blk-mq.c 70.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46

47 48 49 50
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
51
	ddir = rq_data_dir(rq);
52 53 54 55 56 57 58 59 60 61 62 63
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

64 65 66
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
67
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68
{
69 70 71
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
72 73
}

74 75 76 77 78 79
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
80 81
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 83 84 85 86
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
87
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 89
}

90
void blk_freeze_queue_start(struct request_queue *q)
91
{
92
	int freeze_depth;
93

94 95
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
96
		percpu_ref_kill(&q->q_usage_counter);
97
		blk_mq_run_hw_queues(q, false);
98
	}
99
}
100
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101

102
void blk_mq_freeze_queue_wait(struct request_queue *q)
103
{
104
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105
}
106
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107

108 109 110 111 112 113 114 115
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116

117 118 119 120
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
121
void blk_freeze_queue(struct request_queue *q)
122
{
123 124 125 126 127 128 129
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
130
	blk_freeze_queue_start(q);
131 132
	blk_mq_freeze_queue_wait(q);
}
133 134 135 136 137 138 139 140 141

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
142
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143

144
void blk_mq_unfreeze_queue(struct request_queue *q)
145
{
146
	int freeze_depth;
147

148 149 150
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
151
		percpu_ref_reinit(&q->q_usage_counter);
152
		wake_up_all(&q->mq_freeze_wq);
153
	}
154
}
155
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

171
	__blk_mq_stop_hw_queues(q, true);
172 173 174 175 176 177 178 179 180 181 182 183

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

184 185 186 187 188 189 190 191
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
192 193 194 195 196 197 198

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
199 200
}

201 202 203 204 205 206
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

207 208
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
209
{
210 211 212
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
213
	rq->mq_ctx = ctx;
214
	rq->cmd_flags = op;
215 216
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
217 218 219 220 221 222
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
223
	rq->start_time = jiffies;
224 225
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
226
	set_start_time_ns(rq);
227 228 229 230 231 232 233 234 235 236 237
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
238 239
	rq->timeout = 0;

240 241 242 243
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

244
	ctx->rq_dispatched[op_is_sync(op)]++;
245
}
246
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
247

248 249
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
250 251 252 253
{
	struct request *rq;
	unsigned int tag;

254
	tag = blk_mq_get_tag(data);
255
	if (tag != BLK_MQ_TAG_FAIL) {
256 257 258
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
259

260 261 262 263
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
264 265 266 267
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
268 269
			rq->tag = tag;
			rq->internal_tag = -1;
270
			data->hctx->tags->rqs[rq->tag] = rq;
271 272
		}

273
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
274 275 276 277 278
		return rq;
	}

	return NULL;
}
279
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
280

281 282
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
283
{
284
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
285
	struct request *rq;
286
	int ret;
287

288
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
289 290
	if (ret)
		return ERR_PTR(ret);
291

292
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
293

294 295 296 297
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
298
		return ERR_PTR(-EWOULDBLOCK);
299 300 301 302

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
303 304
	return rq;
}
305
EXPORT_SYMBOL(blk_mq_alloc_request);
306

M
Ming Lin 已提交
307 308 309
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
310
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
311
	struct request *rq;
312
	unsigned int cpu;
M
Ming Lin 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

331 332 333 334
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
335 336 337 338
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
339
	}
340 341
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
342

343
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
344 345

	blk_queue_exit(q);
346 347 348 349 350

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
351 352 353
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

354 355
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
356
{
357
	const int sched_tag = rq->internal_tag;
358 359
	struct request_queue *q = rq->q;

360
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
361
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
362 363

	wbt_done(q->rq_wb, &rq->issue_stat);
364
	rq->rq_flags = 0;
365

366
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
367
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
368 369 370
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
371
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
372
	blk_mq_sched_restart(hctx);
373
	blk_queue_exit(q);
374 375
}

376
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
377
				     struct request *rq)
378 379 380 381
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
382 383 384 385 386 387
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
388
}
O
Omar Sandoval 已提交
389
EXPORT_SYMBOL_GPL(blk_mq_finish_request);
390 391 392

void blk_mq_free_request(struct request *rq)
{
393
	blk_mq_sched_put_request(rq);
394
}
J
Jens Axboe 已提交
395
EXPORT_SYMBOL_GPL(blk_mq_free_request);
396

397
inline void __blk_mq_end_request(struct request *rq, int error)
398
{
M
Ming Lei 已提交
399 400
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
401
	if (rq->end_io) {
J
Jens Axboe 已提交
402
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
403
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
404 405 406
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
407
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
408
	}
409
}
410
EXPORT_SYMBOL(__blk_mq_end_request);
411

412
void blk_mq_end_request(struct request *rq, int error)
413 414 415
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
416
	__blk_mq_end_request(rq, error);
417
}
418
EXPORT_SYMBOL(blk_mq_end_request);
419

420
static void __blk_mq_complete_request_remote(void *data)
421
{
422
	struct request *rq = data;
423

424
	rq->q->softirq_done_fn(rq);
425 426
}

427
static void __blk_mq_complete_request(struct request *rq)
428 429
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
430
	bool shared = false;
431 432
	int cpu;

433 434 435 436 437 438 439
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
440
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
441 442 443
		rq->q->softirq_done_fn(rq);
		return;
	}
444 445

	cpu = get_cpu();
C
Christoph Hellwig 已提交
446 447 448 449
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
450
		rq->csd.func = __blk_mq_complete_request_remote;
451 452
		rq->csd.info = rq;
		rq->csd.flags = 0;
453
		smp_call_function_single_async(ctx->cpu, &rq->csd);
454
	} else {
455
		rq->q->softirq_done_fn(rq);
456
	}
457 458
	put_cpu();
}
459 460 461 462 463 464 465 466 467

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
468
void blk_mq_complete_request(struct request *rq)
469
{
470 471 472
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
473
		return;
474
	if (!blk_mark_rq_complete(rq))
475
		__blk_mq_complete_request(rq);
476 477
}
EXPORT_SYMBOL(blk_mq_complete_request);
478

479 480 481 482 483 484
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

485
void blk_mq_start_request(struct request *rq)
486 487 488
{
	struct request_queue *q = rq->q;

489 490
	blk_mq_sched_started_request(rq);

491 492
	trace_block_rq_issue(q, rq);

493
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
495
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
496
		wbt_issue(q->rq_wb, &rq->issue_stat);
497 498
	}

499
	blk_add_timer(rq);
500

501 502 503 504 505 506
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

507 508 509 510 511 512
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
513 514 515 516
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517 518 519 520 521 522 523 524 525

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
526
}
527
EXPORT_SYMBOL(blk_mq_start_request);
528

529 530
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
531
 * flag isn't set yet, so there may be race with timeout handler,
532 533 534 535 536 537
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
538
static void __blk_mq_requeue_request(struct request *rq)
539 540 541 542
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
543
	wbt_requeue(q->rq_wb, &rq->issue_stat);
544
	blk_mq_sched_requeue_request(rq);
545

546 547 548 549
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
550 551
}

552
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
553 554 555 556
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
557
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
558 559 560
}
EXPORT_SYMBOL(blk_mq_requeue_request);

561 562 563
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
564
		container_of(work, struct request_queue, requeue_work.work);
565 566 567 568 569 570 571 572 573
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
574
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
575 576
			continue;

577
		rq->rq_flags &= ~RQF_SOFTBARRIER;
578
		list_del_init(&rq->queuelist);
579
		blk_mq_sched_insert_request(rq, true, false, false, true);
580 581 582 583 584
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
585
		blk_mq_sched_insert_request(rq, false, false, false, true);
586 587
	}

588
	blk_mq_run_hw_queues(q, false);
589 590
}

591 592
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
593 594 595 596 597 598 599 600
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
601
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
602 603 604

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
605
		rq->rq_flags |= RQF_SOFTBARRIER;
606 607 608 609 610
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
611 612 613

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
614 615 616 617 618
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
619
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
620 621 622
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

623 624 625 626 627 628 629 630
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

631 632 633 634 635 636 637 638 639 640 641 642 643 644
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
645
		blk_mq_end_request(rq, -EIO);
646 647 648 649
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

650 651
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
652 653
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
654
		return tags->rqs[tag];
655
	}
656 657

	return NULL;
658 659 660
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

661
struct blk_mq_timeout_data {
662 663
	unsigned long next;
	unsigned int next_set;
664 665
};

666
void blk_mq_rq_timed_out(struct request *req, bool reserved)
667
{
J
Jens Axboe 已提交
668
	const struct blk_mq_ops *ops = req->q->mq_ops;
669
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
670 671 672 673 674 675 676

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
677
	 * both flags will get cleared. So check here again, and ignore
678 679
	 * a timeout event with a request that isn't active.
	 */
680 681
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
682

683
	if (ops->timeout)
684
		ret = ops->timeout(req, reserved);
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
700
}
701

702 703 704 705
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
706

707
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
708
		return;
709

710 711 712 713 714 715 716 717 718 719 720 721 722
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
723 724
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
725
			blk_mq_rq_timed_out(rq, reserved);
726 727 728 729
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
730 731
}

732
static void blk_mq_timeout_work(struct work_struct *work)
733
{
734 735
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
736 737 738 739 740
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
741

742 743 744 745 746 747 748 749 750
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
751
	 * blk_freeze_queue_start, and the moment the last request is
752 753 754 755
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
756 757
		return;

758
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
759

760 761 762
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
763
	} else {
764 765
		struct blk_mq_hw_ctx *hctx;

766 767 768 769 770
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
771
	}
772
	blk_queue_exit(q);
773 774 775 776 777 778 779 780 781 782 783 784 785 786
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
787
		bool merged = false;
788 789 790 791 792 793 794

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

795 796 797 798
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
799
			break;
800 801 802
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
803
			break;
804 805
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
806
			break;
807 808
		default:
			continue;
809
		}
810 811 812 813

		if (merged)
			ctx->rq_merged++;
		return merged;
814 815 816 817 818
	}

	return false;
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

837 838 839 840
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
841
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
842
{
843 844 845 846
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
847

848
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
849
}
850
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
851

852 853 854 855
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
856

857
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
858 859
}

860 861
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
862 863 864 865 866 867 868
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

869 870
	might_sleep_if(wait);

871 872
	if (rq->tag != -1)
		goto done;
873

874 875 876
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

877 878
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
879 880 881 882
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
883 884 885
		data.hctx->tags->rqs[rq->tag] = rq;
	}

886 887 888 889
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
890 891
}

892 893
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
894 895 896 897 898 899 900 901 902 903
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

986
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
987
{
988
	struct blk_mq_hw_ctx *hctx;
989
	struct request *rq;
990
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
991

992 993 994
	if (list_empty(list))
		return false;

995 996 997
	/*
	 * Now process all the entries, sending them to the driver.
	 */
998
	errors = queued = 0;
999
	do {
1000
		struct blk_mq_queue_data bd;
1001

1002
		rq = list_first_entry(list, struct request, queuelist);
1003 1004 1005
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1006 1007

			/*
1008 1009
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1010
			 */
1011 1012 1013 1014 1015 1016 1017 1018 1019
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1020
				break;
1021
		}
1022

1023 1024
		list_del_init(&rq->queuelist);

1025
		bd.rq = rq;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1039 1040

		ret = q->mq_ops->queue_rq(hctx, &bd);
1041 1042 1043
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1044
			break;
1045
		case BLK_MQ_RQ_QUEUE_BUSY:
1046
			blk_mq_put_driver_tag_hctx(hctx, rq);
1047
			list_add(&rq->queuelist, list);
1048
			__blk_mq_requeue_request(rq);
1049 1050 1051 1052
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1053
			errors++;
1054
			blk_mq_end_request(rq, -EIO);
1055 1056 1057 1058 1059
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1060
	} while (!list_empty(list));
1061

1062
	hctx->dispatched[queued_to_index(queued)]++;
1063 1064 1065 1066 1067

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1068
	if (!list_empty(list)) {
1069
		/*
1070 1071
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1072 1073 1074 1075
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1076
		spin_lock(&hctx->lock);
1077
		list_splice_init(list, &hctx->dispatch);
1078
		spin_unlock(&hctx->lock);
1079

1080
		/*
1081 1082 1083
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1084
		 *
1085 1086 1087 1088
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1089
		 *
1090 1091 1092 1093 1094 1095 1096 1097 1098
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
		 *   and dm-rq.
1099
		 */
1100 1101
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1102
			blk_mq_run_hw_queue(hctx, true);
1103
	}
1104

1105
	return (queued + errors) != 0;
1106 1107
}

1108 1109 1110 1111 1112 1113 1114 1115 1116
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1117
		blk_mq_sched_dispatch_requests(hctx);
1118 1119
		rcu_read_unlock();
	} else {
1120 1121
		might_sleep();

1122
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1123
		blk_mq_sched_dispatch_requests(hctx);
1124 1125 1126 1127
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1128 1129 1130 1131 1132 1133 1134 1135
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1136 1137
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1138 1139

	if (--hctx->next_cpu_batch <= 0) {
1140
		int next_cpu;
1141 1142 1143 1144 1145 1146 1147 1148 1149

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1150
	return hctx->next_cpu;
1151 1152
}

1153 1154
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1155
{
1156 1157
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1158 1159
		return;

1160
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1161 1162
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1163
			__blk_mq_run_hw_queue(hctx);
1164
			put_cpu();
1165 1166
			return;
		}
1167

1168
		put_cpu();
1169
	}
1170

1171 1172 1173
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1185
}
O
Omar Sandoval 已提交
1186
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1187

1188
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1189 1190 1191 1192 1193
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1194
		if (!blk_mq_hctx_has_pending(hctx) ||
1195
		    blk_mq_hctx_stopped(hctx))
1196 1197
			continue;

1198
		blk_mq_run_hw_queue(hctx, async);
1199 1200
	}
}
1201
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1223
static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1224
{
1225 1226 1227 1228 1229
	if (sync)
		cancel_delayed_work_sync(&hctx->run_work);
	else
		cancel_delayed_work(&hctx->run_work);

1230 1231
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
1232 1233 1234 1235 1236

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	__blk_mq_stop_hw_queue(hctx, false);
}
1237 1238
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1239
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1240 1241 1242 1243 1244
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
1245 1246 1247 1248 1249 1250
		__blk_mq_stop_hw_queue(hctx, sync);
}

void blk_mq_stop_hw_queues(struct request_queue *q)
{
	__blk_mq_stop_hw_queues(q, false);
1251 1252 1253
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1254 1255 1256
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1257

1258
	blk_mq_run_hw_queue(hctx, false);
1259 1260 1261
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1282
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1283 1284 1285 1286
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1287 1288
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1289 1290 1291
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1292
static void blk_mq_run_work_fn(struct work_struct *work)
1293 1294 1295
{
	struct blk_mq_hw_ctx *hctx;

1296
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1297

1298 1299 1300 1301 1302 1303 1304 1305
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1306

1307 1308 1309
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1310 1311 1312 1313

	__blk_mq_run_hw_queue(hctx);
}

1314 1315 1316

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1317 1318
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1319

1320 1321 1322 1323 1324
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1325
	blk_mq_stop_hw_queue(hctx);
1326 1327 1328 1329
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1330 1331 1332
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1333 1334 1335
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1336
{
J
Jens Axboe 已提交
1337 1338
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1339 1340
	trace_block_rq_insert(hctx->queue, rq);

1341 1342 1343 1344
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1345
}
1346

1347 1348
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1349 1350 1351
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1352
	__blk_mq_insert_req_list(hctx, rq, at_head);
1353 1354 1355
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1356 1357
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1369
		BUG_ON(rq->mq_ctx != ctx);
1370
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1371
		__blk_mq_insert_req_list(hctx, rq, false);
1372
	}
1373
	blk_mq_hctx_mark_pending(hctx, ctx);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1410 1411 1412 1413
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1430 1431 1432
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1433 1434 1435 1436 1437
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1438
	blk_init_request_from_bio(rq, bio);
1439

1440
	blk_account_io_start(rq, true);
1441 1442
}

1443 1444 1445 1446 1447 1448
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1449 1450 1451
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1452
{
1453
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1454 1455 1456 1457 1458 1459 1460
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1461 1462
		struct request_queue *q = hctx->queue;

1463 1464 1465 1466 1467
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1468

1469
		spin_unlock(&ctx->lock);
1470
		__blk_mq_finish_request(hctx, ctx, rq);
1471
		return true;
1472
	}
1473
}
1474

1475 1476
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1477 1478 1479 1480
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1481 1482
}

1483
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1484
				      bool may_sleep)
1485 1486 1487 1488
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1489
		.last = true,
1490
	};
1491 1492 1493
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1494

1495
	if (q->elevator)
1496 1497
		goto insert;

1498 1499 1500 1501 1502
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1503 1504 1505 1506 1507 1508
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1509 1510
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1511
		return;
1512
	}
1513

1514 1515
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
1516
		blk_mq_end_request(rq, -EIO);
1517
		return;
1518
	}
1519

1520
	__blk_mq_requeue_request(rq);
1521
insert:
1522
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1523 1524
}

1525 1526 1527 1528 1529 1530 1531 1532
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
1533 1534 1535 1536 1537
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1538 1539 1540 1541 1542
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1543
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1544
{
1545
	const int is_sync = op_is_sync(bio->bi_opf);
1546
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1547
	struct blk_mq_alloc_data data = { .flags = 0 };
1548
	struct request *rq;
1549
	unsigned int request_count = 0;
1550
	struct blk_plug *plug;
1551
	struct request *same_queue_rq = NULL;
1552
	blk_qc_t cookie;
J
Jens Axboe 已提交
1553
	unsigned int wb_acct;
1554 1555 1556 1557

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1558
		bio_io_error(bio);
1559
		return BLK_QC_T_NONE;
1560 1561
	}

1562 1563
	blk_queue_split(q, &bio, q->bio_split);

1564 1565 1566
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1567

1568 1569 1570
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1571 1572
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1573 1574 1575
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1576 1577
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1578
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1579 1580 1581
	}

	wbt_track(&rq->issue_stat, wb_acct);
1582

1583
	cookie = request_to_qc_t(data.hctx, rq);
1584

1585
	plug = current->plug;
1586
	if (unlikely(is_flush_fua)) {
1587
		blk_mq_put_ctx(data.ctx);
1588
		blk_mq_bio_to_request(rq, bio);
1589 1590 1591
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1592
		} else {
1593 1594
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1595
		}
1596
	} else if (plug && q->nr_hw_queues == 1) {
1597 1598
		struct request *last = NULL;

1599
		blk_mq_put_ctx(data.ctx);
1600
		blk_mq_bio_to_request(rq, bio);
1601 1602 1603 1604 1605 1606 1607

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1608 1609 1610
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1611
		if (!request_count)
1612
			trace_block_plug(q);
1613 1614
		else
			last = list_entry_rq(plug->mq_list.prev);
1615

1616 1617
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1618 1619
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1620
		}
1621

1622
		list_add_tail(&rq->queuelist, &plug->mq_list);
1623
	} else if (plug && !blk_queue_nomerges(q)) {
1624
		blk_mq_bio_to_request(rq, bio);
1625 1626

		/*
1627
		 * We do limited plugging. If the bio can be merged, do that.
1628 1629
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1630 1631
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1632
		 */
1633 1634 1635 1636 1637 1638
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1639 1640
		blk_mq_put_ctx(data.ctx);

1641 1642 1643
		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1644
	} else if (q->nr_hw_queues > 1 && is_sync) {
1645
		blk_mq_put_ctx(data.ctx);
1646 1647
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1648
	} else if (q->elevator) {
1649
		blk_mq_put_ctx(data.ctx);
1650
		blk_mq_bio_to_request(rq, bio);
1651
		blk_mq_sched_insert_request(rq, false, true, true, true);
1652 1653
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		blk_mq_put_ctx(data.ctx);
1654
		blk_mq_run_hw_queue(data.hctx, true);
1655 1656
	} else
		blk_mq_put_ctx(data.ctx);
1657

1658
	return cookie;
1659 1660
}

1661 1662
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1663
{
1664
	struct page *page;
1665

1666
	if (tags->rqs && set->ops->exit_request) {
1667
		int i;
1668

1669
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1670 1671 1672
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1673
				continue;
1674
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1675
			tags->static_rqs[i] = NULL;
1676
		}
1677 1678
	}

1679 1680
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1681
		list_del_init(&page->lru);
1682 1683 1684 1685 1686
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1687 1688
		__free_pages(page, page->private);
	}
1689
}
1690

1691 1692
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1693
	kfree(tags->rqs);
1694
	tags->rqs = NULL;
J
Jens Axboe 已提交
1695 1696
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1697

1698
	blk_mq_free_tags(tags);
1699 1700
}

1701 1702 1703 1704
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1705
{
1706
	struct blk_mq_tags *tags;
1707
	int node;
1708

1709 1710 1711 1712 1713
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1714
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1715 1716
	if (!tags)
		return NULL;
1717

1718
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1719
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1720
				 node);
1721 1722 1723 1724
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1725

J
Jens Axboe 已提交
1726 1727
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1728
				 node);
J
Jens Axboe 已提交
1729 1730 1731 1732 1733 1734
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1748 1749 1750 1751 1752
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1753 1754 1755

	INIT_LIST_HEAD(&tags->page_list);

1756 1757 1758 1759
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1760
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1761
				cache_line_size());
1762
	left = rq_size * depth;
1763

1764
	for (i = 0; i < depth; ) {
1765 1766 1767 1768 1769
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1770
		while (this_order && left < order_to_size(this_order - 1))
1771 1772 1773
			this_order--;

		do {
1774
			page = alloc_pages_node(node,
1775
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1776
				this_order);
1777 1778 1779 1780 1781 1782 1783 1784 1785
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1786
			goto fail;
1787 1788

		page->private = this_order;
1789
		list_add_tail(&page->lru, &tags->page_list);
1790 1791

		p = page_address(page);
1792 1793 1794 1795
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1796
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1797
		entries_per_page = order_to_size(this_order) / rq_size;
1798
		to_do = min(entries_per_page, depth - i);
1799 1800
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1801 1802 1803
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1804
			if (set->ops->init_request) {
1805
				if (set->ops->init_request(set, rq, hctx_idx,
1806
						node)) {
J
Jens Axboe 已提交
1807
					tags->static_rqs[i] = NULL;
1808
					goto fail;
1809
				}
1810 1811
			}

1812 1813 1814 1815
			p += rq_size;
			i++;
		}
	}
1816
	return 0;
1817

1818
fail:
1819 1820
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1821 1822
}

J
Jens Axboe 已提交
1823 1824 1825 1826 1827
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1828
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1829
{
1830
	struct blk_mq_hw_ctx *hctx;
1831 1832 1833
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1834
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1835
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1836 1837 1838 1839 1840 1841 1842 1843 1844

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1845
		return 0;
1846

J
Jens Axboe 已提交
1847 1848 1849
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1850 1851

	blk_mq_run_hw_queue(hctx, true);
1852
	return 0;
1853 1854
}

1855
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1856
{
1857 1858
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1859 1860
}

1861
/* hctx->ctxs will be freed in queue's release handler */
1862 1863 1864 1865
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1866 1867
	blk_mq_debugfs_unregister_hctx(hctx);

1868 1869
	blk_mq_tag_idle(hctx);

1870
	if (set->ops->exit_request)
1871
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1872

1873 1874
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1875 1876 1877
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1878 1879 1880
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1881
	blk_mq_remove_cpuhp(hctx);
1882
	blk_free_flush_queue(hctx->fq);
1883
	sbitmap_free(&hctx->ctx_map);
1884 1885
}

M
Ming Lei 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1895
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1896 1897 1898
	}
}

1899 1900 1901
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1902
{
1903 1904 1905 1906 1907 1908
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1909
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1910 1911 1912 1913
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1914
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1915

1916
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1917 1918

	hctx->tags = set->tags[hctx_idx];
1919 1920

	/*
1921 1922
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1923
	 */
1924 1925 1926 1927
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1928

1929 1930
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1931
		goto free_ctxs;
1932

1933
	hctx->nr_ctx = 0;
1934

1935 1936 1937
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1938

1939 1940 1941
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1942 1943
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1944
		goto sched_exit_hctx;
1945

1946
	if (set->ops->init_request &&
1947 1948
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1949
		goto free_fq;
1950

1951 1952 1953
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1954 1955
	blk_mq_debugfs_register_hctx(q, hctx);

1956
	return 0;
1957

1958 1959
 free_fq:
	kfree(hctx->fq);
1960 1961
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1962 1963 1964
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1965
 free_bitmap:
1966
	sbitmap_free(&hctx->ctx_map);
1967 1968 1969
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1970
	blk_mq_remove_cpuhp(hctx);
1971 1972
	return -1;
}
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1992
		hctx = blk_mq_map_queue(q, i);
1993

1994 1995 1996 1997 1998
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1999
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2000 2001 2002
	}
}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2025 2026 2027 2028 2029
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2030 2031
}

2032 2033
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2034
{
2035
	unsigned int i, hctx_idx;
2036 2037
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2038
	struct blk_mq_tag_set *set = q->tag_set;
2039

2040 2041 2042 2043 2044
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2045
	queue_for_each_hw_ctx(q, hctx, i) {
2046
		cpumask_clear(hctx->cpumask);
2047 2048 2049 2050 2051 2052
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2053
	for_each_possible_cpu(i) {
2054
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2055
		if (!cpumask_test_cpu(i, online_mask))
2056 2057
			continue;

2058 2059
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2060 2061
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2062 2063 2064 2065 2066 2067
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2068
			q->mq_map[i] = 0;
2069 2070
		}

2071
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2072
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2073

2074
		cpumask_set_cpu(i, hctx->cpumask);
2075 2076 2077
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2078

2079 2080
	mutex_unlock(&q->sysfs_lock);

2081
	queue_for_each_hw_ctx(q, hctx, i) {
2082
		/*
2083 2084
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2085 2086
		 */
		if (!hctx->nr_ctx) {
2087 2088 2089 2090
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2091 2092 2093
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2094
			hctx->tags = NULL;
2095 2096 2097
			continue;
		}

M
Ming Lei 已提交
2098 2099 2100
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2101 2102 2103 2104 2105
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2106
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2107

2108 2109 2110
		/*
		 * Initialize batch roundrobin counts
		 */
2111 2112 2113
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2114 2115
}

2116
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2117 2118 2119 2120
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2132

2133 2134
	lockdep_assert_held(&set->tag_list_lock);

2135 2136
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2137
		queue_set_hctx_shared(q, shared);
2138 2139 2140 2141 2142 2143 2144 2145 2146
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2147 2148
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2149 2150 2151 2152 2153 2154
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2155
	mutex_unlock(&set->tag_list_lock);
2156 2157

	synchronize_rcu();
2158 2159 2160 2161 2162 2163 2164 2165
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2166 2167 2168 2169 2170 2171 2172 2173 2174

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2175
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2176

2177 2178 2179
	mutex_unlock(&set->tag_list_lock);
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2192 2193 2194
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2195
		kobject_put(&hctx->kobj);
2196
	}
2197

2198 2199
	q->mq_map = NULL;

2200 2201
	kfree(q->queue_hw_ctx);

2202 2203 2204 2205 2206 2207
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2208 2209 2210
	free_percpu(q->queue_ctx);
}

2211
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2227 2228
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2229
{
K
Keith Busch 已提交
2230 2231
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2232

K
Keith Busch 已提交
2233
	blk_mq_sysfs_unregister(q);
2234
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2235
		int node;
2236

K
Keith Busch 已提交
2237 2238 2239 2240
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2241 2242
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2243
		if (!hctxs[i])
K
Keith Busch 已提交
2244
			break;
2245

2246
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2247 2248 2249 2250 2251
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2252

2253
		atomic_set(&hctxs[i]->nr_active, 0);
2254
		hctxs[i]->numa_node = node;
2255
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2256 2257 2258 2259 2260 2261 2262 2263

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2264
	}
K
Keith Busch 已提交
2265 2266 2267 2268
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2269 2270
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2284 2285 2286
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2287
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2288 2289
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2290 2291 2292
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2293 2294
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2295
		goto err_exit;
K
Keith Busch 已提交
2296

2297 2298 2299
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2300 2301 2302 2303 2304
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2305
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2306 2307 2308 2309

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2310

2311
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2312
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2313 2314 2315

	q->nr_queues = nr_cpu_ids;

2316
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2317

2318 2319 2320
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2321 2322
	q->sg_reserved_size = INT_MAX;

2323
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2324 2325 2326
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2327
	blk_queue_make_request(q, blk_mq_make_request);
2328

2329 2330 2331 2332 2333
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2334 2335 2336 2337 2338
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2339 2340
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2341

2342
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2343

2344
	get_online_cpus();
2345
	mutex_lock(&all_q_mutex);
2346

2347
	list_add_tail(&q->all_q_node, &all_q_list);
2348
	blk_mq_add_queue_tag_set(set, q);
2349
	blk_mq_map_swqueue(q, cpu_online_mask);
2350

2351
	mutex_unlock(&all_q_mutex);
2352
	put_online_cpus();
2353

2354 2355 2356 2357 2358 2359 2360 2361
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2362
	return q;
2363

2364
err_hctxs:
K
Keith Busch 已提交
2365
	kfree(q->queue_hw_ctx);
2366
err_percpu:
K
Keith Busch 已提交
2367
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2368 2369
err_exit:
	q->mq_ops = NULL;
2370 2371
	return ERR_PTR(-ENOMEM);
}
2372
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2373 2374 2375

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2376
	struct blk_mq_tag_set	*set = q->tag_set;
2377

2378 2379 2380 2381
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2382 2383
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2384
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2385 2386 2387
}

/* Basically redo blk_mq_init_queue with queue frozen */
2388 2389
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2390
{
2391
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2392

2393
	blk_mq_debugfs_unregister_hctxs(q);
2394 2395
	blk_mq_sysfs_unregister(q);

2396 2397 2398 2399 2400 2401
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2402
	blk_mq_map_swqueue(q, online_mask);
2403

2404
	blk_mq_sysfs_register(q);
2405
	blk_mq_debugfs_register_hctxs(q);
2406 2407
}

2408 2409 2410 2411 2412 2413 2414 2415
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2416 2417 2418 2419
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2420 2421 2422 2423 2424 2425 2426 2427
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2428
		blk_freeze_queue_start(q);
2429
	list_for_each_entry(q, &all_q_list, all_q_node)
2430 2431
		blk_mq_freeze_queue_wait(q);

2432
	list_for_each_entry(q, &all_q_list, all_q_node)
2433
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2434 2435 2436 2437

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2438
	mutex_unlock(&all_q_mutex);
2439 2440 2441 2442
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2443
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2459 2460 2461 2462
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2463 2464 2465 2466 2467 2468 2469
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2470 2471
}

2472 2473 2474 2475
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2476 2477
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2478 2479 2480 2481 2482 2483
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2484
		blk_mq_free_rq_map(set->tags[i]);
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2524 2525 2526 2527 2528 2529 2530 2531
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2532 2533 2534 2535 2536 2537
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2538 2539
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2540 2541
	int ret;

B
Bart Van Assche 已提交
2542 2543
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2544 2545
	if (!set->nr_hw_queues)
		return -EINVAL;
2546
	if (!set->queue_depth)
2547 2548 2549 2550
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2551
	if (!set->ops->queue_rq)
2552 2553
		return -EINVAL;

2554 2555 2556 2557 2558
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2559

2560 2561 2562 2563 2564 2565 2566 2567 2568
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2569 2570 2571 2572 2573
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2574

K
Keith Busch 已提交
2575
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2576 2577
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2578
		return -ENOMEM;
2579

2580 2581 2582
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2583 2584 2585
	if (!set->mq_map)
		goto out_free_tags;

2586
	ret = blk_mq_update_queue_map(set);
2587 2588 2589 2590 2591
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2592
		goto out_free_mq_map;
2593

2594 2595 2596
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2597
	return 0;
2598 2599 2600 2601 2602

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2603 2604
	kfree(set->tags);
	set->tags = NULL;
2605
	return ret;
2606 2607 2608 2609 2610 2611 2612
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2613 2614
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2615

2616 2617 2618
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2619
	kfree(set->tags);
2620
	set->tags = NULL;
2621 2622 2623
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2624 2625 2626 2627 2628 2629
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2630
	if (!set)
2631 2632
		return -EINVAL;

2633 2634
	blk_mq_freeze_queue(q);

2635 2636
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2637 2638
		if (!hctx->tags)
			continue;
2639 2640 2641 2642
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2643 2644 2645 2646 2647 2648 2649 2650
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2651 2652 2653 2654 2655 2656 2657
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2658 2659
	blk_mq_unfreeze_queue(q);

2660 2661 2662
	return ret;
}

K
Keith Busch 已提交
2663 2664 2665 2666
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

2667 2668
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2678
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2715
	int bucket;
2716

2717 2718 2719 2720
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2721 2722
}

2723 2724 2725 2726 2727
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2728
	int bucket;
2729 2730 2731 2732 2733

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2734
	if (!blk_poll_stats_enable(q))
2735 2736 2737 2738 2739 2740 2741 2742
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2743 2744
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2745
	 */
2746 2747 2748 2749 2750 2751
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2752 2753 2754 2755

	return ret;
}

2756
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2757
				     struct blk_mq_hw_ctx *hctx,
2758 2759 2760 2761
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2762
	unsigned int nsecs;
2763 2764
	ktime_t kt;

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2783 2784 2785 2786 2787 2788 2789 2790
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2791
	kt = nsecs;
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2814 2815 2816 2817 2818
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2819 2820 2821 2822 2823 2824 2825
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2826
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2827 2828
		return true;

J
Jens Axboe 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2872 2873
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2874
	else {
2875
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2876 2877 2878 2879 2880 2881 2882 2883 2884
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2885 2886 2887 2888 2889

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2900 2901
static int __init blk_mq_init(void)
{
2902 2903
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2904

2905 2906 2907
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2908 2909 2910
	return 0;
}
subsys_initcall(blk_mq_init);