 1545 1546 1547 1548 1549
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1550
}
1551

1552 1553
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1554 1555 1556 1557
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1558 1559
}

M
Ming Lei 已提交
1560 1561 1562
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1563 1564 1565 1566
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1567
		.last = true,
1568
	};
1569
	blk_qc_t new_cookie;
1570
	blk_status_t ret;
M
Ming Lei 已提交
1571 1572
	bool run_queue = true;

1573 1574
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1575 1576 1577
		run_queue = false;
		goto insert;
	}
1578

1579
	if (q->elevator)
1580 1581
		goto insert;

M
Ming Lei 已提交
1582
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1583 1584
		goto insert;

1585
	if (!blk_mq_get_dispatch_budget(hctx)) {
1586 1587
		blk_mq_put_driver_tag(rq);
		goto insert;
1588
	}
1589

1590 1591
	new_cookie = request_to_qc_t(hctx, rq);

1592 1593 1594 1595 1596 1597
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1598 1599
	switch (ret) {
	case BLK_STS_OK:
1600
		*cookie = new_cookie;
1601
		return;
1602 1603 1604 1605
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1606
		*cookie = BLK_QC_T_NONE;
1607
		blk_mq_end_request(rq, ret);
1608
		return;
1609
	}
1610

1611
insert:
M
Ming Lei 已提交
1612
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1613 1614
}

1615 1616 1617 1618 1619
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1620
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1621 1622
		rcu_read_unlock();
	} else {
1623 1624 1625 1626
		unsigned int srcu_idx;

		might_sleep();

1627
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1628
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1629
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1630 1631 1632
	}
}

1633
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1634
{
1635
	const int is_sync = op_is_sync(bio->bi_opf);
1636
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1637
	struct blk_mq_alloc_data data = { .flags = 0 };
1638
	struct request *rq;
1639
	unsigned int request_count = 0;
1640
	struct blk_plug *plug;
1641
	struct request *same_queue_rq = NULL;
1642
	blk_qc_t cookie;
J
Jens Axboe 已提交
1643
	unsigned int wb_acct;
1644 1645 1646

	blk_queue_bounce(q, &bio);

1647
	blk_queue_split(q, &bio);
1648

1649
	if (!bio_integrity_prep(bio))
1650
		return BLK_QC_T_NONE;
1651

1652 1653 1654
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1655

1656 1657 1658
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1659 1660
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1661 1662
	trace_block_getrq(q, bio, bio->bi_opf);

1663
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1664 1665
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1666 1667
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1668
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1669 1670 1671
	}

	wbt_track(&rq->issue_stat, wb_acct);
1672

1673
	cookie = request_to_qc_t(data.hctx, rq);
1674

1675
	plug = current->plug;
1676
	if (unlikely(is_flush_fua)) {
1677
		blk_mq_put_ctx(data.ctx);
1678
		blk_mq_bio_to_request(rq, bio);
1679 1680 1681 1682

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1683
	} else if (plug && q->nr_hw_queues == 1) {
1684 1685
		struct request *last = NULL;

1686
		blk_mq_put_ctx(data.ctx);
1687
		blk_mq_bio_to_request(rq, bio);
1688 1689 1690 1691 1692 1693 1694

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1695 1696 1697
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1698
		if (!request_count)
1699
			trace_block_plug(q);
1700 1701
		else
			last = list_entry_rq(plug->mq_list.prev);
1702

1703 1704
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1705 1706
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1707
		}
1708

1709
		list_add_tail(&rq->queuelist, &plug->mq_list);
1710
	} else if (plug && !blk_queue_nomerges(q)) {
1711
		blk_mq_bio_to_request(rq, bio);
1712 1713

		/*
1714
		 * We do limited plugging. If the bio can be merged, do that.
1715 1716
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1717 1718
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1719
		 */
1720 1721 1722 1723 1724 1725
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1726 1727
		blk_mq_put_ctx(data.ctx);

1728 1729 1730
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1731 1732
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1733
		}
1734
	} else if (q->nr_hw_queues > 1 && is_sync) {
1735
		blk_mq_put_ctx(data.ctx);
1736 1737
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1738
	} else if (q->elevator) {
1739
		blk_mq_put_ctx(data.ctx);
1740
		blk_mq_bio_to_request(rq, bio);
1741
		blk_mq_sched_insert_request(rq, false, true, true, true);
1742
	} else {
1743
		blk_mq_put_ctx(data.ctx);
1744 1745
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1746
		blk_mq_run_hw_queue(data.hctx, true);
1747
	}
1748

1749
	return cookie;
1750 1751
}

1752 1753
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1754
{
1755
	struct page *page;
1756

1757
	if (tags->rqs && set->ops->exit_request) {
1758
		int i;
1759

1760
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1761 1762 1763
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1764
				continue;
1765
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1766
			tags->static_rqs[i] = NULL;
1767
		}
1768 1769
	}

1770 1771
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1772
		list_del_init(&page->lru);
1773 1774 1775 1776 1777
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1778 1779
		__free_pages(page, page->private);
	}
1780
}
1781

1782 1783
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1784
	kfree(tags->rqs);
1785
	tags->rqs = NULL;
J
Jens Axboe 已提交
1786 1787
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1788

1789
	blk_mq_free_tags(tags);
1790 1791
}

1792 1793 1794 1795
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1796
{
1797
	struct blk_mq_tags *tags;
1798
	int node;
1799

1800 1801 1802 1803 1804
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1805
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1806 1807
	if (!tags)
		return NULL;
1808

1809
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1810
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1811
				 node);
1812 1813 1814 1815
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1816

J
Jens Axboe 已提交
1817 1818
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1819
				 node);
J
Jens Axboe 已提交
1820 1821 1822 1823 1824 1825
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1839 1840 1841 1842 1843
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1844 1845 1846

	INIT_LIST_HEAD(&tags->page_list);

1847 1848 1849 1850
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1851
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1852
				cache_line_size());
1853
	left = rq_size * depth;
1854

1855
	for (i = 0; i < depth; ) {
1856 1857 1858 1859 1860
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1861
		while (this_order && left < order_to_size(this_order - 1))
1862 1863 1864
			this_order--;

		do {
1865
			page = alloc_pages_node(node,
1866
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1867
				this_order);
1868 1869 1870 1871 1872 1873 1874 1875 1876
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1877
			goto fail;
1878 1879

		page->private = this_order;
1880
		list_add_tail(&page->lru, &tags->page_list);
1881 1882

		p = page_address(page);
1883 1884 1885 1886
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1887
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1888
		entries_per_page = order_to_size(this_order) / rq_size;
1889
		to_do = min(entries_per_page, depth - i);
1890 1891
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1892 1893 1894
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1895
			if (set->ops->init_request) {
1896
				if (set->ops->init_request(set, rq, hctx_idx,
1897
						node)) {
J
Jens Axboe 已提交
1898
					tags->static_rqs[i] = NULL;
1899
					goto fail;
1900
				}
1901 1902
			}

1903 1904 1905 1906
			p += rq_size;
			i++;
		}
	}
1907
	return 0;
1908

1909
fail:
1910 1911
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1912 1913
}

J
Jens Axboe 已提交
1914 1915 1916 1917 1918
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1919
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1920
{
1921
	struct blk_mq_hw_ctx *hctx;
1922 1923 1924
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1925
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1926
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1927 1928 1929 1930 1931 1932 1933 1934 1935

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1936
		return 0;
1937

J
Jens Axboe 已提交
1938 1939 1940
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1941 1942

	blk_mq_run_hw_queue(hctx, true);
1943
	return 0;
1944 1945
}

1946
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1947
{
1948 1949
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1950 1951
}

1952
/* hctx->ctxs will be freed in queue's release handler */
1953 1954 1955 1956
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1957 1958
	blk_mq_debugfs_unregister_hctx(hctx);

1959 1960
	blk_mq_tag_idle(hctx);

1961
	if (set->ops->exit_request)
1962
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1963

1964 1965
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1966 1967 1968
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1969
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1970
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1971

1972
	blk_mq_remove_cpuhp(hctx);
1973
	blk_free_flush_queue(hctx->fq);
1974
	sbitmap_free(&hctx->ctx_map);
1975 1976
}

M
Ming Lei 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1986
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1987 1988 1989
	}
}

1990 1991 1992
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1993
{
1994 1995 1996 1997 1998 1999
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2000
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2001 2002 2003
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2004
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2005

2006
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2007 2008

	hctx->tags = set->tags[hctx_idx];
2009 2010

	/*
2011 2012
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2013
	 */
2014 2015 2016 2017
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2018

2019 2020
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2021
		goto free_ctxs;
2022

2023
	hctx->nr_ctx = 0;
2024

2025 2026 2027
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2028 2029 2030
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2031

2032 2033 2034
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2035 2036
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2037
		goto sched_exit_hctx;
2038

2039
	if (set->ops->init_request &&
2040 2041
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2042
		goto free_fq;
2043

2044
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2045
		init_srcu_struct(hctx->queue_rq_srcu);
2046

2047 2048
	blk_mq_debugfs_register_hctx(q, hctx);

2049
	return 0;
2050

2051 2052
 free_fq:
	kfree(hctx->fq);
2053 2054
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2055 2056 2057
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2058
 free_bitmap:
2059
	sbitmap_free(&hctx->ctx_map);
2060 2061 2062
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2063
	blk_mq_remove_cpuhp(hctx);
2064 2065
	return -1;
}
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2081 2082
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2083 2084
			continue;

C
Christoph Hellwig 已提交
2085
		hctx = blk_mq_map_queue(q, i);
2086

2087 2088 2089 2090 2091
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2092
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2093 2094 2095
	}
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2118 2119 2120 2121 2122
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2123 2124
}

2125
static void blk_mq_map_swqueue(struct request_queue *q)
2126
{
2127
	unsigned int i, hctx_idx;
2128 2129
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2130
	struct blk_mq_tag_set *set = q->tag_set;
2131

2132 2133 2134 2135 2136
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2137
	queue_for_each_hw_ctx(q, hctx, i) {
2138
		cpumask_clear(hctx->cpumask);
2139 2140 2141 2142
		hctx->nr_ctx = 0;
	}

	/*
2143 2144 2145
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2146
	 */
2147
	for_each_present_cpu(i) {
2148 2149
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2150 2151
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2152 2153 2154 2155 2156 2157
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2158
			q->mq_map[i] = 0;
2159 2160
		}

2161
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2162
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2163

2164
		cpumask_set_cpu(i, hctx->cpumask);
2165 2166 2167
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2168

2169 2170
	mutex_unlock(&q->sysfs_lock);

2171
	queue_for_each_hw_ctx(q, hctx, i) {
2172
		/*
2173 2174
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2175 2176
		 */
		if (!hctx->nr_ctx) {
2177 2178 2179 2180
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2181 2182 2183
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2184
			hctx->tags = NULL;
2185 2186 2187
			continue;
		}

M
Ming Lei 已提交
2188 2189 2190
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2191 2192 2193 2194 2195
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2196
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2197

2198 2199 2200
		/*
		 * Initialize batch roundrobin counts
		 */
2201 2202 2203
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2204 2205
}

2206 2207 2208 2209
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2210
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2211 2212 2213 2214
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2215
	queue_for_each_hw_ctx(q, hctx, i) {
2216 2217 2218
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2219
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2220 2221 2222
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2223
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2224
		}
2225 2226 2227
	}
}

2228 2229
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2230 2231
{
	struct request_queue *q;
2232

2233 2234
	lockdep_assert_held(&set->tag_list_lock);

2235 2236
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2237
		queue_set_hctx_shared(q, shared);
2238 2239 2240 2241 2242 2243 2244 2245 2246
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2247 2248
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2249 2250 2251 2252 2253 2254
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2255
	mutex_unlock(&set->tag_list_lock);
2256 2257

	synchronize_rcu();
2258 2259 2260 2261 2262 2263 2264 2265
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2266 2267 2268 2269 2270 2271 2272 2273 2274

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2275
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2276

2277 2278 2279
	mutex_unlock(&set->tag_list_lock);
}

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2292 2293 2294
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2295
		kobject_put(&hctx->kobj);
2296
	}
2297

2298 2299
	q->mq_map = NULL;

2300 2301
	kfree(q->queue_hw_ctx);

2302 2303 2304 2305 2306 2307
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2308 2309 2310
	free_percpu(q->queue_ctx);
}

2311
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2341 2342
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2343
{
K
Keith Busch 已提交
2344 2345
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2346

K
Keith Busch 已提交
2347
	blk_mq_sysfs_unregister(q);
2348
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2349
		int node;
2350

K
Keith Busch 已提交
2351 2352 2353 2354
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2355
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2356
					GFP_KERNEL, node);
2357
		if (!hctxs[i])
K
Keith Busch 已提交
2358
			break;
2359

2360
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2361 2362 2363 2364 2365
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2366

2367
		atomic_set(&hctxs[i]->nr_active, 0);
2368
		hctxs[i]->numa_node = node;
2369
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2370 2371 2372 2373 2374 2375 2376 2377

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2378
	}
K
Keith Busch 已提交
2379 2380 2381 2382
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2383 2384
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2398 2399 2400
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2401
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2402 2403
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2404 2405 2406
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2407 2408
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2409
		goto err_exit;
K
Keith Busch 已提交
2410

2411 2412 2413
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2414 2415 2416 2417 2418
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2419
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2420 2421 2422 2423

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2424

2425
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2426
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2427 2428 2429

	q->nr_queues = nr_cpu_ids;

2430
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2431

2432 2433 2434
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2435 2436
	q->sg_reserved_size = INT_MAX;

2437
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2438 2439 2440
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2441
	blk_queue_make_request(q, blk_mq_make_request);
2442 2443
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2444

2445 2446 2447 2448 2449
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2450 2451 2452 2453 2454
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2455 2456
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2457

2458
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2459
	blk_mq_add_queue_tag_set(set, q);
2460
	blk_mq_map_swqueue(q);
2461

2462 2463 2464 2465 2466 2467 2468 2469
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2470
	return q;
2471

2472
err_hctxs:
K
Keith Busch 已提交
2473
	kfree(q->queue_hw_ctx);
2474
err_percpu:
K
Keith Busch 已提交
2475
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2476 2477
err_exit:
	q->mq_ops = NULL;
2478 2479
	return ERR_PTR(-ENOMEM);
}
2480
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2481 2482 2483

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2484
	struct blk_mq_tag_set	*set = q->tag_set;
2485

2486
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2487
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2488 2489 2490
}

/* Basically redo blk_mq_init_queue with queue frozen */
2491
static void blk_mq_queue_reinit(struct request_queue *q)
2492
{
2493
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2494

2495
	blk_mq_debugfs_unregister_hctxs(q);
2496 2497
	blk_mq_sysfs_unregister(q);

2498 2499 2500 2501 2502 2503
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2504
	blk_mq_map_swqueue(q);
2505

2506
	blk_mq_sysfs_register(q);
2507
	blk_mq_debugfs_register_hctxs(q);
2508 2509
}

2510 2511 2512 2513
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2514 2515
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2516 2517 2518 2519 2520 2521
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2522
		blk_mq_free_rq_map(set->tags[i]);
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2562 2563 2564 2565 2566 2567 2568 2569
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2570 2571 2572 2573 2574 2575
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2576 2577
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2578 2579
	int ret;

B
Bart Van Assche 已提交
2580 2581
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2582 2583
	if (!set->nr_hw_queues)
		return -EINVAL;
2584
	if (!set->queue_depth)
2585 2586 2587 2588
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2589
	if (!set->ops->queue_rq)
2590 2591
		return -EINVAL;

2592 2593 2594
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2595 2596 2597 2598 2599
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2600

2601 2602 2603 2604 2605 2606 2607 2608 2609
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2610 2611 2612 2613 2614
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2615

K
Keith Busch 已提交
2616
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2617 2618
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2619
		return -ENOMEM;
2620

2621 2622 2623
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2624 2625 2626
	if (!set->mq_map)
		goto out_free_tags;

2627
	ret = blk_mq_update_queue_map(set);
2628 2629 2630 2631 2632
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2633
		goto out_free_mq_map;
2634

2635 2636 2637
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2638
	return 0;
2639 2640 2641 2642 2643

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2644 2645
	kfree(set->tags);
	set->tags = NULL;
2646
	return ret;
2647 2648 2649 2650 2651 2652 2653
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2654 2655
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2656

2657 2658 2659
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2660
	kfree(set->tags);
2661
	set->tags = NULL;
2662 2663 2664
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2665 2666 2667 2668 2669 2670
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2671
	if (!set)
2672 2673
		return -EINVAL;

2674 2675
	blk_mq_freeze_queue(q);

2676 2677
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2678 2679
		if (!hctx->tags)
			continue;
2680 2681 2682 2683
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2684
		if (!hctx->sched_tags) {
2685
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2686 2687 2688 2689 2690
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2691 2692 2693 2694 2695 2696 2697
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2698 2699
	blk_mq_unfreeze_queue(q);

2700 2701 2702
	return ret;
}

2703 2704
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2705 2706 2707
{
	struct request_queue *q;

2708 2709
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2719
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2720 2721
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2722
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2723 2724 2725 2726 2727
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2728 2729 2730 2731 2732 2733 2734

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2735 2736
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2763
	int bucket;
2764

2765 2766 2767 2768
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2769 2770
}

2771 2772 2773 2774 2775
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2776
	int bucket;
2777 2778 2779 2780 2781

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2782
	if (!blk_poll_stats_enable(q))
2783 2784 2785 2786 2787 2788 2789 2790
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2791 2792
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2793
	 */
2794 2795 2796 2797 2798 2799
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2800 2801 2802 2803

	return ret;
}

2804
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2805
				     struct blk_mq_hw_ctx *hctx,
2806 2807 2808 2809
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2810
	unsigned int nsecs;
2811 2812
	ktime_t kt;

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2831 2832 2833 2834 2835 2836 2837 2838
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2839
	kt = nsecs;
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2862 2863 2864 2865 2866
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2867 2868 2869 2870 2871 2872 2873
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2874
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2875 2876
		return true;

J
Jens Axboe 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2905
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
2906 2907 2908 2909
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2910
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
2911 2912 2913
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2914 2915
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2916
	else {
2917
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2918 2919 2920 2921 2922 2923 2924 2925 2926
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2927 2928 2929 2930

	return __blk_mq_poll(hctx, rq);
}

2931 2932
static int __init blk_mq_init(void)
{
2933 2934 2935 2936 2937 2938
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

2939 2940
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2941 2942 2943
	return 0;
}
subsys_initcall(blk_mq_init);