blk-mq.c 63.2 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35 36 37 38 39 40 41 42 43

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
44
	return sbitmap_any_bit_set(&hctx->ctx_map);
45 46
}

47 48 49 50 51 52
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
53 54
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 56 57 58 59
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
60
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 62
}

63
void blk_mq_freeze_queue_start(struct request_queue *q)
64
{
65
	int freeze_depth;
66

67 68
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
69
		percpu_ref_kill(&q->q_usage_counter);
70
		blk_mq_run_hw_queues(q, false);
71
	}
72
}
73
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74 75 76

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
77
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 79
}

80 81 82 83
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
84
void blk_freeze_queue(struct request_queue *q)
85
{
86 87 88 89 90 91 92
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
93 94 95
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
96 97 98 99 100 101 102 103 104

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
105
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106

107
void blk_mq_unfreeze_queue(struct request_queue *q)
108
{
109
	int freeze_depth;
110

111 112 113
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
114
		percpu_ref_reinit(&q->q_usage_counter);
115
		wake_up_all(&q->mq_freeze_wq);
116
	}
117
}
118
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

147 148 149 150 151 152 153 154
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
155 156 157 158 159 160 161

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
162 163
}

164 165 166 167 168 169
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

170
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171
			       struct request *rq, unsigned int op)
172
{
173 174 175
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
176
	rq->mq_ctx = ctx;
177
	rq->cmd_flags = op;
178 179
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
180 181 182 183 184 185
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
186
	rq->start_time = jiffies;
187 188
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
189
	set_start_time_ns(rq);
190 191 192 193 194 195 196 197 198 199
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

200 201
	rq->cmd = rq->__cmd;

202 203 204 205 206 207
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
208 209
	rq->timeout = 0;

210 211 212 213
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

214
	ctx->rq_dispatched[op_is_sync(op)]++;
215 216
}

217
static struct request *
218
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
219 220 221 222
{
	struct request *rq;
	unsigned int tag;

223
	tag = blk_mq_get_tag(data);
224
	if (tag != BLK_MQ_TAG_FAIL) {
225
		rq = data->hctx->tags->rqs[tag];
226

227
		if (blk_mq_tag_busy(data->hctx)) {
228
			rq->rq_flags = RQF_MQ_INFLIGHT;
229
			atomic_inc(&data->hctx->nr_active);
230 231 232
		}

		rq->tag = tag;
233
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234 235 236 237 238 239
		return rq;
	}

	return NULL;
}

240 241
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
242
{
243 244
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
245
	struct request *rq;
246
	struct blk_mq_alloc_data alloc_data;
247
	int ret;
248

249
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250 251
	if (ret)
		return ERR_PTR(ret);
252

253
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
254
	hctx = blk_mq_map_queue(q, ctx->cpu);
255
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256
	rq = __blk_mq_alloc_request(&alloc_data, rw);
257
	blk_mq_put_ctx(ctx);
258

K
Keith Busch 已提交
259
	if (!rq) {
260
		blk_queue_exit(q);
261
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
262
	}
263 264 265 266

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
267 268
	return rq;
}
269
EXPORT_SYMBOL(blk_mq_alloc_request);
270

M
Ming Lin 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

296 297 298 299
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
300
	hctx = q->queue_hw_ctx[hctx_idx];
301 302 303 304
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
305 306 307
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
309
	if (!rq) {
310 311
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
312 313 314
	}

	return rq;
315 316 317 318

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
319 320 321
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

322 323 324 325 326 327
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

328
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
329
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
330 331

	wbt_done(q->rq_wb, &rq->issue_stat);
332
	rq->rq_flags = 0;
333

334
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
336
	blk_mq_put_tag(hctx, ctx, tag);
337
	blk_queue_exit(q);
338 339
}

340
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
341 342 343 344 345
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
346 347 348 349 350 351

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
C
Christoph Hellwig 已提交
352
	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
353
}
J
Jens Axboe 已提交
354
EXPORT_SYMBOL_GPL(blk_mq_free_request);
355

356
inline void __blk_mq_end_request(struct request *rq, int error)
357
{
M
Ming Lei 已提交
358 359
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
360
	if (rq->end_io) {
J
Jens Axboe 已提交
361
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
362
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
363 364 365
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
366
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
367
	}
368
}
369
EXPORT_SYMBOL(__blk_mq_end_request);
370

371
void blk_mq_end_request(struct request *rq, int error)
372 373 374
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
375
	__blk_mq_end_request(rq, error);
376
}
377
EXPORT_SYMBOL(blk_mq_end_request);
378

379
static void __blk_mq_complete_request_remote(void *data)
380
{
381
	struct request *rq = data;
382

383
	rq->q->softirq_done_fn(rq);
384 385
}

386
static void blk_mq_ipi_complete_request(struct request *rq)
387 388
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
389
	bool shared = false;
390 391
	int cpu;

C
Christoph Hellwig 已提交
392
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
393 394 395
		rq->q->softirq_done_fn(rq);
		return;
	}
396 397

	cpu = get_cpu();
C
Christoph Hellwig 已提交
398 399 400 401
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
402
		rq->csd.func = __blk_mq_complete_request_remote;
403 404
		rq->csd.info = rq;
		rq->csd.flags = 0;
405
		smp_call_function_single_async(ctx->cpu, &rq->csd);
406
	} else {
407
		rq->q->softirq_done_fn(rq);
408
	}
409 410
	put_cpu();
}
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

427
static void __blk_mq_complete_request(struct request *rq)
428 429 430
{
	struct request_queue *q = rq->q;

431 432
	blk_mq_stat_add(rq);

433
	if (!q->softirq_done_fn)
434
		blk_mq_end_request(rq, rq->errors);
435 436 437 438
	else
		blk_mq_ipi_complete_request(rq);
}

439 440 441 442 443 444 445 446
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
447
void blk_mq_complete_request(struct request *rq, int error)
448
{
449 450 451
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
452
		return;
453 454
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
455
		__blk_mq_complete_request(rq);
456
	}
457 458
}
EXPORT_SYMBOL(blk_mq_complete_request);
459

460 461 462 463 464 465
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

466
void blk_mq_start_request(struct request *rq)
467 468 469 470 471
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
472
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
473 474
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
475

476 477 478
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
479
		wbt_issue(q->rq_wb, &rq->issue_stat);
480 481
	}

482
	blk_add_timer(rq);
483

484 485 486 487 488 489
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

490 491 492 493 494 495
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
496 497 498 499
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
500 501 502 503 504 505 506 507 508

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
509
}
510
EXPORT_SYMBOL(blk_mq_start_request);
511

512
static void __blk_mq_requeue_request(struct request *rq)
513 514 515 516
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
517
	wbt_requeue(q->rq_wb, &rq->issue_stat);
518

519 520 521 522
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
523 524
}

525
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
526 527 528 529
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
530
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
531 532 533
}
EXPORT_SYMBOL(blk_mq_requeue_request);

534 535 536
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
537
		container_of(work, struct request_queue, requeue_work.work);
538 539 540 541 542 543 544 545 546
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
547
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
548 549
			continue;

550
		rq->rq_flags &= ~RQF_SOFTBARRIER;
551 552 553 554 555 556 557 558 559 560
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

561
	blk_mq_run_hw_queues(q, false);
562 563
}

564 565
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
566 567 568 569 570 571 572 573
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
574
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
575 576 577

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
578
		rq->rq_flags |= RQF_SOFTBARRIER;
579 580 581 582 583
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
584 585 586

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
587 588 589 590 591
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
592
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
593 594 595
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

596 597 598 599 600 601 602 603
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

624 625
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
626 627
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
628
		return tags->rqs[tag];
629
	}
630 631

	return NULL;
632 633 634
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

635
struct blk_mq_timeout_data {
636 637
	unsigned long next;
	unsigned int next_set;
638 639
};

640
void blk_mq_rq_timed_out(struct request *req, bool reserved)
641
{
642 643
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
644 645 646 647 648 649 650 651 652 653

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
654 655
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
656

657
	if (ops->timeout)
658
		ret = ops->timeout(req, reserved);
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
674
}
675

676 677 678 679
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
680

681 682 683 684 685
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
686 687 688 689
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
690
		return;
691
	}
692

693 694
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
695
			blk_mq_rq_timed_out(rq, reserved);
696 697 698 699
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
700 701
}

702
static void blk_mq_timeout_work(struct work_struct *work)
703
{
704 705
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
706 707 708 709 710
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
726 727
		return;

728
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
729

730 731 732
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
733
	} else {
734 735
		struct blk_mq_hw_ctx *hctx;

736 737 738 739 740
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
741
	}
742
	blk_queue_exit(q);
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

802 803 804 805 806 807
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
808 809 810 811
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
812

813
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
814 815
}

816 817 818 819
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
820

821
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
822 823
}

824 825 826 827 828 829
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
830
static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
831 832 833 834
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
835 836
	LIST_HEAD(driver_list);
	struct list_head *dptr;
837
	int queued;
838

839
	if (unlikely(blk_mq_hctx_stopped(hctx)))
840 841 842 843 844 845 846
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
847
	flush_busy_ctxs(hctx, &rq_list);
848 849 850 851 852 853 854 855 856 857 858 859

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

860 861 862 863 864 865
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

866 867 868
	/*
	 * Now process all the entries, sending them to the driver.
	 */
869
	queued = 0;
870
	while (!list_empty(&rq_list)) {
871
		struct blk_mq_queue_data bd;
872 873 874 875 876
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

877 878 879 880 881
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
882 883 884
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
885
			break;
886 887
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
888
			__blk_mq_requeue_request(rq);
889 890 891 892
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
893
			rq->errors = -EIO;
894
			blk_mq_end_request(rq, rq->errors);
895 896 897 898 899
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
900 901 902 903 904 905 906

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
907 908
	}

909
	hctx->dispatched[queued_to_index(queued)]++;
910 911 912 913 914 915 916 917 918

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
919 920 921 922 923 924 925 926 927 928
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
929 930 931
	}
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		blk_mq_process_rq_list(hctx);
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		blk_mq_process_rq_list(hctx);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

950 951 952 953 954 955 956 957
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
958 959
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
960 961

	if (--hctx->next_cpu_batch <= 0) {
962
		int next_cpu;
963 964 965 966 967 968 969 970 971

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

972
	return hctx->next_cpu;
973 974
}

975 976
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
977 978
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
979 980
		return;

981
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
982 983
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
984
			__blk_mq_run_hw_queue(hctx);
985
			put_cpu();
986 987
			return;
		}
988

989
		put_cpu();
990
	}
991

992
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
993 994
}

995
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
996 997 998 999 1000 1001 1002
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
1003
		    blk_mq_hctx_stopped(hctx))
1004 1005
			continue;

1006
		blk_mq_run_hw_queue(hctx, async);
1007 1008
	}
}
1009
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1031 1032
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1033
	cancel_work(&hctx->run_work);
1034
	cancel_delayed_work(&hctx->delay_work);
1035 1036 1037 1038
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1049 1050 1051
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1052

1053
	blk_mq_run_hw_queue(hctx, false);
1054 1055 1056
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1077
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1078 1079 1080 1081
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1082 1083
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1084 1085 1086
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1087
static void blk_mq_run_work_fn(struct work_struct *work)
1088 1089 1090
{
	struct blk_mq_hw_ctx *hctx;

1091
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1092

1093 1094 1095
	__blk_mq_run_hw_queue(hctx);
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1108 1109
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1110

1111 1112
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1113 1114 1115
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1116 1117 1118
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1119
{
J
Jens Axboe 已提交
1120 1121
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1122 1123
	trace_block_rq_insert(hctx->queue, rq);

1124 1125 1126 1127
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1128
}
1129

1130 1131 1132 1133 1134
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1135
	__blk_mq_insert_req_list(hctx, rq, at_head);
1136 1137 1138
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1139
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1140
			   bool async)
1141
{
J
Jens Axboe 已提交
1142
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1143
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1144
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1145

1146 1147 1148
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
C
Christoph Hellwig 已提交
1161
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	trace_block_unplug(q, depth, !from_schedule);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1174
		BUG_ON(rq->mq_ctx != ctx);
1175
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1176
		__blk_mq_insert_req_list(hctx, rq, false);
1177
	}
1178
	blk_mq_hctx_mark_pending(hctx, ctx);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1244

1245
	blk_account_io_start(rq, true);
1246 1247
}

1248 1249 1250 1251 1252 1253
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1254 1255 1256
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1257
{
1258
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1259 1260 1261 1262 1263 1264 1265
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1266 1267
		struct request_queue *q = hctx->queue;

1268 1269 1270 1271 1272
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1273

1274 1275 1276
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1277
	}
1278
}
1279

1280 1281
static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
1282
					  struct blk_mq_alloc_data *data)
1283 1284 1285 1286
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1287

1288
	blk_queue_enter_live(q);
1289
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1290
	hctx = blk_mq_map_queue(q, ctx->cpu);
1291

1292
	trace_block_getrq(q, bio, bio->bi_opf);
1293
	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1294
	rq = __blk_mq_alloc_request(data, bio->bi_opf);
1295

1296
	data->hctx->queued++;
1297 1298 1299
	return rq;
}

1300
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1301 1302 1303
{
	int ret;
	struct request_queue *q = rq->q;
1304
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1305 1306 1307 1308 1309
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1310
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1311

1312 1313 1314
	if (blk_mq_hctx_stopped(hctx))
		goto insert;

1315 1316 1317 1318 1319 1320
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1321 1322
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1323
		return;
1324
	}
1325

1326 1327 1328 1329 1330 1331
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1332
		return;
1333
	}
1334

1335 1336
insert:
	blk_mq_insert_request(rq, false, true, true);
1337 1338
}

1339 1340 1341 1342 1343
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1344
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1345
{
1346
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1347
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1348
	struct blk_mq_alloc_data data;
1349
	struct request *rq;
1350
	unsigned int request_count = 0, srcu_idx;
1351
	struct blk_plug *plug;
1352
	struct request *same_queue_rq = NULL;
1353
	blk_qc_t cookie;
J
Jens Axboe 已提交
1354
	unsigned int wb_acct;
1355 1356 1357 1358

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1359
		bio_io_error(bio);
1360
		return BLK_QC_T_NONE;
1361 1362
	}

1363 1364
	blk_queue_split(q, &bio, q->bio_split);

1365 1366 1367
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1368

J
Jens Axboe 已提交
1369 1370
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1371
	rq = blk_mq_map_request(q, bio, &data);
J
Jens Axboe 已提交
1372 1373
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1374
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1375 1376 1377
	}

	wbt_track(&rq->issue_stat, wb_acct);
1378

1379
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1380 1381 1382 1383 1384 1385 1386

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1387
	plug = current->plug;
1388 1389 1390 1391 1392
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1393 1394 1395
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1396 1397 1398 1399

		blk_mq_bio_to_request(rq, bio);

		/*
1400
		 * We do limited plugging. If the bio can be merged, do that.
1401 1402
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1403
		 */
1404
		if (plug) {
1405 1406
			/*
			 * The plug list might get flushed before this. If that
1407 1408 1409
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1410 1411
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1412
				list_del_init(&old_rq->queuelist);
1413
			}
1414 1415 1416 1417 1418
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1419
			goto done;
1420 1421 1422

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1423
			blk_mq_try_issue_directly(old_rq, &cookie);
1424 1425 1426
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1427
			blk_mq_try_issue_directly(old_rq, &cookie);
1428 1429
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1430
		goto done;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1444 1445
done:
	return cookie;
1446 1447 1448 1449 1450 1451
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1452
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1453
{
1454
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1455
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1456 1457
	struct blk_plug *plug;
	unsigned int request_count = 0;
1458
	struct blk_mq_alloc_data data;
1459
	struct request *rq;
1460
	blk_qc_t cookie;
J
Jens Axboe 已提交
1461
	unsigned int wb_acct;
1462 1463 1464 1465

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1466
		bio_io_error(bio);
1467
		return BLK_QC_T_NONE;
1468 1469
	}

1470 1471
	blk_queue_split(q, &bio, q->bio_split);

1472 1473 1474 1475 1476
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1477

J
Jens Axboe 已提交
1478 1479
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1480
	rq = blk_mq_map_request(q, bio, &data);
J
Jens Axboe 已提交
1481 1482
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1483
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1484 1485 1486
	}

	wbt_track(&rq->issue_stat, wb_acct);
1487

1488
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1501 1502
	plug = current->plug;
	if (plug) {
1503 1504
		struct request *last = NULL;

1505
		blk_mq_bio_to_request(rq, bio);
1506 1507 1508 1509 1510 1511 1512

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1513
		if (!request_count)
1514
			trace_block_plug(q);
1515 1516
		else
			last = list_entry_rq(plug->mq_list.prev);
1517 1518 1519

		blk_mq_put_ctx(data.ctx);

1520 1521
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1522 1523
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1524
		}
1525

1526
		list_add_tail(&rq->queuelist, &plug->mq_list);
1527
		return cookie;
1528 1529
	}

1530 1531 1532 1533 1534 1535 1536 1537 1538
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1539 1540
	}

1541
	blk_mq_put_ctx(data.ctx);
1542
	return cookie;
1543 1544
}

1545 1546
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1547
{
1548
	struct page *page;
1549

1550
	if (tags->rqs && set->ops->exit_request) {
1551
		int i;
1552

1553 1554
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1555
				continue;
1556 1557
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1558
			tags->rqs[i] = NULL;
1559
		}
1560 1561
	}

1562 1563
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1564
		list_del_init(&page->lru);
1565 1566 1567 1568 1569
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1570 1571 1572
		__free_pages(page, page->private);
	}

1573
	kfree(tags->rqs);
1574

1575
	blk_mq_free_tags(tags);
1576 1577 1578 1579
}

static size_t order_to_size(unsigned int order)
{
1580
	return (size_t)PAGE_SIZE << order;
1581 1582
}

1583 1584
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1585
{
1586
	struct blk_mq_tags *tags;
1587 1588 1589
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1590
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1591 1592
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1593 1594
	if (!tags)
		return NULL;
1595

1596 1597
	INIT_LIST_HEAD(&tags->page_list);

1598 1599 1600
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1601 1602 1603 1604
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1605 1606 1607 1608 1609

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1610
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1611
				cache_line_size());
1612
	left = rq_size * set->queue_depth;
1613

1614
	for (i = 0; i < set->queue_depth; ) {
1615 1616 1617 1618 1619
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1620
		while (this_order && left < order_to_size(this_order - 1))
1621 1622 1623
			this_order--;

		do {
1624
			page = alloc_pages_node(set->numa_node,
1625
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1626
				this_order);
1627 1628 1629 1630 1631 1632 1633 1634 1635
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1636
			goto fail;
1637 1638

		page->private = this_order;
1639
		list_add_tail(&page->lru, &tags->page_list);
1640 1641

		p = page_address(page);
1642 1643 1644 1645 1646
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1647
		entries_per_page = order_to_size(this_order) / rq_size;
1648
		to_do = min(entries_per_page, set->queue_depth - i);
1649 1650
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1651 1652 1653 1654
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1655 1656
						set->numa_node)) {
					tags->rqs[i] = NULL;
1657
					goto fail;
1658
				}
1659 1660
			}

1661 1662 1663 1664
			p += rq_size;
			i++;
		}
	}
1665
	return tags;
1666

1667 1668 1669
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1670 1671
}

J
Jens Axboe 已提交
1672 1673 1674 1675 1676
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1677
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1678
{
1679
	struct blk_mq_hw_ctx *hctx;
1680 1681 1682
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1683
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1684
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1685 1686 1687 1688 1689 1690 1691 1692 1693

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1694
		return 0;
1695

J
Jens Axboe 已提交
1696 1697 1698
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1699 1700

	blk_mq_run_hw_queue(hctx, true);
1701
	return 0;
1702 1703
}

1704
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1705
{
1706 1707
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1708 1709
}

1710
/* hctx->ctxs will be freed in queue's release handler */
1711 1712 1713 1714
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1715 1716
	unsigned flush_start_tag = set->queue_depth;

1717 1718
	blk_mq_tag_idle(hctx);

1719 1720 1721 1722 1723
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1724 1725 1726
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1727 1728 1729
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1730
	blk_mq_remove_cpuhp(hctx);
1731
	blk_free_flush_queue(hctx->fq);
1732
	sbitmap_free(&hctx->ctx_map);
1733 1734
}

M
Ming Lei 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1744
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1754
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1755 1756 1757
		free_cpumask_var(hctx->cpumask);
}

1758 1759 1760
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1761
{
1762
	int node;
1763
	unsigned flush_start_tag = set->queue_depth;
1764 1765 1766 1767 1768

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1769
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1770 1771 1772 1773 1774
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1775
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1776

1777
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1778 1779

	hctx->tags = set->tags[hctx_idx];
1780 1781

	/*
1782 1783
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1784
	 */
1785 1786 1787 1788
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1789

1790 1791
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1792
		goto free_ctxs;
1793

1794
	hctx->nr_ctx = 0;
1795

1796 1797 1798
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1799

1800 1801 1802
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1803

1804 1805 1806 1807 1808
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1809

1810 1811 1812
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1813
	return 0;
1814

1815 1816 1817 1818 1819
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1820
 free_bitmap:
1821
	sbitmap_free(&hctx->ctx_map);
1822 1823 1824
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1825
	blk_mq_remove_cpuhp(hctx);
1826 1827
	return -1;
}
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
1843 1844
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1845 1846 1847 1848 1849

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1850
		hctx = blk_mq_map_queue(q, i);
1851

1852 1853 1854 1855 1856
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1857
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1858 1859 1860
	}
}

1861 1862
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1863 1864 1865 1866
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1867
	struct blk_mq_tag_set *set = q->tag_set;
1868

1869 1870 1871 1872 1873
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1874
	queue_for_each_hw_ctx(q, hctx, i) {
1875
		cpumask_clear(hctx->cpumask);
1876 1877 1878 1879 1880 1881
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1882
	for_each_possible_cpu(i) {
1883
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1884
		if (!cpumask_test_cpu(i, online_mask))
1885 1886
			continue;

1887
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1888
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1889

1890
		cpumask_set_cpu(i, hctx->cpumask);
1891 1892 1893
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1894

1895 1896
	mutex_unlock(&q->sysfs_lock);

1897
	queue_for_each_hw_ctx(q, hctx, i) {
1898
		/*
1899 1900
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1901 1902 1903 1904 1905 1906
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1907
			hctx->tags = NULL;
1908 1909 1910
			continue;
		}

M
Ming Lei 已提交
1911 1912 1913 1914 1915 1916
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1917 1918 1919 1920 1921
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1922
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1923

1924 1925 1926
		/*
		 * Initialize batch roundrobin counts
		 */
1927 1928 1929
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1930 1931
}

1932
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1933 1934 1935 1936
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1948 1949 1950

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1951
		queue_set_hctx_shared(q, shared);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1962 1963 1964 1965 1966 1967
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1968 1969 1970 1971 1972 1973 1974 1975 1976
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1977 1978 1979 1980 1981 1982 1983 1984 1985

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1986
	list_add_tail(&q->tag_set_list, &set->tag_list);
1987

1988 1989 1990
	mutex_unlock(&set->tag_list_lock);
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2003 2004 2005 2006
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2007
		kfree(hctx);
2008
	}
2009

2010 2011
	q->mq_map = NULL;

2012 2013 2014 2015 2016 2017
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2018
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2034 2035
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2036
{
K
Keith Busch 已提交
2037 2038
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2039

K
Keith Busch 已提交
2040
	blk_mq_sysfs_unregister(q);
2041
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2042
		int node;
2043

K
Keith Busch 已提交
2044 2045 2046 2047
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2048 2049
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2050
		if (!hctxs[i])
K
Keith Busch 已提交
2051
			break;
2052

2053
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2054 2055 2056 2057 2058
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2059

2060
		atomic_set(&hctxs[i]->nr_active, 0);
2061
		hctxs[i]->numa_node = node;
2062
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2063 2064 2065 2066 2067 2068 2069 2070

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2071
	}
K
Keith Busch 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2096 2097 2098
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2099 2100
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2101
		goto err_exit;
K
Keith Busch 已提交
2102 2103 2104 2105 2106 2107

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2108
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2109 2110 2111 2112

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2113

2114
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2115
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2116 2117 2118

	q->nr_queues = nr_cpu_ids;

2119
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2120

2121 2122 2123
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2124 2125
	q->sg_reserved_size = INT_MAX;

2126
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2127 2128 2129
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2130 2131 2132 2133 2134
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2135 2136 2137 2138 2139
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2140 2141 2142 2143 2144
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2145 2146
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2147

2148
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2149

2150
	get_online_cpus();
2151 2152
	mutex_lock(&all_q_mutex);

2153
	list_add_tail(&q->all_q_node, &all_q_list);
2154
	blk_mq_add_queue_tag_set(set, q);
2155
	blk_mq_map_swqueue(q, cpu_online_mask);
2156

2157
	mutex_unlock(&all_q_mutex);
2158
	put_online_cpus();
2159

2160
	return q;
2161

2162
err_hctxs:
K
Keith Busch 已提交
2163
	kfree(q->queue_hw_ctx);
2164
err_percpu:
K
Keith Busch 已提交
2165
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2166 2167
err_exit:
	q->mq_ops = NULL;
2168 2169
	return ERR_PTR(-ENOMEM);
}
2170
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2171 2172 2173

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2174
	struct blk_mq_tag_set	*set = q->tag_set;
2175

2176 2177 2178 2179
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2180 2181
	wbt_exit(q);

2182 2183
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2184 2185
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2186 2187 2188
}

/* Basically redo blk_mq_init_queue with queue frozen */
2189 2190
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2191
{
2192
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2193

2194 2195
	blk_mq_sysfs_unregister(q);

2196 2197 2198 2199 2200 2201
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2202
	blk_mq_map_swqueue(q, online_mask);
2203

2204
	blk_mq_sysfs_register(q);
2205 2206
}

2207 2208 2209 2210 2211 2212 2213 2214
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2215 2216 2217 2218
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2219 2220 2221 2222 2223 2224 2225 2226 2227
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2228
	list_for_each_entry(q, &all_q_list, all_q_node)
2229 2230
		blk_mq_freeze_queue_wait(q);

2231
	list_for_each_entry(q, &all_q_list, all_q_node)
2232
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2233 2234 2235 2236

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2237
	mutex_unlock(&all_q_mutex);
2238 2239 2240 2241
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2242
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
 * is ignored.
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2269 2270
}

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2325 2326 2327 2328 2329 2330
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2331 2332
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2333 2334
	int ret;

B
Bart Van Assche 已提交
2335 2336
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2337 2338
	if (!set->nr_hw_queues)
		return -EINVAL;
2339
	if (!set->queue_depth)
2340 2341 2342 2343
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2344
	if (!set->ops->queue_rq)
2345 2346
		return -EINVAL;

2347 2348 2349 2350 2351
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2352

2353 2354 2355 2356 2357 2358 2359 2360 2361
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2362 2363 2364 2365 2366
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2367

K
Keith Busch 已提交
2368
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2369 2370
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2371
		return -ENOMEM;
2372

2373 2374 2375
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2376 2377 2378
	if (!set->mq_map)
		goto out_free_tags;

2379 2380 2381 2382 2383 2384 2385 2386 2387
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2388
		goto out_free_mq_map;
2389

2390 2391 2392
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2393
	return 0;
2394 2395 2396 2397 2398

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2399 2400
	kfree(set->tags);
	set->tags = NULL;
2401
	return ret;
2402 2403 2404 2405 2406 2407 2408
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2409
	for (i = 0; i < nr_cpu_ids; i++) {
2410
		if (set->tags[i])
2411 2412 2413
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

2414 2415 2416
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2417
	kfree(set->tags);
2418
	set->tags = NULL;
2419 2420 2421
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2433 2434
		if (!hctx->tags)
			continue;
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2512
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2513
				     struct blk_mq_hw_ctx *hctx,
2514 2515 2516 2517
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2518
	unsigned int nsecs;
2519 2520
	ktime_t kt;

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2539 2540 2541 2542 2543 2544 2545 2546
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
2547
	kt = ktime_set(0, nsecs);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2570 2571 2572 2573 2574
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2575 2576 2577 2578 2579 2580 2581
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2582
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2583 2584
		return true;

J
Jens Axboe 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
	rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2644 2645
static int __init blk_mq_init(void)
{
2646 2647
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2648

2649 2650 2651
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2652 2653 2654
	return 0;
}
subsys_initcall(blk_mq_init);