blk-mq.c 70.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128
		blk_mq_run_hw_queues(q, false);
129
	}
130
}
131
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132

133
void blk_mq_freeze_queue_wait(struct request_queue *q)
134
{
135
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138

139 140 141 142 143 144 145 146
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147

148 149 150 151
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
152
void blk_freeze_queue(struct request_queue *q)
153
{
154 155 156 157 158 159 160
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
161
	blk_freeze_queue_start(q);
162 163
	blk_mq_freeze_queue_wait(q);
}
164 165 166 167 168 169 170 171 172

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
173
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174

175
void blk_mq_unfreeze_queue(struct request_queue *q)
176
{
177
	int freeze_depth;
178

179 180 181
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
182
		percpu_ref_reinit(&q->q_usage_counter);
183
		wake_up_all(&q->mq_freeze_wq);
184
	}
185
}
186
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

202
/**
203
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 205 206
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
207 208 209
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
210 211 212 213 214 215 216
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

217
	blk_mq_quiesce_queue_nowait(q);
218

219 220
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
221
			synchronize_srcu(hctx->queue_rq_srcu);
222 223 224 225 226 227 228 229
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

230 231 232 233 234 235 236 237 238
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
239 240 241
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
242
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243
	spin_unlock_irqrestore(q->queue_lock, flags);
244

245 246
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
247 248 249
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

250 251 252 253 254 255 256 257
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
258 259 260 261 262 263 264

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
265 266
}

267 268 269 270 271 272
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

273 274
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
275
{
276 277 278
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

279 280
	rq->rq_flags = 0;

281 282 283 284 285 286 287 288 289 290 291 292 293
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

294 295
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
296 297
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
298
	rq->cmd_flags = op;
299
	if (blk_queue_io_stat(data->q))
300
		rq->rq_flags |= RQF_IO_STAT;
301 302 303 304 305 306
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
307
	rq->start_time = jiffies;
308 309
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
310
	set_start_time_ns(rq);
311 312 313 314 315 316 317 318 319 320 321
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
322 323
	rq->timeout = 0;

324 325 326 327
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

328 329
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
330 331
}

332 333 334 335 336 337
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
338
	unsigned int tag;
339
	struct blk_mq_ctx *local_ctx = NULL;
340 341 342 343

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
344
		data->ctx = local_ctx = blk_mq_get_ctx(q);
345 346
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 348
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
349 350 351 352 353 354 355 356

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
357 358
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
359 360
	}

361 362
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
363 364 365 366
		if (local_ctx) {
			blk_mq_put_ctx(local_ctx);
			data->ctx = NULL;
		}
367 368
		blk_queue_exit(q);
		return NULL;
369 370
	}

371
	rq = blk_mq_rq_ctx_init(data, tag, op);
372 373
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
374
		if (e && e->type->ops.mq.prepare_request) {
375 376 377
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

378 379
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
380
		}
381 382 383
	}
	data->hctx->queued++;
	return rq;
384 385
}

386
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387
		unsigned int flags)
388
{
389
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
390
	struct request *rq;
391
	int ret;
392

393
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 395
	if (ret)
		return ERR_PTR(ret);
396

397
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398
	blk_queue_exit(q);
399

400
	if (!rq)
401
		return ERR_PTR(-EWOULDBLOCK);
402

403 404
	blk_mq_put_ctx(alloc_data.ctx);

405 406 407
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
408 409
	return rq;
}
410
EXPORT_SYMBOL(blk_mq_alloc_request);
411

412 413
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
414
{
415
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
416
	struct request *rq;
417
	unsigned int cpu;
M
Ming Lin 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

436 437 438 439
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
440 441 442 443
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
444
	}
445 446
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
447

448
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449
	blk_queue_exit(q);
450

451 452 453 454
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
455 456 457
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

458
void blk_mq_free_request(struct request *rq)
459 460
{
	struct request_queue *q = rq->q;
461 462 463 464 465
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

466
	if (rq->rq_flags & RQF_ELVPRIV) {
467 468 469 470 471 472 473
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
474

475
	ctx->rq_completed[rq_is_sync(rq)]++;
476
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
477
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
478

479 480 481
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
482
	wbt_done(q->rq_wb, &rq->issue_stat);
483

484
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
485
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
486 487 488
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
489
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
490
	blk_mq_sched_restart(hctx);
491
	blk_queue_exit(q);
492
}
J
Jens Axboe 已提交
493
EXPORT_SYMBOL_GPL(blk_mq_free_request);
494

495
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
496
{
M
Ming Lei 已提交
497 498
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
499
	if (rq->end_io) {
J
Jens Axboe 已提交
500
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
501
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
502 503 504
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
505
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
506
	}
507
}
508
EXPORT_SYMBOL(__blk_mq_end_request);
509

510
void blk_mq_end_request(struct request *rq, blk_status_t error)
511 512 513
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
514
	__blk_mq_end_request(rq, error);
515
}
516
EXPORT_SYMBOL(blk_mq_end_request);
517

518
static void __blk_mq_complete_request_remote(void *data)
519
{
520
	struct request *rq = data;
521

522
	rq->q->softirq_done_fn(rq);
523 524
}

525
static void __blk_mq_complete_request(struct request *rq)
526 527
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
528
	bool shared = false;
529 530
	int cpu;

531 532 533 534 535 536 537
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
538
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
539 540 541
		rq->q->softirq_done_fn(rq);
		return;
	}
542 543

	cpu = get_cpu();
C
Christoph Hellwig 已提交
544 545 546 547
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
548
		rq->csd.func = __blk_mq_complete_request_remote;
549 550
		rq->csd.info = rq;
		rq->csd.flags = 0;
551
		smp_call_function_single_async(ctx->cpu, &rq->csd);
552
	} else {
553
		rq->q->softirq_done_fn(rq);
554
	}
555 556
	put_cpu();
}
557 558 559 560 561 562 563 564 565

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
566
void blk_mq_complete_request(struct request *rq)
567
{
568 569 570
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
571
		return;
572
	if (!blk_mark_rq_complete(rq))
573
		__blk_mq_complete_request(rq);
574 575
}
EXPORT_SYMBOL(blk_mq_complete_request);
576

577 578 579 580 581 582
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

583
void blk_mq_start_request(struct request *rq)
584 585 586
{
	struct request_queue *q = rq->q;

587 588
	blk_mq_sched_started_request(rq);

589 590
	trace_block_rq_issue(q, rq);

591
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
592
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
593
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
594
		wbt_issue(q->rq_wb, &rq->issue_stat);
595 596
	}

597
	blk_add_timer(rq);
598

599 600 601 602 603 604
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

605 606 607 608 609 610
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
611 612 613 614
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
615 616 617 618 619 620 621 622 623

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
624
}
625
EXPORT_SYMBOL(blk_mq_start_request);
626

627 628
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
629
 * flag isn't set yet, so there may be race with timeout handler,
630 631 632 633 634 635
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
636
static void __blk_mq_requeue_request(struct request *rq)
637 638 639 640
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
641
	wbt_requeue(q->rq_wb, &rq->issue_stat);
642
	blk_mq_sched_requeue_request(rq);
643

644 645 646 647
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
648 649
}

650
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
651 652 653 654
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
655
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
656 657 658
}
EXPORT_SYMBOL(blk_mq_requeue_request);

659 660 661
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
662
		container_of(work, struct request_queue, requeue_work.work);
663 664 665
	LIST_HEAD(rq_list);
	struct request *rq, *next;

666
	spin_lock_irq(&q->requeue_lock);
667
	list_splice_init(&q->requeue_list, &rq_list);
668
	spin_unlock_irq(&q->requeue_lock);
669 670

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
671
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
672 673
			continue;

674
		rq->rq_flags &= ~RQF_SOFTBARRIER;
675
		list_del_init(&rq->queuelist);
676
		blk_mq_sched_insert_request(rq, true, false, false, true);
677 678 679 680 681
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
682
		blk_mq_sched_insert_request(rq, false, false, false, true);
683 684
	}

685
	blk_mq_run_hw_queues(q, false);
686 687
}

688 689
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
690 691 692 693 694 695 696 697
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
698
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
699 700 701

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
702
		rq->rq_flags |= RQF_SOFTBARRIER;
703 704 705 706 707
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
708 709 710

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
711 712 713 714 715
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
716
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
717 718 719
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

720 721 722
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
723 724
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
725 726 727
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

728 729
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
730 731
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
732
		return tags->rqs[tag];
733
	}
734 735

	return NULL;
736 737 738
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

739
struct blk_mq_timeout_data {
740 741
	unsigned long next;
	unsigned int next_set;
742 743
};

744
void blk_mq_rq_timed_out(struct request *req, bool reserved)
745
{
J
Jens Axboe 已提交
746
	const struct blk_mq_ops *ops = req->q->mq_ops;
747
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
748 749 750 751 752 753 754

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
755
	 * both flags will get cleared. So check here again, and ignore
756 757
	 * a timeout event with a request that isn't active.
	 */
758 759
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
760

761
	if (ops->timeout)
762
		ret = ops->timeout(req, reserved);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
778
}
779

780 781 782 783
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
784

785
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
786
		return;
787

788 789 790 791 792 793 794 795 796 797 798 799 800
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
801 802
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
803
			blk_mq_rq_timed_out(rq, reserved);
804 805 806 807
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
808 809
}

810
static void blk_mq_timeout_work(struct work_struct *work)
811
{
812 813
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
814 815 816 817 818
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
819

820 821 822 823 824 825 826 827 828
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
829
	 * blk_freeze_queue_start, and the moment the last request is
830 831 832 833
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
834 835
		return;

836
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
837

838 839 840
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
841
	} else {
842 843
		struct blk_mq_hw_ctx *hctx;

844 845 846 847 848
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
849
	}
850
	blk_queue_exit(q);
851 852
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

871 872 873 874
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
875
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
876
{
877 878 879 880
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
881

882
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
883
}
884
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
885

886 887 888 889
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
890

891
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
892 893
}

894 895
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
896 897 898 899 900 901 902
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

903 904
	might_sleep_if(wait);

905 906
	if (rq->tag != -1)
		goto done;
907

908 909 910
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

911 912
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
913 914 915 916
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
917 918 919
		data.hctx->tags->rqs[rq->tag] = rq;
	}

920 921 922 923
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
924 925
}

926 927
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
928 929 930 931 932 933 934 935 936 937
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

982
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
983 984 985 986 987 988
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

989
	list_del(&wait->entry);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1020
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1021
{
1022
	struct blk_mq_hw_ctx *hctx;
1023
	struct request *rq;
1024
	int errors, queued;
1025

1026 1027 1028
	if (list_empty(list))
		return false;

1029 1030 1031
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1032
	errors = queued = 0;
1033
	do {
1034
		struct blk_mq_queue_data bd;
1035
		blk_status_t ret;
1036

1037
		rq = list_first_entry(list, struct request, queuelist);
1038 1039 1040
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1041 1042

			/*
1043 1044
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1045
			 */
1046 1047 1048 1049 1050 1051 1052 1053 1054
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1055
				break;
1056
		}
1057

1058 1059
		list_del_init(&rq->queuelist);

1060
		bd.rq = rq;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1074 1075

		ret = q->mq_ops->queue_rq(hctx, &bd);
1076
		if (ret == BLK_STS_RESOURCE) {
1077
			blk_mq_put_driver_tag_hctx(hctx, rq);
1078
			list_add(&rq->queuelist, list);
1079
			__blk_mq_requeue_request(rq);
1080
			break;
1081 1082 1083
		}

		if (unlikely(ret != BLK_STS_OK)) {
1084
			errors++;
1085
			blk_mq_end_request(rq, BLK_STS_IOERR);
1086
			continue;
1087 1088
		}

1089
		queued++;
1090
	} while (!list_empty(list));
1091

1092
	hctx->dispatched[queued_to_index(queued)]++;
1093 1094 1095 1096 1097

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1098
	if (!list_empty(list)) {
1099
		/*
1100 1101
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1102 1103 1104 1105
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1106
		spin_lock(&hctx->lock);
1107
		list_splice_init(list, &hctx->dispatch);
1108
		spin_unlock(&hctx->lock);
1109

1110
		/*
1111 1112 1113
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1114
		 *
1115 1116 1117 1118
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1119
		 *
1120 1121 1122 1123 1124 1125 1126
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1127
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1128
		 *   and dm-rq.
1129
		 */
1130 1131
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1132
			blk_mq_run_hw_queue(hctx, true);
1133
	}
1134

1135
	return (queued + errors) != 0;
1136 1137
}

1138 1139 1140 1141
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1142 1143 1144 1145
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1146 1147 1148
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1149 1150 1151 1152 1153 1154
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1155 1156
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1157
		blk_mq_sched_dispatch_requests(hctx);
1158 1159
		rcu_read_unlock();
	} else {
1160 1161
		might_sleep();

1162
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1163
		blk_mq_sched_dispatch_requests(hctx);
1164
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1165 1166 1167
	}
}

1168 1169 1170 1171 1172 1173 1174 1175
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1176 1177
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1178 1179

	if (--hctx->next_cpu_batch <= 0) {
1180
		int next_cpu;
1181 1182 1183 1184 1185 1186 1187 1188 1189

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1190
	return hctx->next_cpu;
1191 1192
}

1193 1194
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1195
{
1196 1197 1198 1199
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1200 1201
		return;

1202
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1203 1204
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1205
			__blk_mq_run_hw_queue(hctx);
1206
			put_cpu();
1207 1208
			return;
		}
1209

1210
		put_cpu();
1211
	}
1212

1213 1214 1215
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1227
}
O
Omar Sandoval 已提交
1228
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1229

1230
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1231 1232 1233 1234 1235
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1236
		if (!blk_mq_hctx_has_pending(hctx) ||
1237
		    blk_mq_hctx_stopped(hctx))
1238 1239
			continue;

1240
		blk_mq_run_hw_queue(hctx, async);
1241 1242
	}
}
1243
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1265 1266 1267
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1268
 * BLK_STS_RESOURCE is usually returned.
1269 1270 1271 1272 1273
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1274 1275
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1276
	cancel_delayed_work(&hctx->run_work);
1277

1278
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1279
}
1280
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1281

1282 1283 1284
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1285
 * BLK_STS_RESOURCE is usually returned.
1286 1287 1288 1289 1290
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1291 1292
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1293 1294 1295 1296 1297
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1298 1299 1300
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1301 1302 1303
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1304

1305
	blk_mq_run_hw_queue(hctx, false);
1306 1307 1308
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1329
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1330 1331 1332 1333
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1334 1335
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1336 1337 1338
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1339
static void blk_mq_run_work_fn(struct work_struct *work)
1340 1341 1342
{
	struct blk_mq_hw_ctx *hctx;

1343
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1344

1345 1346 1347 1348 1349 1350 1351 1352
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1353

1354 1355 1356
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1357 1358 1359 1360

	__blk_mq_run_hw_queue(hctx);
}

1361 1362 1363

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1364
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1365
		return;
1366

1367 1368 1369 1370 1371
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1372
	blk_mq_stop_hw_queue(hctx);
1373 1374 1375 1376
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1377 1378 1379
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1380 1381 1382
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1383
{
J
Jens Axboe 已提交
1384 1385
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1386 1387
	lockdep_assert_held(&ctx->lock);

1388 1389
	trace_block_rq_insert(hctx->queue, rq);

1390 1391 1392 1393
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1394
}
1395

1396 1397
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1398 1399 1400
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1401 1402
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1403
	__blk_mq_insert_req_list(hctx, rq, at_head);
1404 1405 1406
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
void blk_mq_request_bypass_insert(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, false);
}

1423 1424
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1436
		BUG_ON(rq->mq_ctx != ctx);
1437
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1438
		__blk_mq_insert_req_list(hctx, rq, false);
1439
	}
1440
	blk_mq_hctx_mark_pending(hctx, ctx);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1477 1478 1479 1480
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1497 1498 1499
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1500 1501 1502 1503 1504
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1505
	blk_init_request_from_bio(rq, bio);
1506

1507
	blk_account_io_start(rq, true);
1508 1509
}

1510 1511 1512 1513 1514 1515 1516
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1517
}
1518

1519 1520
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1521 1522 1523 1524
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1525 1526
}

M
Ming Lei 已提交
1527 1528 1529
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1530 1531 1532 1533
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1534
		.last = true,
1535
	};
1536
	blk_qc_t new_cookie;
1537
	blk_status_t ret;
M
Ming Lei 已提交
1538 1539
	bool run_queue = true;

1540 1541
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1542 1543 1544
		run_queue = false;
		goto insert;
	}
1545

1546
	if (q->elevator)
1547 1548
		goto insert;

M
Ming Lei 已提交
1549
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1550 1551 1552 1553
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1554 1555 1556 1557 1558 1559
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1560 1561
	switch (ret) {
	case BLK_STS_OK:
1562
		*cookie = new_cookie;
1563
		return;
1564 1565 1566 1567
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1568
		*cookie = BLK_QC_T_NONE;
1569
		blk_mq_end_request(rq, ret);
1570
		return;
1571
	}
1572

1573
insert:
M
Ming Lei 已提交
1574
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1575 1576
}

1577 1578 1579 1580 1581
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1582
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1583 1584
		rcu_read_unlock();
	} else {
1585 1586 1587 1588
		unsigned int srcu_idx;

		might_sleep();

1589
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1590
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1591
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1592 1593 1594
	}
}

1595
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1596
{
1597
	const int is_sync = op_is_sync(bio->bi_opf);
1598
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1599
	struct blk_mq_alloc_data data = { .flags = 0 };
1600
	struct request *rq;
1601
	unsigned int request_count = 0;
1602
	struct blk_plug *plug;
1603
	struct request *same_queue_rq = NULL;
1604
	blk_qc_t cookie;
J
Jens Axboe 已提交
1605
	unsigned int wb_acct;
1606 1607 1608

	blk_queue_bounce(q, &bio);

1609
	blk_queue_split(q, &bio);
1610

1611
	if (!bio_integrity_prep(bio))
1612
		return BLK_QC_T_NONE;
1613

1614 1615 1616
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1617

1618 1619 1620
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1621 1622
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1623 1624
	trace_block_getrq(q, bio, bio->bi_opf);

1625
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1626 1627
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1628 1629
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1630
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1631 1632 1633
	}

	wbt_track(&rq->issue_stat, wb_acct);
1634

1635
	cookie = request_to_qc_t(data.hctx, rq);
1636

1637
	plug = current->plug;
1638
	if (unlikely(is_flush_fua)) {
1639
		blk_mq_put_ctx(data.ctx);
1640
		blk_mq_bio_to_request(rq, bio);
1641 1642 1643
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1644
		} else {
1645 1646
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1647
		}
1648
	} else if (plug && q->nr_hw_queues == 1) {
1649 1650
		struct request *last = NULL;

1651
		blk_mq_put_ctx(data.ctx);
1652
		blk_mq_bio_to_request(rq, bio);
1653 1654 1655 1656 1657 1658 1659

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1660 1661 1662
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1663
		if (!request_count)
1664
			trace_block_plug(q);
1665 1666
		else
			last = list_entry_rq(plug->mq_list.prev);
1667

1668 1669
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1670 1671
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1672
		}
1673

1674
		list_add_tail(&rq->queuelist, &plug->mq_list);
1675
	} else if (plug && !blk_queue_nomerges(q)) {
1676
		blk_mq_bio_to_request(rq, bio);
1677 1678

		/*
1679
		 * We do limited plugging. If the bio can be merged, do that.
1680 1681
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1682 1683
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1684
		 */
1685 1686 1687 1688 1689 1690
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1691 1692
		blk_mq_put_ctx(data.ctx);

1693 1694 1695
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1696 1697
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1698
		}
1699
	} else if (q->nr_hw_queues > 1 && is_sync) {
1700
		blk_mq_put_ctx(data.ctx);
1701 1702
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1703
	} else if (q->elevator) {
1704
		blk_mq_put_ctx(data.ctx);
1705
		blk_mq_bio_to_request(rq, bio);
1706
		blk_mq_sched_insert_request(rq, false, true, true, true);
1707
	} else {
1708
		blk_mq_put_ctx(data.ctx);
1709 1710
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1711
		blk_mq_run_hw_queue(data.hctx, true);
1712
	}
1713

1714
	return cookie;
1715 1716
}

1717 1718
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1719
{
1720
	struct page *page;
1721

1722
	if (tags->rqs && set->ops->exit_request) {
1723
		int i;
1724

1725
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1726 1727 1728
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1729
				continue;
1730
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1731
			tags->static_rqs[i] = NULL;
1732
		}
1733 1734
	}

1735 1736
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1737
		list_del_init(&page->lru);
1738 1739 1740 1741 1742
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1743 1744
		__free_pages(page, page->private);
	}
1745
}
1746

1747 1748
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1749
	kfree(tags->rqs);
1750
	tags->rqs = NULL;
J
Jens Axboe 已提交
1751 1752
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1753

1754
	blk_mq_free_tags(tags);
1755 1756
}

1757 1758 1759 1760
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1761
{
1762
	struct blk_mq_tags *tags;
1763
	int node;
1764

1765 1766 1767 1768 1769
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1770
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1771 1772
	if (!tags)
		return NULL;
1773

1774
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1775
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1776
				 node);
1777 1778 1779 1780
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1781

J
Jens Axboe 已提交
1782 1783
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1784
				 node);
J
Jens Axboe 已提交
1785 1786 1787 1788 1789 1790
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1804 1805 1806 1807 1808
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1809 1810 1811

	INIT_LIST_HEAD(&tags->page_list);

1812 1813 1814 1815
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1816
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1817
				cache_line_size());
1818
	left = rq_size * depth;
1819

1820
	for (i = 0; i < depth; ) {
1821 1822 1823 1824 1825
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1826
		while (this_order && left < order_to_size(this_order - 1))
1827 1828 1829
			this_order--;

		do {
1830
			page = alloc_pages_node(node,
1831
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1832
				this_order);
1833 1834 1835 1836 1837 1838 1839 1840 1841
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1842
			goto fail;
1843 1844

		page->private = this_order;
1845
		list_add_tail(&page->lru, &tags->page_list);
1846 1847

		p = page_address(page);
1848 1849 1850 1851
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1852
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1853
		entries_per_page = order_to_size(this_order) / rq_size;
1854
		to_do = min(entries_per_page, depth - i);
1855 1856
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1857 1858 1859
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1860
			if (set->ops->init_request) {
1861
				if (set->ops->init_request(set, rq, hctx_idx,
1862
						node)) {
J
Jens Axboe 已提交
1863
					tags->static_rqs[i] = NULL;
1864
					goto fail;
1865
				}
1866 1867
			}

1868 1869 1870 1871
			p += rq_size;
			i++;
		}
	}
1872
	return 0;
1873

1874
fail:
1875 1876
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1877 1878
}

J
Jens Axboe 已提交
1879 1880 1881 1882 1883
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1884
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1885
{
1886
	struct blk_mq_hw_ctx *hctx;
1887 1888 1889
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1890
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1891
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1892 1893 1894 1895 1896 1897 1898 1899 1900

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1901
		return 0;
1902

J
Jens Axboe 已提交
1903 1904 1905
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1906 1907

	blk_mq_run_hw_queue(hctx, true);
1908
	return 0;
1909 1910
}

1911
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1912
{
1913 1914
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1915 1916
}

1917
/* hctx->ctxs will be freed in queue's release handler */
1918 1919 1920 1921
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1922 1923
	blk_mq_debugfs_unregister_hctx(hctx);

1924 1925
	blk_mq_tag_idle(hctx);

1926
	if (set->ops->exit_request)
1927
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1928

1929 1930
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1931 1932 1933
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1934
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1935
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1936

1937
	blk_mq_remove_cpuhp(hctx);
1938
	blk_free_flush_queue(hctx->fq);
1939
	sbitmap_free(&hctx->ctx_map);
1940 1941
}

M
Ming Lei 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1951
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1952 1953 1954
	}
}

1955 1956 1957
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1958
{
1959 1960 1961 1962 1963 1964
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1965
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1966 1967 1968
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
1969
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1970

1971
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1972 1973

	hctx->tags = set->tags[hctx_idx];
1974 1975

	/*
1976 1977
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1978
	 */
1979 1980 1981 1982
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1983

1984 1985
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1986
		goto free_ctxs;
1987

1988
	hctx->nr_ctx = 0;
1989

1990 1991 1992
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1993

1994 1995 1996
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1997 1998
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1999
		goto sched_exit_hctx;
2000

2001
	if (set->ops->init_request &&
2002 2003
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2004
		goto free_fq;
2005

2006
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2007
		init_srcu_struct(hctx->queue_rq_srcu);
2008

2009 2010
	blk_mq_debugfs_register_hctx(q, hctx);

2011
	return 0;
2012

2013 2014
 free_fq:
	kfree(hctx->fq);
2015 2016
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2017 2018 2019
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2020
 free_bitmap:
2021
	sbitmap_free(&hctx->ctx_map);
2022 2023 2024
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2025
	blk_mq_remove_cpuhp(hctx);
2026 2027
	return -1;
}
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2043 2044
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2045 2046
			continue;

C
Christoph Hellwig 已提交
2047
		hctx = blk_mq_map_queue(q, i);
2048

2049 2050 2051 2052 2053
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2054
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2055 2056 2057
	}
}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2080 2081 2082 2083 2084
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2085 2086
}

2087
static void blk_mq_map_swqueue(struct request_queue *q)
2088
{
2089
	unsigned int i, hctx_idx;
2090 2091
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2092
	struct blk_mq_tag_set *set = q->tag_set;
2093

2094 2095 2096 2097 2098
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2099
	queue_for_each_hw_ctx(q, hctx, i) {
2100
		cpumask_clear(hctx->cpumask);
2101 2102 2103 2104
		hctx->nr_ctx = 0;
	}

	/*
2105 2106 2107
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2108
	 */
2109
	for_each_present_cpu(i) {
2110 2111
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2112 2113
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2114 2115 2116 2117 2118 2119
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2120
			q->mq_map[i] = 0;
2121 2122
		}

2123
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2124
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2125

2126
		cpumask_set_cpu(i, hctx->cpumask);
2127 2128 2129
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2130

2131 2132
	mutex_unlock(&q->sysfs_lock);

2133
	queue_for_each_hw_ctx(q, hctx, i) {
2134
		/*
2135 2136
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2137 2138
		 */
		if (!hctx->nr_ctx) {
2139 2140 2141 2142
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2143 2144 2145
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2146
			hctx->tags = NULL;
2147 2148 2149
			continue;
		}

M
Ming Lei 已提交
2150 2151 2152
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2153 2154 2155 2156 2157
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2158
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2159

2160 2161 2162
		/*
		 * Initialize batch roundrobin counts
		 */
2163 2164 2165
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2166 2167
}

2168 2169 2170 2171
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2172
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2173 2174 2175 2176
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2177
	queue_for_each_hw_ctx(q, hctx, i) {
2178 2179 2180
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2181
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2182 2183 2184
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2185
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2186
		}
2187 2188 2189
	}
}

2190 2191
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2192 2193
{
	struct request_queue *q;
2194

2195 2196
	lockdep_assert_held(&set->tag_list_lock);

2197 2198
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2199
		queue_set_hctx_shared(q, shared);
2200 2201 2202 2203 2204 2205 2206 2207 2208
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2209 2210
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2211 2212 2213 2214 2215 2216
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2217
	mutex_unlock(&set->tag_list_lock);
2218 2219

	synchronize_rcu();
2220 2221 2222 2223 2224 2225 2226 2227
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2228 2229 2230 2231 2232 2233 2234 2235 2236

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2237
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2238

2239 2240 2241
	mutex_unlock(&set->tag_list_lock);
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2254 2255 2256
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2257
		kobject_put(&hctx->kobj);
2258
	}
2259

2260 2261
	q->mq_map = NULL;

2262 2263
	kfree(q->queue_hw_ctx);

2264 2265 2266 2267 2268 2269
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2270 2271 2272
	free_percpu(q->queue_ctx);
}

2273
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2303 2304
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2305
{
K
Keith Busch 已提交
2306 2307
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2308

K
Keith Busch 已提交
2309
	blk_mq_sysfs_unregister(q);
2310
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2311
		int node;
2312

K
Keith Busch 已提交
2313 2314 2315 2316
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2317
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2318
					GFP_KERNEL, node);
2319
		if (!hctxs[i])
K
Keith Busch 已提交
2320
			break;
2321

2322
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2323 2324 2325 2326 2327
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2328

2329
		atomic_set(&hctxs[i]->nr_active, 0);
2330
		hctxs[i]->numa_node = node;
2331
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2332 2333 2334 2335 2336 2337 2338 2339

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2340
	}
K
Keith Busch 已提交
2341 2342 2343 2344
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2345 2346
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2360 2361 2362
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2363
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2364 2365
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2366 2367 2368
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2369 2370
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2371
		goto err_exit;
K
Keith Busch 已提交
2372

2373 2374 2375
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2376 2377 2378 2379 2380
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2381
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2382 2383 2384 2385

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2386

2387
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2388
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2389 2390 2391

	q->nr_queues = nr_cpu_ids;

2392
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2393

2394 2395 2396
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2397 2398
	q->sg_reserved_size = INT_MAX;

2399
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2400 2401 2402
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2403
	blk_queue_make_request(q, blk_mq_make_request);
2404

2405 2406 2407 2408 2409
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2410 2411 2412 2413 2414
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2415 2416
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2417

2418
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2419
	blk_mq_add_queue_tag_set(set, q);
2420
	blk_mq_map_swqueue(q);
2421

2422 2423 2424 2425 2426 2427 2428 2429
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2430
	return q;
2431

2432
err_hctxs:
K
Keith Busch 已提交
2433
	kfree(q->queue_hw_ctx);
2434
err_percpu:
K
Keith Busch 已提交
2435
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2436 2437
err_exit:
	q->mq_ops = NULL;
2438 2439
	return ERR_PTR(-ENOMEM);
}
2440
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2441 2442 2443

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2444
	struct blk_mq_tag_set	*set = q->tag_set;
2445

2446
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2447
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2448 2449 2450
}

/* Basically redo blk_mq_init_queue with queue frozen */
2451
static void blk_mq_queue_reinit(struct request_queue *q)
2452
{
2453
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2454

2455
	blk_mq_debugfs_unregister_hctxs(q);
2456 2457
	blk_mq_sysfs_unregister(q);

2458 2459 2460 2461 2462 2463
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2464
	blk_mq_map_swqueue(q);
2465

2466
	blk_mq_sysfs_register(q);
2467
	blk_mq_debugfs_register_hctxs(q);
2468 2469
}

2470 2471 2472 2473
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2474 2475
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2476 2477 2478 2479 2480 2481
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2482
		blk_mq_free_rq_map(set->tags[i]);
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2522 2523 2524 2525 2526 2527 2528 2529
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2530 2531 2532 2533 2534 2535
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2536 2537
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2538 2539
	int ret;

B
Bart Van Assche 已提交
2540 2541
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2542 2543
	if (!set->nr_hw_queues)
		return -EINVAL;
2544
	if (!set->queue_depth)
2545 2546 2547 2548
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2549
	if (!set->ops->queue_rq)
2550 2551
		return -EINVAL;

2552 2553 2554 2555 2556
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2557

2558 2559 2560 2561 2562 2563 2564 2565 2566
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2567 2568 2569 2570 2571
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2572

K
Keith Busch 已提交
2573
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2574 2575
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2576
		return -ENOMEM;
2577

2578 2579 2580
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2581 2582 2583
	if (!set->mq_map)
		goto out_free_tags;

2584
	ret = blk_mq_update_queue_map(set);
2585 2586 2587 2588 2589
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2590
		goto out_free_mq_map;
2591

2592 2593 2594
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2595
	return 0;
2596 2597 2598 2599 2600

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2601 2602
	kfree(set->tags);
	set->tags = NULL;
2603
	return ret;
2604 2605 2606 2607 2608 2609 2610
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2611 2612
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2613

2614 2615 2616
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2617
	kfree(set->tags);
2618
	set->tags = NULL;
2619 2620 2621
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2622 2623 2624 2625 2626 2627
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2628
	if (!set)
2629 2630
		return -EINVAL;

2631 2632
	blk_mq_freeze_queue(q);

2633 2634
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2635 2636
		if (!hctx->tags)
			continue;
2637 2638 2639 2640
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2641 2642 2643 2644 2645 2646 2647 2648
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2649 2650 2651 2652 2653 2654 2655
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2656 2657
	blk_mq_unfreeze_queue(q);

2658 2659 2660
	return ret;
}

2661 2662
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2663 2664 2665
{
	struct request_queue *q;

2666 2667
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2677
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2678 2679
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2680
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2681 2682 2683 2684 2685
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2686 2687 2688 2689 2690 2691 2692

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2693 2694
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2721
	int bucket;
2722

2723 2724 2725 2726
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2727 2728
}

2729 2730 2731 2732 2733
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2734
	int bucket;
2735 2736 2737 2738 2739

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2740
	if (!blk_poll_stats_enable(q))
2741 2742 2743 2744 2745 2746 2747 2748
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2749 2750
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2751
	 */
2752 2753 2754 2755 2756 2757
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2758 2759 2760 2761

	return ret;
}

2762
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2763
				     struct blk_mq_hw_ctx *hctx,
2764 2765 2766 2767
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2768
	unsigned int nsecs;
2769 2770
	ktime_t kt;

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2789 2790 2791 2792 2793 2794 2795 2796
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2797
	kt = nsecs;
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2820 2821 2822 2823 2824
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2825 2826 2827 2828 2829 2830 2831
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2832
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2833 2834
		return true;

J
Jens Axboe 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2878 2879
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2880
	else {
2881
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2882 2883 2884 2885 2886 2887 2888 2889 2890
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2891 2892 2893 2894 2895

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2896 2897
static int __init blk_mq_init(void)
{
2898 2899
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2900 2901 2902
	return 0;
}
subsys_initcall(blk_mq_init);