blk-mq.c 68.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35
#include "blk-mq-sched.h"
36 37 38 39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
43
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44
{
45 46 47
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
48 49
}

50 51 52 53 54 55
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
56 57
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 59 60 61 62
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
63
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 65
}

66
void blk_mq_freeze_queue_start(struct request_queue *q)
67
{
68
	int freeze_depth;
69

70 71
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
72
		percpu_ref_kill(&q->q_usage_counter);
73
		blk_mq_run_hw_queues(q, false);
74
	}
75
}
76
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77 78 79

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
80
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 82
}

83 84 85 86
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
87
void blk_freeze_queue(struct request_queue *q)
88
{
89 90 91 92 93 94 95
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
96 97 98
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
99 100 101 102 103 104 105 106 107

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
108
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109

110
void blk_mq_unfreeze_queue(struct request_queue *q)
111
{
112
	int freeze_depth;
113

114 115 116
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
117
		percpu_ref_reinit(&q->q_usage_counter);
118
		wake_up_all(&q->mq_freeze_wq);
119
	}
120
}
121
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

150 151 152 153 154 155 156 157
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
158 159 160 161 162 163 164

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
165 166
}

167 168 169 170 171 172
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

173 174
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
175
{
176 177 178
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
179
	rq->mq_ctx = ctx;
180
	rq->cmd_flags = op;
181 182
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
183 184 185 186 187 188
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
189
	rq->start_time = jiffies;
190 191
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
192
	set_start_time_ns(rq);
193 194 195 196 197 198 199 200 201 202 203 204
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
205 206
	rq->timeout = 0;

207 208 209 210
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

211
	ctx->rq_dispatched[op_is_sync(op)]++;
212
}
213
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214

215 216
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
217 218 219 220
{
	struct request *rq;
	unsigned int tag;

221
	tag = blk_mq_get_tag(data);
222
	if (tag != BLK_MQ_TAG_FAIL) {
223 224 225
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
226

227 228 229 230
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
231 232 233 234
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
235 236 237 238
			rq->tag = tag;
			rq->internal_tag = -1;
		}

239
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 241 242 243 244
		return rq;
	}

	return NULL;
}
245
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
246

247 248
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
249
{
250
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
251
	struct request *rq;
252
	int ret;
253

254
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 256
	if (ret)
		return ERR_PTR(ret);
257

258
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
259

260 261 262 263
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
264
		return ERR_PTR(-EWOULDBLOCK);
265 266 267 268

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
269 270
	return rq;
}
271
EXPORT_SYMBOL(blk_mq_alloc_request);
272

M
Ming Lin 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

298 299 300 301
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
302
	hctx = q->queue_hw_ctx[hctx_idx];
303 304 305 306
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
307 308 309
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
310
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
311
	if (!rq) {
312 313
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
314 315 316
	}

	return rq;
317 318 319 320

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
321 322 323
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

324 325
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
326
{
327
	const int sched_tag = rq->internal_tag;
328 329
	struct request_queue *q = rq->q;

330
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
331
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
332 333

	wbt_done(q->rq_wb, &rq->issue_stat);
334
	rq->rq_flags = 0;
335

336
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
337
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
338 339 340 341
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
342
	blk_mq_sched_restart_queues(hctx);
343
	blk_queue_exit(q);
344 345
}

346
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
347
				     struct request *rq)
348 349 350 351
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
352 353 354 355 356 357
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
358 359 360 361
}

void blk_mq_free_request(struct request *rq)
{
362
	blk_mq_sched_put_request(rq);
363
}
J
Jens Axboe 已提交
364
EXPORT_SYMBOL_GPL(blk_mq_free_request);
365

366
inline void __blk_mq_end_request(struct request *rq, int error)
367
{
M
Ming Lei 已提交
368 369
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
370
	if (rq->end_io) {
J
Jens Axboe 已提交
371
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
372
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
373 374 375
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
376
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
377
	}
378
}
379
EXPORT_SYMBOL(__blk_mq_end_request);
380

381
void blk_mq_end_request(struct request *rq, int error)
382 383 384
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
385
	__blk_mq_end_request(rq, error);
386
}
387
EXPORT_SYMBOL(blk_mq_end_request);
388

389
static void __blk_mq_complete_request_remote(void *data)
390
{
391
	struct request *rq = data;
392

393
	rq->q->softirq_done_fn(rq);
394 395
}

396
static void blk_mq_ipi_complete_request(struct request *rq)
397 398
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
399
	bool shared = false;
400 401
	int cpu;

C
Christoph Hellwig 已提交
402
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
403 404 405
		rq->q->softirq_done_fn(rq);
		return;
	}
406 407

	cpu = get_cpu();
C
Christoph Hellwig 已提交
408 409 410 411
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
412
		rq->csd.func = __blk_mq_complete_request_remote;
413 414
		rq->csd.info = rq;
		rq->csd.flags = 0;
415
		smp_call_function_single_async(ctx->cpu, &rq->csd);
416
	} else {
417
		rq->q->softirq_done_fn(rq);
418
	}
419 420
	put_cpu();
}
421

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

437
static void __blk_mq_complete_request(struct request *rq)
438 439 440
{
	struct request_queue *q = rq->q;

441 442
	blk_mq_stat_add(rq);

443
	if (!q->softirq_done_fn)
444
		blk_mq_end_request(rq, rq->errors);
445 446 447 448
	else
		blk_mq_ipi_complete_request(rq);
}

449 450 451 452 453 454 455 456
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
457
void blk_mq_complete_request(struct request *rq, int error)
458
{
459 460 461
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
462
		return;
463 464
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
465
		__blk_mq_complete_request(rq);
466
	}
467 468
}
EXPORT_SYMBOL(blk_mq_complete_request);
469

470 471 472 473 474 475
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

476
void blk_mq_start_request(struct request *rq)
477 478 479
{
	struct request_queue *q = rq->q;

480 481
	blk_mq_sched_started_request(rq);

482 483
	trace_block_rq_issue(q, rq);

484 485 486
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
487
		wbt_issue(q->rq_wb, &rq->issue_stat);
488 489
	}

490
	blk_add_timer(rq);
491

492 493 494 495 496 497
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

498 499 500 501 502 503
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
504 505 506 507
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
508 509 510 511 512 513 514 515 516

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
517
}
518
EXPORT_SYMBOL(blk_mq_start_request);
519

520
static void __blk_mq_requeue_request(struct request *rq)
521 522 523 524
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
525
	wbt_requeue(q->rq_wb, &rq->issue_stat);
526
	blk_mq_sched_requeue_request(rq);
527

528 529 530 531
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
532 533
}

534
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
535 536 537 538
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
539
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
540 541 542
}
EXPORT_SYMBOL(blk_mq_requeue_request);

543 544 545
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
546
		container_of(work, struct request_queue, requeue_work.work);
547 548 549 550 551 552 553 554 555
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
557 558
			continue;

559
		rq->rq_flags &= ~RQF_SOFTBARRIER;
560
		list_del_init(&rq->queuelist);
561
		blk_mq_sched_insert_request(rq, true, false, false, true);
562 563 564 565 566
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
567
		blk_mq_sched_insert_request(rq, false, false, false, true);
568 569
	}

570
	blk_mq_run_hw_queues(q, false);
571 572
}

573 574
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
575 576 577 578 579 580 581 582
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
583
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
584 585 586

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
587
		rq->rq_flags |= RQF_SOFTBARRIER;
588 589 590 591 592
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
593 594 595

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
596 597 598 599 600
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
601
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
602 603 604
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

605 606 607 608 609 610 611 612
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

633 634
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
635 636
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
637
		return tags->rqs[tag];
638
	}
639 640

	return NULL;
641 642 643
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

644
struct blk_mq_timeout_data {
645 646
	unsigned long next;
	unsigned int next_set;
647 648
};

649
void blk_mq_rq_timed_out(struct request *req, bool reserved)
650
{
J
Jens Axboe 已提交
651
	const struct blk_mq_ops *ops = req->q->mq_ops;
652
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
653 654 655 656 657 658 659 660 661 662

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
663 664
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
665

666
	if (ops->timeout)
667
		ret = ops->timeout(req, reserved);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
683
}
684

685 686 687 688
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
689

690 691 692 693 694
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
695 696 697 698
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
699
		return;
700
	}
701

702 703
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
704
			blk_mq_rq_timed_out(rq, reserved);
705 706 707 708
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
709 710
}

711
static void blk_mq_timeout_work(struct work_struct *work)
712
{
713 714
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
715 716 717 718 719
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
735 736
		return;

737
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
738

739 740 741
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
742
	} else {
743 744
		struct blk_mq_hw_ctx *hctx;

745 746 747 748 749
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
750
	}
751
	blk_queue_exit(q);
752 753 754 755 756 757 758 759 760 761 762 763 764 765
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766
		bool merged = false;
767 768 769 770 771 772 773

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

774 775 776 777
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
778
			break;
779 780 781
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
782
			break;
783 784
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
785
			break;
786 787
		default:
			continue;
788
		}
789 790 791 792

		if (merged)
			ctx->rq_merged++;
		return merged;
793 794 795 796 797
	}

	return false;
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

816 817 818 819
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
820
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
821
{
822 823 824 825
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
826

827
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
828
}
829
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
830

831 832 833 834
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
835

836
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
837 838
}

839 840
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
841 842 843 844 845 846 847 848 849 850 851 852 853 854
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

855 856 857
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

858 859
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
860 861 862 863
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
864 865 866 867 868 869 870
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				  struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

948
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
949 950 951
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
952 953
	LIST_HEAD(driver_list);
	struct list_head *dptr;
954
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
955

956 957 958 959 960 961
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

962 963 964
	/*
	 * Now process all the entries, sending them to the driver.
	 */
965
	queued = 0;
966
	while (!list_empty(list)) {
967
		struct blk_mq_queue_data bd;
968

969
		rq = list_first_entry(list, struct request, queuelist);
970 971 972
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
973 974

			/*
975 976
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
977
			 */
978 979 980 981 982 983 984 985 986
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
987
				break;
988
			}
989
		}
990

991 992
		list_del_init(&rq->queuelist);

993 994
		bd.rq = rq;
		bd.list = dptr;
995
		bd.last = list_empty(list);
996 997

		ret = q->mq_ops->queue_rq(hctx, &bd);
998 999 1000
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1001
			break;
1002
		case BLK_MQ_RQ_QUEUE_BUSY:
1003
			blk_mq_put_driver_tag(hctx, rq);
1004
			list_add(&rq->queuelist, list);
1005
			__blk_mq_requeue_request(rq);
1006 1007 1008 1009
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1010
			rq->errors = -EIO;
1011
			blk_mq_end_request(rq, rq->errors);
1012 1013 1014 1015 1016
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1017 1018 1019 1020 1021

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
1022
		if (!dptr && list->next != list->prev)
1023
			dptr = &driver_list;
1024 1025
	}

1026
	hctx->dispatched[queued_to_index(queued)]++;
1027 1028 1029 1030 1031

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1032
	if (!list_empty(list)) {
1033
		spin_lock(&hctx->lock);
1034
		list_splice_init(list, &hctx->dispatch);
1035
		spin_unlock(&hctx->lock);
1036

1037 1038 1039 1040 1041 1042 1043 1044
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1045
		 *
1046 1047
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1048
		 */
1049 1050
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1051
			blk_mq_run_hw_queue(hctx, true);
1052
	}
1053

1054
	return queued != 0;
1055 1056
}

1057 1058 1059 1060 1061 1062 1063 1064 1065
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1066
		blk_mq_sched_dispatch_requests(hctx);
1067 1068 1069
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1070
		blk_mq_sched_dispatch_requests(hctx);
1071 1072 1073 1074
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1075 1076 1077 1078 1079 1080 1081 1082
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1083 1084
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1085 1086

	if (--hctx->next_cpu_batch <= 0) {
1087
		int next_cpu;
1088 1089 1090 1091 1092 1093 1094 1095 1096

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1097
	return hctx->next_cpu;
1098 1099
}

1100 1101
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1102 1103
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1104 1105
		return;

1106
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1107 1108
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1109
			__blk_mq_run_hw_queue(hctx);
1110
			put_cpu();
1111 1112
			return;
		}
1113

1114
		put_cpu();
1115
	}
1116

1117
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1118 1119
}

1120
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1121 1122 1123 1124 1125
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1126
		if (!blk_mq_hctx_has_pending(hctx) ||
1127
		    blk_mq_hctx_stopped(hctx))
1128 1129
			continue;

1130
		blk_mq_run_hw_queue(hctx, async);
1131 1132
	}
}
1133
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1155 1156
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1157
	cancel_work(&hctx->run_work);
1158
	cancel_delayed_work(&hctx->delay_work);
1159 1160 1161 1162
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1173 1174 1175
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1176

1177
	blk_mq_run_hw_queue(hctx, false);
1178 1179 1180
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1201
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1202 1203 1204 1205
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1206 1207
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1208 1209 1210
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1211
static void blk_mq_run_work_fn(struct work_struct *work)
1212 1213 1214
{
	struct blk_mq_hw_ctx *hctx;

1215
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1216

1217 1218 1219
	__blk_mq_run_hw_queue(hctx);
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1232 1233
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1234

1235
	blk_mq_stop_hw_queue(hctx);
1236 1237
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1238 1239 1240
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1241 1242 1243
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1244
{
J
Jens Axboe 已提交
1245 1246
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1247 1248
	trace_block_rq_insert(hctx->queue, rq);

1249 1250 1251 1252
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1253
}
1254

1255 1256
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1257 1258 1259
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1260
	__blk_mq_insert_req_list(hctx, rq, at_head);
1261 1262 1263
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1264 1265
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1277
		BUG_ON(rq->mq_ctx != ctx);
1278
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1279
		__blk_mq_insert_req_list(hctx, rq, false);
1280
	}
1281
	blk_mq_hctx_mark_pending(hctx, ctx);
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1318 1319 1320 1321
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1338 1339 1340
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1341 1342 1343 1344 1345 1346
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1347

1348
	blk_account_io_start(rq, true);
1349 1350
}

1351 1352 1353 1354 1355 1356
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1357 1358 1359
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1360
{
1361
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1362 1363 1364 1365 1366 1367 1368
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1369 1370
		struct request_queue *q = hctx->queue;

1371 1372 1373 1374 1375
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1376

1377
		spin_unlock(&ctx->lock);
1378
		__blk_mq_finish_request(hctx, ctx, rq);
1379
		return true;
1380
	}
1381
}
1382

1383 1384
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1385 1386 1387 1388
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1389 1390
}

1391
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1392 1393 1394 1395 1396 1397 1398
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1399 1400 1401
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1402

1403
	if (q->elevator)
1404 1405
		goto insert;

1406 1407 1408 1409 1410
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1411 1412 1413 1414 1415 1416
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1417 1418
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1419
		return;
1420
	}
1421

1422 1423 1424 1425 1426 1427
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1428
		return;
1429
	}
1430

1431
insert:
1432
	blk_mq_sched_insert_request(rq, false, true, true, false);
1433 1434
}

1435 1436 1437 1438 1439
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1440
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1441
{
1442
	const int is_sync = op_is_sync(bio->bi_opf);
1443
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1444
	struct blk_mq_alloc_data data = { .flags = 0 };
1445
	struct request *rq;
1446
	unsigned int request_count = 0, srcu_idx;
1447
	struct blk_plug *plug;
1448
	struct request *same_queue_rq = NULL;
1449
	blk_qc_t cookie;
J
Jens Axboe 已提交
1450
	unsigned int wb_acct;
1451 1452 1453 1454

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1455
		bio_io_error(bio);
1456
		return BLK_QC_T_NONE;
1457 1458
	}

1459 1460
	blk_queue_split(q, &bio, q->bio_split);

1461 1462 1463
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1464

1465 1466 1467
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1468 1469
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1470 1471 1472
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1473 1474
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1475
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1476 1477 1478
	}

	wbt_track(&rq->issue_stat, wb_acct);
1479

1480
	cookie = request_to_qc_t(data.hctx, rq);
1481 1482

	if (unlikely(is_flush_fua)) {
1483 1484
		if (q->elevator)
			goto elv_insert;
1485 1486
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1487
		goto run_queue;
1488 1489
	}

1490
	plug = current->plug;
1491 1492 1493 1494 1495
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1496 1497 1498
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1499 1500 1501 1502

		blk_mq_bio_to_request(rq, bio);

		/*
1503
		 * We do limited plugging. If the bio can be merged, do that.
1504 1505
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1506
		 */
1507
		if (plug) {
1508 1509
			/*
			 * The plug list might get flushed before this. If that
1510 1511 1512
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1513 1514
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1515
				list_del_init(&old_rq->queuelist);
1516
			}
1517 1518 1519 1520 1521
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1522
			goto done;
1523 1524 1525

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1526
			blk_mq_try_issue_directly(old_rq, &cookie);
1527 1528 1529
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1530
			blk_mq_try_issue_directly(old_rq, &cookie);
1531 1532
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1533
		goto done;
1534 1535
	}

1536
	if (q->elevator) {
1537
elv_insert:
1538 1539
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1540
		blk_mq_sched_insert_request(rq, false, true,
1541
						!is_sync || is_flush_fua, true);
1542 1543
		goto done;
	}
1544 1545 1546 1547 1548 1549 1550
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1551
run_queue:
1552 1553 1554
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1555 1556
done:
	return cookie;
1557 1558 1559 1560 1561 1562
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1563
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1564
{
1565
	const int is_sync = op_is_sync(bio->bi_opf);
1566
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1567 1568
	struct blk_plug *plug;
	unsigned int request_count = 0;
1569
	struct blk_mq_alloc_data data = { .flags = 0 };
1570
	struct request *rq;
1571
	blk_qc_t cookie;
J
Jens Axboe 已提交
1572
	unsigned int wb_acct;
1573 1574 1575 1576

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1577
		bio_io_error(bio);
1578
		return BLK_QC_T_NONE;
1579 1580
	}

1581 1582
	blk_queue_split(q, &bio, q->bio_split);

1583 1584 1585 1586 1587
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1588

1589 1590 1591
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1592 1593
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1594 1595 1596
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1597 1598
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1599
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1600 1601 1602
	}

	wbt_track(&rq->issue_stat, wb_acct);
1603

1604
	cookie = request_to_qc_t(data.hctx, rq);
1605 1606

	if (unlikely(is_flush_fua)) {
1607 1608
		if (q->elevator)
			goto elv_insert;
1609 1610
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1611
		goto run_queue;
1612 1613 1614 1615 1616 1617 1618
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1619 1620
	plug = current->plug;
	if (plug) {
1621 1622
		struct request *last = NULL;

1623
		blk_mq_bio_to_request(rq, bio);
1624 1625 1626 1627 1628 1629 1630

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1631
		if (!request_count)
1632
			trace_block_plug(q);
1633 1634
		else
			last = list_entry_rq(plug->mq_list.prev);
1635 1636 1637

		blk_mq_put_ctx(data.ctx);

1638 1639
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1640 1641
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1642
		}
1643

1644
		list_add_tail(&rq->queuelist, &plug->mq_list);
1645
		return cookie;
1646 1647
	}

1648
	if (q->elevator) {
1649
elv_insert:
1650 1651
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1652
		blk_mq_sched_insert_request(rq, false, true,
1653
						!is_sync || is_flush_fua, true);
1654 1655
		goto done;
	}
1656 1657 1658 1659 1660 1661 1662
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1663
run_queue:
1664
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1665 1666
	}

1667
	blk_mq_put_ctx(data.ctx);
1668
done:
1669
	return cookie;
1670 1671
}

1672 1673
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1674
{
1675
	struct page *page;
1676

1677
	if (tags->rqs && set->ops->exit_request) {
1678
		int i;
1679

1680
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1681 1682 1683
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1684
				continue;
J
Jens Axboe 已提交
1685
			set->ops->exit_request(set->driver_data, rq,
1686
						hctx_idx, i);
J
Jens Axboe 已提交
1687
			tags->static_rqs[i] = NULL;
1688
		}
1689 1690
	}

1691 1692
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1693
		list_del_init(&page->lru);
1694 1695 1696 1697 1698
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1699 1700
		__free_pages(page, page->private);
	}
1701
}
1702

1703 1704
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1705
	kfree(tags->rqs);
1706
	tags->rqs = NULL;
J
Jens Axboe 已提交
1707 1708
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1709

1710
	blk_mq_free_tags(tags);
1711 1712
}

1713 1714 1715 1716
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1717
{
1718
	struct blk_mq_tags *tags;
1719
	int node;
1720

1721 1722 1723 1724 1725
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1726
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1727 1728
	if (!tags)
		return NULL;
1729

1730
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1731
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1732
				 node);
1733 1734 1735 1736
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1737

J
Jens Axboe 已提交
1738 1739
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1740
				 node);
J
Jens Axboe 已提交
1741 1742 1743 1744 1745 1746
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1760 1761 1762 1763 1764
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1765 1766 1767

	INIT_LIST_HEAD(&tags->page_list);

1768 1769 1770 1771
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1772
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1773
				cache_line_size());
1774
	left = rq_size * depth;
1775

1776
	for (i = 0; i < depth; ) {
1777 1778 1779 1780 1781
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1782
		while (this_order && left < order_to_size(this_order - 1))
1783 1784 1785
			this_order--;

		do {
1786
			page = alloc_pages_node(node,
1787
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1788
				this_order);
1789 1790 1791 1792 1793 1794 1795 1796 1797
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1798
			goto fail;
1799 1800

		page->private = this_order;
1801
		list_add_tail(&page->lru, &tags->page_list);
1802 1803

		p = page_address(page);
1804 1805 1806 1807
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1808
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1809
		entries_per_page = order_to_size(this_order) / rq_size;
1810
		to_do = min(entries_per_page, depth - i);
1811 1812
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1813 1814 1815
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1816 1817
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1818
						rq, hctx_idx, i,
1819
						node)) {
J
Jens Axboe 已提交
1820
					tags->static_rqs[i] = NULL;
1821
					goto fail;
1822
				}
1823 1824
			}

1825 1826 1827 1828
			p += rq_size;
			i++;
		}
	}
1829
	return 0;
1830

1831
fail:
1832 1833
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1834 1835
}

J
Jens Axboe 已提交
1836 1837 1838 1839 1840
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1841
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1842
{
1843
	struct blk_mq_hw_ctx *hctx;
1844 1845 1846
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1847
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1848
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1849 1850 1851 1852 1853 1854 1855 1856 1857

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1858
		return 0;
1859

J
Jens Axboe 已提交
1860 1861 1862
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1863 1864

	blk_mq_run_hw_queue(hctx, true);
1865
	return 0;
1866 1867
}

1868
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1869
{
1870 1871
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1872 1873
}

1874
/* hctx->ctxs will be freed in queue's release handler */
1875 1876 1877 1878
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1879 1880
	unsigned flush_start_tag = set->queue_depth;

1881 1882
	blk_mq_tag_idle(hctx);

1883 1884 1885 1886 1887
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1888 1889 1890
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1891 1892 1893
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1894
	blk_mq_remove_cpuhp(hctx);
1895
	blk_free_flush_queue(hctx->fq);
1896
	sbitmap_free(&hctx->ctx_map);
1897 1898
}

M
Ming Lei 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1908
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1918
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1919 1920 1921
		free_cpumask_var(hctx->cpumask);
}

1922 1923 1924
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1925
{
1926
	int node;
1927
	unsigned flush_start_tag = set->queue_depth;
1928 1929 1930 1931 1932

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1933
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1934 1935 1936 1937 1938
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1939
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1940

1941
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1942 1943

	hctx->tags = set->tags[hctx_idx];
1944 1945

	/*
1946 1947
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1948
	 */
1949 1950 1951 1952
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1953

1954 1955
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1956
		goto free_ctxs;
1957

1958
	hctx->nr_ctx = 0;
1959

1960 1961 1962
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1963

1964 1965 1966
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1967

1968 1969 1970 1971 1972
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1973

1974 1975 1976
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1977
	return 0;
1978

1979 1980 1981 1982 1983
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1984
 free_bitmap:
1985
	sbitmap_free(&hctx->ctx_map);
1986 1987 1988
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1989
	blk_mq_remove_cpuhp(hctx);
1990 1991
	return -1;
}
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
2007 2008
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2009 2010 2011 2012 2013

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
2014
		hctx = blk_mq_map_queue(q, i);
2015

2016 2017 2018 2019 2020
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2021
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2022 2023 2024
	}
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2047 2048 2049 2050 2051
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2052 2053
}

2054 2055
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2056
{
2057
	unsigned int i, hctx_idx;
2058 2059
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2060
	struct blk_mq_tag_set *set = q->tag_set;
2061

2062 2063 2064 2065 2066
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2067
	queue_for_each_hw_ctx(q, hctx, i) {
2068
		cpumask_clear(hctx->cpumask);
2069 2070 2071 2072 2073 2074
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2075
	for_each_possible_cpu(i) {
2076
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2077
		if (!cpumask_test_cpu(i, online_mask))
2078 2079
			continue;

2080 2081
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2082 2083
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2084 2085 2086 2087 2088 2089
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2090
			q->mq_map[i] = 0;
2091 2092
		}

2093
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2094
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2095

2096
		cpumask_set_cpu(i, hctx->cpumask);
2097 2098 2099
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2100

2101 2102
	mutex_unlock(&q->sysfs_lock);

2103
	queue_for_each_hw_ctx(q, hctx, i) {
2104
		/*
2105 2106
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2107 2108
		 */
		if (!hctx->nr_ctx) {
2109 2110 2111 2112
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2113 2114 2115
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2116
			hctx->tags = NULL;
2117 2118 2119
			continue;
		}

M
Ming Lei 已提交
2120 2121 2122
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2123 2124 2125 2126 2127
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2128
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2129

2130 2131 2132
		/*
		 * Initialize batch roundrobin counts
		 */
2133 2134 2135
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2136 2137
}

2138
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2139 2140 2141 2142
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2154 2155 2156

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2157
		queue_set_hctx_shared(q, shared);
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2168 2169 2170 2171 2172 2173
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2174 2175 2176 2177 2178 2179 2180 2181 2182
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2183 2184 2185 2186 2187 2188 2189 2190 2191

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2192
	list_add_tail(&q->tag_set_list, &set->tag_list);
2193

2194 2195 2196
	mutex_unlock(&set->tag_list_lock);
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2208 2209
	blk_mq_sched_teardown(q);

2210
	/* hctx kobj stays in hctx */
2211 2212 2213 2214
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2215
		kfree(hctx);
2216
	}
2217

2218 2219
	q->mq_map = NULL;

2220 2221 2222 2223 2224 2225
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2226
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2242 2243
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2244
{
K
Keith Busch 已提交
2245 2246
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2247

K
Keith Busch 已提交
2248
	blk_mq_sysfs_unregister(q);
2249
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2250
		int node;
2251

K
Keith Busch 已提交
2252 2253 2254 2255
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2256 2257
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2258
		if (!hctxs[i])
K
Keith Busch 已提交
2259
			break;
2260

2261
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2262 2263 2264 2265 2266
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2267

2268
		atomic_set(&hctxs[i]->nr_active, 0);
2269
		hctxs[i]->numa_node = node;
2270
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2271 2272 2273 2274 2275 2276 2277 2278

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2279
	}
K
Keith Busch 已提交
2280 2281 2282 2283
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2284 2285
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2302 2303 2304
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2305 2306
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2307
		goto err_exit;
K
Keith Busch 已提交
2308 2309 2310 2311 2312 2313

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2314
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2315 2316 2317 2318

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2319

2320
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2321
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2322 2323 2324

	q->nr_queues = nr_cpu_ids;

2325
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2326

2327 2328 2329
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2330 2331
	q->sg_reserved_size = INT_MAX;

2332
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2333 2334 2335
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2336 2337 2338 2339 2340
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2341 2342 2343 2344 2345
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2346 2347 2348 2349 2350
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2351 2352
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2353

2354
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2355

2356
	get_online_cpus();
2357 2358
	mutex_lock(&all_q_mutex);

2359
	list_add_tail(&q->all_q_node, &all_q_list);
2360
	blk_mq_add_queue_tag_set(set, q);
2361
	blk_mq_map_swqueue(q, cpu_online_mask);
2362

2363
	mutex_unlock(&all_q_mutex);
2364
	put_online_cpus();
2365

2366 2367 2368 2369 2370 2371 2372 2373
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2374
	return q;
2375

2376
err_hctxs:
K
Keith Busch 已提交
2377
	kfree(q->queue_hw_ctx);
2378
err_percpu:
K
Keith Busch 已提交
2379
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2380 2381
err_exit:
	q->mq_ops = NULL;
2382 2383
	return ERR_PTR(-ENOMEM);
}
2384
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2385 2386 2387

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2388
	struct blk_mq_tag_set	*set = q->tag_set;
2389

2390 2391 2392 2393
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2394 2395
	wbt_exit(q);

2396 2397
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2398 2399
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2400 2401 2402
}

/* Basically redo blk_mq_init_queue with queue frozen */
2403 2404
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2405
{
2406
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2407

2408 2409
	blk_mq_sysfs_unregister(q);

2410 2411 2412 2413 2414 2415
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2416
	blk_mq_map_swqueue(q, online_mask);
2417

2418
	blk_mq_sysfs_register(q);
2419 2420
}

2421 2422 2423 2424 2425 2426 2427 2428
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2429 2430 2431 2432
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2433 2434 2435 2436 2437 2438 2439 2440 2441
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2442
	list_for_each_entry(q, &all_q_list, all_q_node)
2443 2444
		blk_mq_freeze_queue_wait(q);

2445
	list_for_each_entry(q, &all_q_list, all_q_node)
2446
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2447 2448 2449 2450

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2451
	mutex_unlock(&all_q_mutex);
2452 2453 2454 2455
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2456
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2472 2473 2474 2475
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2476 2477 2478 2479 2480 2481 2482
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2483 2484
}

2485 2486 2487 2488
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2489 2490
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2491 2492 2493 2494 2495 2496
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2497
		blk_mq_free_rq_map(set->tags[i]);
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2537 2538 2539 2540 2541 2542
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2543 2544
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2545 2546
	int ret;

B
Bart Van Assche 已提交
2547 2548
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2549 2550
	if (!set->nr_hw_queues)
		return -EINVAL;
2551
	if (!set->queue_depth)
2552 2553 2554 2555
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2556
	if (!set->ops->queue_rq)
2557 2558
		return -EINVAL;

2559 2560 2561 2562 2563
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2564

2565 2566 2567 2568 2569 2570 2571 2572 2573
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2574 2575 2576 2577 2578
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2579

K
Keith Busch 已提交
2580
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2581 2582
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2583
		return -ENOMEM;
2584

2585 2586 2587
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2588 2589 2590
	if (!set->mq_map)
		goto out_free_tags;

2591 2592 2593 2594 2595 2596 2597 2598 2599
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2600
		goto out_free_mq_map;
2601

2602 2603 2604
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2605
	return 0;
2606 2607 2608 2609 2610

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2611 2612
	kfree(set->tags);
	set->tags = NULL;
2613
	return ret;
2614 2615 2616 2617 2618 2619 2620
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2621 2622
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2623

2624 2625 2626
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2627
	kfree(set->tags);
2628
	set->tags = NULL;
2629 2630 2631
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2632 2633 2634 2635 2636 2637
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2638
	if (!set)
2639 2640
		return -EINVAL;

2641 2642 2643
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2644 2645
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2646 2647
		if (!hctx->tags)
			continue;
2648 2649 2650 2651
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2652 2653 2654 2655 2656 2657 2658 2659
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2660 2661 2662 2663 2664 2665 2666
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2667 2668 2669
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2670 2671 2672
	return ret;
}

K
Keith Busch 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

2689 2690 2691 2692
		/*
		 * Manually set the make_request_fn as blk_queue_make_request
		 * resets a lot of the queue settings.
		 */
K
Keith Busch 已提交
2693
		if (q->nr_hw_queues > 1)
2694
			q->make_request_fn = blk_mq_make_request;
K
Keith Busch 已提交
2695
		else
2696
			q->make_request_fn = blk_sq_make_request;
K
Keith Busch 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2743
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2744
				     struct blk_mq_hw_ctx *hctx,
2745 2746 2747 2748
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2749
	unsigned int nsecs;
2750 2751
	ktime_t kt;

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2770 2771 2772 2773 2774 2775 2776 2777
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2778
	kt = nsecs;
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2801 2802 2803 2804 2805
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2806 2807 2808 2809 2810 2811 2812
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2813
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2814 2815
		return true;

J
Jens Axboe 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2859 2860 2861 2862
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2863 2864 2865 2866 2867

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2878 2879
static int __init blk_mq_init(void)
{
2880 2881
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2882

2883 2884 2885
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2886 2887 2888
	return 0;
}
subsys_initcall(blk_mq_init);