blk-mq.c 56.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
42
	return sbitmap_any_bit_set(&hctx->ctx_map);
43 44
}

45 46 47 48 49 50
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
51 52
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 54 55 56 57
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
58
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 60
}

61
void blk_mq_freeze_queue_start(struct request_queue *q)
62
{
63
	int freeze_depth;
64

65 66
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
67
		percpu_ref_kill(&q->q_usage_counter);
68
		blk_mq_run_hw_queues(q, false);
69
	}
70
}
71
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72 73 74

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
75
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 77
}

78 79 80 81
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
82
void blk_freeze_queue(struct request_queue *q)
83
{
84 85 86 87 88 89 90
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
91 92 93
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
94 95 96 97 98 99 100 101 102

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
103
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104

105
void blk_mq_unfreeze_queue(struct request_queue *q)
106
{
107
	int freeze_depth;
108

109 110 111
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
112
		percpu_ref_reinit(&q->q_usage_counter);
113
		wake_up_all(&q->mq_freeze_wq);
114
	}
115
}
116
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117

118 119 120 121 122 123 124 125
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
126 127 128 129 130 131 132

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
133 134
}

135 136 137 138 139 140
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

141
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142 143
			       struct request *rq, int op,
			       unsigned int op_flags)
144
{
145 146 147
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
148
	rq->mq_ctx = ctx;
149
	req_set_op_attrs(rq, op, op_flags);
150 151
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
152 153 154 155 156 157
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
158
	rq->start_time = jiffies;
159 160
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
161
	set_start_time_ns(rq);
162 163 164 165 166 167 168 169 170 171
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

172 173
	rq->cmd = rq->__cmd;

174 175 176 177 178 179
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
180 181
	rq->timeout = 0;

182 183 184 185
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

186
	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
187 188
}

189
static struct request *
190
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
191 192 193 194
{
	struct request *rq;
	unsigned int tag;

195
	tag = blk_mq_get_tag(data);
196
	if (tag != BLK_MQ_TAG_FAIL) {
197
		rq = data->hctx->tags->rqs[tag];
198

199
		if (blk_mq_tag_busy(data->hctx)) {
200
			rq->rq_flags = RQF_MQ_INFLIGHT;
201
			atomic_inc(&data->hctx->nr_active);
202 203 204
		}

		rq->tag = tag;
205
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
206 207 208 209 210 211
		return rq;
	}

	return NULL;
}

212 213
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
214
{
215 216
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
217
	struct request *rq;
218
	struct blk_mq_alloc_data alloc_data;
219
	int ret;
220

221
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
222 223
	if (ret)
		return ERR_PTR(ret);
224

225
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
226
	hctx = blk_mq_map_queue(q, ctx->cpu);
227
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
228
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
229
	blk_mq_put_ctx(ctx);
230

K
Keith Busch 已提交
231
	if (!rq) {
232
		blk_queue_exit(q);
233
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
234
	}
235 236 237 238

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
239 240
	return rq;
}
241
EXPORT_SYMBOL(blk_mq_alloc_request);
242

M
Ming Lin 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

268 269 270 271
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
272
	hctx = q->queue_hw_ctx[hctx_idx];
273 274 275 276
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
277 278 279 280 281
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
	if (!rq) {
282 283
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
284 285 286
	}

	return rq;
287 288 289 290

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
291 292 293
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

294 295 296 297 298 299
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

300
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
301
		atomic_dec(&hctx->nr_active);
302
	rq->rq_flags = 0;
303

304
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
305
	blk_mq_put_tag(hctx, ctx, tag);
306
	blk_queue_exit(q);
307 308
}

309
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
310 311 312 313 314
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
315 316 317 318 319 320

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
C
Christoph Hellwig 已提交
321
	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
322
}
J
Jens Axboe 已提交
323
EXPORT_SYMBOL_GPL(blk_mq_free_request);
324

325
inline void __blk_mq_end_request(struct request *rq, int error)
326
{
M
Ming Lei 已提交
327 328
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
329
	if (rq->end_io) {
330
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
331 332 333
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
334
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
335
	}
336
}
337
EXPORT_SYMBOL(__blk_mq_end_request);
338

339
void blk_mq_end_request(struct request *rq, int error)
340 341 342
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
343
	__blk_mq_end_request(rq, error);
344
}
345
EXPORT_SYMBOL(blk_mq_end_request);
346

347
static void __blk_mq_complete_request_remote(void *data)
348
{
349
	struct request *rq = data;
350

351
	rq->q->softirq_done_fn(rq);
352 353
}

354
static void blk_mq_ipi_complete_request(struct request *rq)
355 356
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
357
	bool shared = false;
358 359
	int cpu;

C
Christoph Hellwig 已提交
360
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
361 362 363
		rq->q->softirq_done_fn(rq);
		return;
	}
364 365

	cpu = get_cpu();
C
Christoph Hellwig 已提交
366 367 368 369
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
370
		rq->csd.func = __blk_mq_complete_request_remote;
371 372
		rq->csd.info = rq;
		rq->csd.flags = 0;
373
		smp_call_function_single_async(ctx->cpu, &rq->csd);
374
	} else {
375
		rq->q->softirq_done_fn(rq);
376
	}
377 378
	put_cpu();
}
379

380
static void __blk_mq_complete_request(struct request *rq)
381 382 383 384
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
385
		blk_mq_end_request(rq, rq->errors);
386 387 388 389
	else
		blk_mq_ipi_complete_request(rq);
}

390 391 392 393 394 395 396 397
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
398
void blk_mq_complete_request(struct request *rq, int error)
399
{
400 401 402
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
403
		return;
404 405
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
406
		__blk_mq_complete_request(rq);
407
	}
408 409
}
EXPORT_SYMBOL(blk_mq_complete_request);
410

411 412 413 414 415 416
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

417
void blk_mq_start_request(struct request *rq)
418 419 420 421 422
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
423
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
424 425
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
426

427
	blk_add_timer(rq);
428

429 430 431 432 433 434
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

435 436 437 438 439 440
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
441 442 443 444
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
445 446 447 448 449 450 451 452 453

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
454
}
455
EXPORT_SYMBOL(blk_mq_start_request);
456

457
static void __blk_mq_requeue_request(struct request *rq)
458 459 460 461
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
462

463 464 465 466
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
467 468
}

469 470 471 472 473
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
474
	blk_mq_add_to_requeue_list(rq, true);
475 476 477
}
EXPORT_SYMBOL(blk_mq_requeue_request);

478 479 480
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
481
		container_of(work, struct request_queue, requeue_work.work);
482 483 484 485 486 487 488 489 490
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
491
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
492 493
			continue;

494
		rq->rq_flags &= ~RQF_SOFTBARRIER;
495 496 497 498 499 500 501 502 503 504
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

505 506 507 508 509
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
510 511 512 513 514 515 516 517 518 519 520
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
521
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
522 523 524

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
525
		rq->rq_flags |= RQF_SOFTBARRIER;
526 527 528 529 530 531 532 533
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

534 535
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
536
	cancel_delayed_work_sync(&q->requeue_work);
537 538 539
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

540 541
void blk_mq_kick_requeue_list(struct request_queue *q)
{
542
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
543 544 545
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

546 547 548 549 550 551 552 553
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

574 575
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
576 577
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
578
		return tags->rqs[tag];
579
	}
580 581

	return NULL;
582 583 584
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

585
struct blk_mq_timeout_data {
586 587
	unsigned long next;
	unsigned int next_set;
588 589
};

590
void blk_mq_rq_timed_out(struct request *req, bool reserved)
591
{
592 593
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
594 595 596 597 598 599 600 601 602 603

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
604 605
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
606

607
	if (ops->timeout)
608
		ret = ops->timeout(req, reserved);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
624
}
625

626 627 628 629
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
630

631 632 633 634 635
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
636 637 638 639
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
640
		return;
641
	}
642

643 644
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
645
			blk_mq_rq_timed_out(rq, reserved);
646 647 648 649
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
650 651
}

652
static void blk_mq_timeout_work(struct work_struct *work)
653
{
654 655
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
656 657 658 659 660
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
676 677
		return;

678
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
679

680 681 682
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
683
	} else {
684 685
		struct blk_mq_hw_ctx *hctx;

686 687 688 689 690
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
691
	}
692
	blk_queue_exit(q);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

752 753 754 755 756 757
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
758 759 760 761
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
762

763
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
764 765
}

766 767 768 769
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
770

771
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
772 773
}

774 775 776 777 778 779 780 781 782 783 784
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
785 786
	LIST_HEAD(driver_list);
	struct list_head *dptr;
787
	int queued;
788

789
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
790 791
		return;

792 793 794
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

795 796 797 798 799
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
800
	flush_busy_ctxs(hctx, &rq_list);
801 802 803 804 805 806 807 808 809 810 811 812

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

813 814 815 816 817 818
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

819 820 821
	/*
	 * Now process all the entries, sending them to the driver.
	 */
822
	queued = 0;
823
	while (!list_empty(&rq_list)) {
824
		struct blk_mq_queue_data bd;
825 826 827 828 829
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

830 831 832 833 834
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
835 836 837
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
838
			break;
839 840
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
841
			__blk_mq_requeue_request(rq);
842 843 844 845
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
846
			rq->errors = -EIO;
847
			blk_mq_end_request(rq, rq->errors);
848 849 850 851 852
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
853 854 855 856 857 858 859

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
860 861
	}

862
	hctx->dispatched[queued_to_index(queued)]++;
863 864 865 866 867 868 869 870 871

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
872 873 874 875 876 877 878 879 880 881
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
882 883 884
	}
}

885 886 887 888 889 890 891 892
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
893 894
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
895 896

	if (--hctx->next_cpu_batch <= 0) {
897
		int cpu = hctx->next_cpu, next_cpu;
898 899 900 901 902 903 904

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
905 906

		return cpu;
907 908
	}

909
	return hctx->next_cpu;
910 911
}

912 913
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
914 915
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
916 917
		return;

918
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
919 920
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
921
			__blk_mq_run_hw_queue(hctx);
922
			put_cpu();
923 924
			return;
		}
925

926
		put_cpu();
927
	}
928

929
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
930 931
}

932
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
933 934 935 936 937 938 939
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
940
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
941 942
			continue;

943
		blk_mq_run_hw_queue(hctx, async);
944 945
	}
}
946
EXPORT_SYMBOL(blk_mq_run_hw_queues);
947 948 949

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
950
	cancel_work(&hctx->run_work);
951
	cancel_delayed_work(&hctx->delay_work);
952 953 954 955
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

956 957 958 959 960 961 962 963 964 965
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

966 967 968
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
969

970
	blk_mq_run_hw_queue(hctx, false);
971 972 973
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

974 975 976 977 978 979 980 981 982 983
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

984
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
985 986 987 988 989 990 991 992 993
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
994
		blk_mq_run_hw_queue(hctx, async);
995 996 997 998
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

999
static void blk_mq_run_work_fn(struct work_struct *work)
1000 1001 1002
{
	struct blk_mq_hw_ctx *hctx;

1003
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1004

1005 1006 1007
	__blk_mq_run_hw_queue(hctx);
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1020 1021
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1022

1023 1024
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1025 1026 1027
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1028 1029 1030
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1031
{
J
Jens Axboe 已提交
1032 1033
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1034 1035
	trace_block_rq_insert(hctx->queue, rq);

1036 1037 1038 1039
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1040
}
1041

1042 1043 1044 1045 1046
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1047
	__blk_mq_insert_req_list(hctx, rq, at_head);
1048 1049 1050
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1051
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1052
			   bool async)
1053
{
J
Jens Axboe 已提交
1054
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1055
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1056
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1057

1058 1059 1060
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
C
Christoph Hellwig 已提交
1073
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

	trace_block_unplug(q, depth, !from_schedule);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1086
		BUG_ON(rq->mq_ctx != ctx);
1087
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1088
		__blk_mq_insert_req_list(hctx, rq, false);
1089
	}
1090
	blk_mq_hctx_mark_pending(hctx, ctx);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1156

1157
	blk_account_io_start(rq, 1);
1158 1159
}

1160 1161 1162 1163 1164 1165
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1166 1167 1168
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1169
{
1170
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1171 1172 1173 1174 1175 1176 1177
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1178 1179
		struct request_queue *q = hctx->queue;

1180 1181 1182 1183 1184
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1185

1186 1187 1188
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1189
	}
1190
}
1191

1192 1193
static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
1194
					  struct blk_mq_alloc_data *data)
1195 1196 1197 1198
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1199 1200
	int op = bio_data_dir(bio);
	int op_flags = 0;
1201

1202
	blk_queue_enter_live(q);
1203
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1204
	hctx = blk_mq_map_queue(q, ctx->cpu);
1205

J
Jens Axboe 已提交
1206
	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1207
		op_flags |= REQ_SYNC;
1208

1209
	trace_block_getrq(q, bio, op);
1210 1211
	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
	rq = __blk_mq_alloc_request(data, op, op_flags);
1212

1213
	data->hctx->queued++;
1214 1215 1216
	return rq;
}

1217
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1218 1219 1220
{
	int ret;
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1221
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1222 1223 1224 1225 1226
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1227
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1228 1229 1230 1231 1232 1233 1234

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1235 1236
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1237
		return 0;
1238
	}
1239

1240 1241 1242 1243 1244 1245 1246
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1247
	}
1248 1249

	return -1;
1250 1251
}

1252 1253 1254 1255 1256
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1257
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1258
{
J
Jens Axboe 已提交
1259 1260
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1261
	struct blk_mq_alloc_data data;
1262
	struct request *rq;
1263 1264
	unsigned int request_count = 0;
	struct blk_plug *plug;
1265
	struct request *same_queue_rq = NULL;
1266
	blk_qc_t cookie;
1267 1268 1269 1270

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1271
		bio_io_error(bio);
1272
		return BLK_QC_T_NONE;
1273 1274
	}

1275 1276
	blk_queue_split(q, &bio, q->bio_split);

1277 1278 1279
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1280

1281 1282
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1283
		return BLK_QC_T_NONE;
1284

1285
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1286 1287 1288 1289 1290 1291 1292

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1293
	plug = current->plug;
1294 1295 1296 1297 1298
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1299 1300 1301
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1302 1303 1304 1305

		blk_mq_bio_to_request(rq, bio);

		/*
1306
		 * We do limited pluging. If the bio can be merged, do that.
1307 1308
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1309
		 */
1310
		if (plug) {
1311 1312
			/*
			 * The plug list might get flushed before this. If that
1313 1314 1315
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1316 1317
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1318
				list_del_init(&old_rq->queuelist);
1319
			}
1320 1321 1322 1323 1324
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1325 1326 1327
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1328
		blk_mq_insert_request(old_rq, false, true, true);
1329
		goto done;
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1343 1344
done:
	return cookie;
1345 1346 1347 1348 1349 1350
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1351
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1352
{
J
Jens Axboe 已提交
1353 1354
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1355 1356
	struct blk_plug *plug;
	unsigned int request_count = 0;
1357
	struct blk_mq_alloc_data data;
1358
	struct request *rq;
1359
	blk_qc_t cookie;
1360 1361 1362 1363

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1364
		bio_io_error(bio);
1365
		return BLK_QC_T_NONE;
1366 1367
	}

1368 1369
	blk_queue_split(q, &bio, q->bio_split);

1370 1371 1372 1373 1374
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1375 1376

	rq = blk_mq_map_request(q, bio, &data);
1377
	if (unlikely(!rq))
1378
		return BLK_QC_T_NONE;
1379

1380
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1393 1394 1395
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1396
		if (!request_count)
1397
			trace_block_plug(q);
1398 1399 1400 1401

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1402 1403
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1404
		}
1405

1406
		list_add_tail(&rq->queuelist, &plug->mq_list);
1407
		return cookie;
1408 1409
	}

1410 1411 1412 1413 1414 1415 1416 1417 1418
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1419 1420
	}

1421
	blk_mq_put_ctx(data.ctx);
1422
	return cookie;
1423 1424
}

1425 1426
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1427
{
1428
	struct page *page;
1429

1430
	if (tags->rqs && set->ops->exit_request) {
1431
		int i;
1432

1433 1434
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1435
				continue;
1436 1437
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1438
			tags->rqs[i] = NULL;
1439
		}
1440 1441
	}

1442 1443
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1444
		list_del_init(&page->lru);
1445 1446 1447 1448 1449
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1450 1451 1452
		__free_pages(page, page->private);
	}

1453
	kfree(tags->rqs);
1454

1455
	blk_mq_free_tags(tags);
1456 1457 1458 1459
}

static size_t order_to_size(unsigned int order)
{
1460
	return (size_t)PAGE_SIZE << order;
1461 1462
}

1463 1464
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1465
{
1466
	struct blk_mq_tags *tags;
1467 1468 1469
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1470
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1471 1472
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1473 1474
	if (!tags)
		return NULL;
1475

1476 1477
	INIT_LIST_HEAD(&tags->page_list);

1478 1479 1480
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1481 1482 1483 1484
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1485 1486 1487 1488 1489

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1490
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1491
				cache_line_size());
1492
	left = rq_size * set->queue_depth;
1493

1494
	for (i = 0; i < set->queue_depth; ) {
1495 1496 1497 1498 1499
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1500
		while (this_order && left < order_to_size(this_order - 1))
1501 1502 1503
			this_order--;

		do {
1504
			page = alloc_pages_node(set->numa_node,
1505
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1506
				this_order);
1507 1508 1509 1510 1511 1512 1513 1514 1515
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1516
			goto fail;
1517 1518

		page->private = this_order;
1519
		list_add_tail(&page->lru, &tags->page_list);
1520 1521

		p = page_address(page);
1522 1523 1524 1525 1526
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1527
		entries_per_page = order_to_size(this_order) / rq_size;
1528
		to_do = min(entries_per_page, set->queue_depth - i);
1529 1530
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1531 1532 1533 1534
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1535 1536
						set->numa_node)) {
					tags->rqs[i] = NULL;
1537
					goto fail;
1538
				}
1539 1540
			}

1541 1542 1543 1544
			p += rq_size;
			i++;
		}
	}
1545
	return tags;
1546

1547 1548 1549
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1550 1551
}

J
Jens Axboe 已提交
1552 1553 1554 1555 1556
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1557
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1558
{
1559
	struct blk_mq_hw_ctx *hctx;
1560 1561 1562
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1563
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1564
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1565 1566 1567 1568 1569 1570 1571 1572 1573

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1574
		return 0;
1575

J
Jens Axboe 已提交
1576 1577 1578
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1579 1580

	blk_mq_run_hw_queue(hctx, true);
1581
	return 0;
1582 1583
}

1584
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1585
{
1586 1587
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1588 1589
}

1590
/* hctx->ctxs will be freed in queue's release handler */
1591 1592 1593 1594
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1595 1596
	unsigned flush_start_tag = set->queue_depth;

1597 1598
	blk_mq_tag_idle(hctx);

1599 1600 1601 1602 1603
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1604 1605 1606
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1607
	blk_mq_remove_cpuhp(hctx);
1608
	blk_free_flush_queue(hctx->fq);
1609
	sbitmap_free(&hctx->ctx_map);
1610 1611
}

M
Ming Lei 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1621
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1631
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1632 1633 1634
		free_cpumask_var(hctx->cpumask);
}

1635 1636 1637
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1638
{
1639
	int node;
1640
	unsigned flush_start_tag = set->queue_depth;
1641 1642 1643 1644 1645

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1646
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1647 1648 1649 1650 1651
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1652
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1653

1654
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1655 1656

	hctx->tags = set->tags[hctx_idx];
1657 1658

	/*
1659 1660
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1661
	 */
1662 1663 1664 1665
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1666

1667 1668
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1669
		goto free_ctxs;
1670

1671
	hctx->nr_ctx = 0;
1672

1673 1674 1675
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1676

1677 1678 1679
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1680

1681 1682 1683 1684 1685
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1686

1687
	return 0;
1688

1689 1690 1691 1692 1693
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1694
 free_bitmap:
1695
	sbitmap_free(&hctx->ctx_map);
1696 1697 1698
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1699
	blk_mq_remove_cpuhp(hctx);
1700 1701
	return -1;
}
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1722
		hctx = blk_mq_map_queue(q, i);
1723

1724 1725 1726 1727 1728
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1729
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1730 1731 1732
	}
}

1733 1734
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1735 1736 1737 1738
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1739
	struct blk_mq_tag_set *set = q->tag_set;
1740

1741 1742 1743 1744 1745
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1746
	queue_for_each_hw_ctx(q, hctx, i) {
1747
		cpumask_clear(hctx->cpumask);
1748 1749 1750 1751 1752 1753
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1754
	for_each_possible_cpu(i) {
1755
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1756
		if (!cpumask_test_cpu(i, online_mask))
1757 1758
			continue;

1759
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1760
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1761

1762
		cpumask_set_cpu(i, hctx->cpumask);
1763 1764 1765
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1766

1767 1768
	mutex_unlock(&q->sysfs_lock);

1769
	queue_for_each_hw_ctx(q, hctx, i) {
1770
		/*
1771 1772
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1773 1774 1775 1776 1777 1778
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1779
			hctx->tags = NULL;
1780 1781 1782
			continue;
		}

M
Ming Lei 已提交
1783 1784 1785 1786 1787 1788
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1789 1790 1791 1792 1793
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1794
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1795

1796 1797 1798
		/*
		 * Initialize batch roundrobin counts
		 */
1799 1800 1801
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1802 1803
}

1804
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1805 1806 1807 1808
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1820 1821 1822

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1823
		queue_set_hctx_shared(q, shared);
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1834 1835 1836 1837 1838 1839
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1840 1841 1842 1843 1844 1845 1846 1847 1848
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1849 1850 1851 1852 1853 1854 1855 1856 1857

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1858
	list_add_tail(&q->tag_set_list, &set->tag_list);
1859

1860 1861 1862
	mutex_unlock(&set->tag_list_lock);
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1875 1876 1877 1878
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1879
		kfree(hctx);
1880
	}
1881

1882 1883
	q->mq_map = NULL;

1884 1885 1886 1887 1888 1889
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1890
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1906 1907
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1908
{
K
Keith Busch 已提交
1909 1910
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1911

K
Keith Busch 已提交
1912
	blk_mq_sysfs_unregister(q);
1913
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1914
		int node;
1915

K
Keith Busch 已提交
1916 1917 1918 1919
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1920 1921
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1922
		if (!hctxs[i])
K
Keith Busch 已提交
1923
			break;
1924

1925
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
1926 1927 1928 1929 1930
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
1931

1932
		atomic_set(&hctxs[i]->nr_active, 0);
1933
		hctxs[i]->numa_node = node;
1934
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
1935 1936 1937 1938 1939 1940 1941 1942

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
1943
	}
K
Keith Busch 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
1968 1969 1970
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
1971 1972
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
1973
		goto err_exit;
K
Keith Busch 已提交
1974 1975 1976 1977 1978 1979

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

1980
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
1981 1982 1983 1984

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
1985

1986
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1987
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1988 1989 1990

	q->nr_queues = nr_cpu_ids;

1991
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1992

1993 1994 1995
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1996 1997
	q->sg_reserved_size = INT_MAX;

1998
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
1999 2000 2001
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2002 2003 2004 2005 2006
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2007 2008 2009 2010 2011
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2012 2013
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2014

2015
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2016

2017
	get_online_cpus();
2018 2019
	mutex_lock(&all_q_mutex);

2020
	list_add_tail(&q->all_q_node, &all_q_list);
2021
	blk_mq_add_queue_tag_set(set, q);
2022
	blk_mq_map_swqueue(q, cpu_online_mask);
2023

2024
	mutex_unlock(&all_q_mutex);
2025
	put_online_cpus();
2026

2027
	return q;
2028

2029
err_hctxs:
K
Keith Busch 已提交
2030
	kfree(q->queue_hw_ctx);
2031
err_percpu:
K
Keith Busch 已提交
2032
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2033 2034
err_exit:
	q->mq_ops = NULL;
2035 2036
	return ERR_PTR(-ENOMEM);
}
2037
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2038 2039 2040

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2041
	struct blk_mq_tag_set	*set = q->tag_set;
2042

2043 2044 2045 2046
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2047 2048
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2049 2050
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2051 2052 2053
}

/* Basically redo blk_mq_init_queue with queue frozen */
2054 2055
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2056
{
2057
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2058

2059 2060
	blk_mq_sysfs_unregister(q);

2061 2062 2063 2064 2065 2066
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2067
	blk_mq_map_swqueue(q, online_mask);
2068

2069
	blk_mq_sysfs_register(q);
2070 2071
}

2072 2073 2074 2075 2076 2077 2078 2079
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2080 2081 2082 2083
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2084 2085 2086 2087 2088 2089 2090 2091 2092
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2093
	list_for_each_entry(q, &all_q_list, all_q_node) {
2094 2095
		blk_mq_freeze_queue_wait(q);

2096 2097 2098 2099 2100 2101 2102
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2103
	list_for_each_entry(q, &all_q_list, all_q_node)
2104
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2105 2106 2107 2108

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2109
	mutex_unlock(&all_q_mutex);
2110 2111 2112 2113
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2114
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
 * is ignored.
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2141 2142
}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2197 2198 2199 2200 2201 2202
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2203 2204
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2205 2206
	int ret;

B
Bart Van Assche 已提交
2207 2208
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2209 2210
	if (!set->nr_hw_queues)
		return -EINVAL;
2211
	if (!set->queue_depth)
2212 2213 2214 2215
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2216
	if (!set->ops->queue_rq)
2217 2218
		return -EINVAL;

2219 2220 2221 2222 2223
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2224

2225 2226 2227 2228 2229 2230 2231 2232 2233
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2234 2235 2236 2237 2238
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2239

K
Keith Busch 已提交
2240
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2241 2242
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2243
		return -ENOMEM;
2244

2245 2246 2247
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2248 2249 2250
	if (!set->mq_map)
		goto out_free_tags;

2251 2252 2253 2254 2255 2256 2257 2258 2259
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2260
		goto out_free_mq_map;
2261

2262 2263 2264
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2265
	return 0;
2266 2267 2268 2269 2270

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2271 2272
	kfree(set->tags);
	set->tags = NULL;
2273
	return ret;
2274 2275 2276 2277 2278 2279 2280
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2281
	for (i = 0; i < nr_cpu_ids; i++) {
2282
		if (set->tags[i])
2283 2284 2285
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

2286 2287 2288
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2289
	kfree(set->tags);
2290
	set->tags = NULL;
2291 2292 2293
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2305 2306
		if (!hctx->tags)
			continue;
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2357 2358
static int __init blk_mq_init(void)
{
2359 2360
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2361

2362 2363 2364
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2365 2366 2367
	return 0;
}
subsys_initcall(blk_mq_init);