blk-mq.c 63.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35 36 37 38 39 40 41 42 43

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
44
	return sbitmap_any_bit_set(&hctx->ctx_map);
45 46
}

47 48 49 50 51 52
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
53 54
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 56 57 58 59
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
60
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 62
}

63
void blk_mq_freeze_queue_start(struct request_queue *q)
64
{
65
	int freeze_depth;
66

67 68
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
69
		percpu_ref_kill(&q->q_usage_counter);
70
		blk_mq_run_hw_queues(q, false);
71
	}
72
}
73
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74 75 76

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
77
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 79
}

80 81 82 83
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
84
void blk_freeze_queue(struct request_queue *q)
85
{
86 87 88 89 90 91 92
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
93 94 95
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
96 97 98 99 100 101 102 103 104

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
105
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106

107
void blk_mq_unfreeze_queue(struct request_queue *q)
108
{
109
	int freeze_depth;
110

111 112 113
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
114
		percpu_ref_reinit(&q->q_usage_counter);
115
		wake_up_all(&q->mq_freeze_wq);
116
	}
117
}
118
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

147 148 149 150 151 152 153 154
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
155 156 157 158 159 160 161

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
162 163
}

164 165 166 167 168 169
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

170
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171
			       struct request *rq, unsigned int op)
172
{
173 174 175
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
176
	rq->mq_ctx = ctx;
177
	rq->cmd_flags = op;
178 179
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
180 181 182 183 184 185
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
186
	rq->start_time = jiffies;
187 188
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
189
	set_start_time_ns(rq);
190 191 192 193 194 195 196 197 198 199
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

200 201
	rq->cmd = rq->__cmd;

202 203 204 205 206 207
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
208 209
	rq->timeout = 0;

210 211 212 213
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

214
	ctx->rq_dispatched[op_is_sync(op)]++;
215 216
}

217
static struct request *
218
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
219 220 221 222
{
	struct request *rq;
	unsigned int tag;

223
	tag = blk_mq_get_tag(data);
224
	if (tag != BLK_MQ_TAG_FAIL) {
225
		rq = data->hctx->tags->rqs[tag];
226

227
		if (blk_mq_tag_busy(data->hctx)) {
228
			rq->rq_flags = RQF_MQ_INFLIGHT;
229
			atomic_inc(&data->hctx->nr_active);
230 231 232
		}

		rq->tag = tag;
233
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234 235 236 237 238 239
		return rq;
	}

	return NULL;
}

240 241
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
242
{
243 244
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
245
	struct request *rq;
246
	struct blk_mq_alloc_data alloc_data;
247
	int ret;
248

249
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250 251
	if (ret)
		return ERR_PTR(ret);
252

253
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
254
	hctx = blk_mq_map_queue(q, ctx->cpu);
255
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256
	rq = __blk_mq_alloc_request(&alloc_data, rw);
257
	blk_mq_put_ctx(ctx);
258

K
Keith Busch 已提交
259
	if (!rq) {
260
		blk_queue_exit(q);
261
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
262
	}
263 264 265 266

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
267 268
	return rq;
}
269
EXPORT_SYMBOL(blk_mq_alloc_request);
270

M
Ming Lin 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

296 297 298 299
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
300
	hctx = q->queue_hw_ctx[hctx_idx];
301 302 303 304
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
305 306 307
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
309
	if (!rq) {
310 311
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
312 313 314
	}

	return rq;
315 316 317 318

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
319 320 321
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

322 323 324 325 326 327
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

328
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
329
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
330 331

	wbt_done(q->rq_wb, &rq->issue_stat);
332
	rq->rq_flags = 0;
333

334
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
336
	blk_mq_put_tag(hctx, ctx, tag);
337
	blk_queue_exit(q);
338 339
}

340 341
static void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx,
				     struct request *rq)
342 343 344 345 346
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
347 348 349 350
}

void blk_mq_free_request(struct request *rq)
{
C
Christoph Hellwig 已提交
351
	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
352
}
J
Jens Axboe 已提交
353
EXPORT_SYMBOL_GPL(blk_mq_free_request);
354

355
inline void __blk_mq_end_request(struct request *rq, int error)
356
{
M
Ming Lei 已提交
357 358
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
359
	if (rq->end_io) {
J
Jens Axboe 已提交
360
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
361
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
362 363 364
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
365
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
366
	}
367
}
368
EXPORT_SYMBOL(__blk_mq_end_request);
369

370
void blk_mq_end_request(struct request *rq, int error)
371 372 373
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
374
	__blk_mq_end_request(rq, error);
375
}
376
EXPORT_SYMBOL(blk_mq_end_request);
377

378
static void __blk_mq_complete_request_remote(void *data)
379
{
380
	struct request *rq = data;
381

382
	rq->q->softirq_done_fn(rq);
383 384
}

385
static void blk_mq_ipi_complete_request(struct request *rq)
386 387
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
388
	bool shared = false;
389 390
	int cpu;

C
Christoph Hellwig 已提交
391
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
392 393 394
		rq->q->softirq_done_fn(rq);
		return;
	}
395 396

	cpu = get_cpu();
C
Christoph Hellwig 已提交
397 398 399 400
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
401
		rq->csd.func = __blk_mq_complete_request_remote;
402 403
		rq->csd.info = rq;
		rq->csd.flags = 0;
404
		smp_call_function_single_async(ctx->cpu, &rq->csd);
405
	} else {
406
		rq->q->softirq_done_fn(rq);
407
	}
408 409
	put_cpu();
}
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

426
static void __blk_mq_complete_request(struct request *rq)
427 428 429
{
	struct request_queue *q = rq->q;

430 431
	blk_mq_stat_add(rq);

432
	if (!q->softirq_done_fn)
433
		blk_mq_end_request(rq, rq->errors);
434 435 436 437
	else
		blk_mq_ipi_complete_request(rq);
}

438 439 440 441 442 443 444 445
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
446
void blk_mq_complete_request(struct request *rq, int error)
447
{
448 449 450
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
451
		return;
452 453
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
454
		__blk_mq_complete_request(rq);
455
	}
456 457
}
EXPORT_SYMBOL(blk_mq_complete_request);
458

459 460 461 462 463 464
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

465
void blk_mq_start_request(struct request *rq)
466 467 468 469 470
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
471
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
472 473
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
474

475 476 477
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
478
		wbt_issue(q->rq_wb, &rq->issue_stat);
479 480
	}

481
	blk_add_timer(rq);
482

483 484 485 486 487 488
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

489 490 491 492 493 494
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
495 496 497 498
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
499 500 501 502 503 504 505 506 507

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
508
}
509
EXPORT_SYMBOL(blk_mq_start_request);
510

511
static void __blk_mq_requeue_request(struct request *rq)
512 513 514 515
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
516
	wbt_requeue(q->rq_wb, &rq->issue_stat);
517

518 519 520 521
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
522 523
}

524
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
525 526 527 528
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
529
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
530 531 532
}
EXPORT_SYMBOL(blk_mq_requeue_request);

533 534 535
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
536
		container_of(work, struct request_queue, requeue_work.work);
537 538 539 540 541 542 543 544 545
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
546
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
547 548
			continue;

549
		rq->rq_flags &= ~RQF_SOFTBARRIER;
550 551 552 553 554 555 556 557 558 559
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

560
	blk_mq_run_hw_queues(q, false);
561 562
}

563 564
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
565 566 567 568 569 570 571 572
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
573
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
574 575 576

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
577
		rq->rq_flags |= RQF_SOFTBARRIER;
578 579 580 581 582
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
583 584 585

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
586 587 588 589 590
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
591
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
592 593 594
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

595 596 597 598 599 600 601 602
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

623 624
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
625 626
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
627
		return tags->rqs[tag];
628
	}
629 630

	return NULL;
631 632 633
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

634
struct blk_mq_timeout_data {
635 636
	unsigned long next;
	unsigned int next_set;
637 638
};

639
void blk_mq_rq_timed_out(struct request *req, bool reserved)
640
{
J
Jens Axboe 已提交
641
	const struct blk_mq_ops *ops = req->q->mq_ops;
642
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
643 644 645 646 647 648 649 650 651 652

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
653 654
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
655

656
	if (ops->timeout)
657
		ret = ops->timeout(req, reserved);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
673
}
674

675 676 677 678
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
679

680 681 682 683 684
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
685 686 687 688
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
689
		return;
690
	}
691

692 693
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
694
			blk_mq_rq_timed_out(rq, reserved);
695 696 697 698
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
699 700
}

701
static void blk_mq_timeout_work(struct work_struct *work)
702
{
703 704
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
705 706 707 708 709
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
710

711 712 713 714 715 716 717 718 719 720 721 722 723 724
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
725 726
		return;

727
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
728

729 730 731
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
732
	} else {
733 734
		struct blk_mq_hw_ctx *hctx;

735 736 737 738 739
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
740
	}
741
	blk_queue_exit(q);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

801 802 803 804 805 806
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
807 808 809 810
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
811

812
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
813 814
}

815 816 817 818
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
819

820
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
821 822
}

823
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
824 825 826
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
827 828
	LIST_HEAD(driver_list);
	struct list_head *dptr;
829
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
830

831 832 833 834 835 836
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

837 838 839
	/*
	 * Now process all the entries, sending them to the driver.
	 */
840
	queued = 0;
841
	while (!list_empty(list)) {
842
		struct blk_mq_queue_data bd;
843

844
		rq = list_first_entry(list, struct request, queuelist);
845 846
		list_del_init(&rq->queuelist);

847 848
		bd.rq = rq;
		bd.list = dptr;
849
		bd.last = list_empty(list);
850 851

		ret = q->mq_ops->queue_rq(hctx, &bd);
852 853 854
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
855
			break;
856
		case BLK_MQ_RQ_QUEUE_BUSY:
857
			list_add(&rq->queuelist, list);
858
			__blk_mq_requeue_request(rq);
859 860 861 862
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
863
			rq->errors = -EIO;
864
			blk_mq_end_request(rq, rq->errors);
865 866 867 868 869
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
870 871 872 873 874

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
875
		if (!dptr && list->next != list->prev)
876
			dptr = &driver_list;
877 878
	}

879
	hctx->dispatched[queued_to_index(queued)]++;
880 881 882 883 884

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
885
	if (!list_empty(list)) {
886
		spin_lock(&hctx->lock);
887
		list_splice(list, &hctx->dispatch);
888
		spin_unlock(&hctx->lock);
889

890 891 892 893 894 895 896 897 898 899
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
900
	}
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

	return ret != BLK_MQ_RQ_QUEUE_BUSY;
}

/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
{
	LIST_HEAD(rq_list);
	LIST_HEAD(driver_list);

	if (unlikely(blk_mq_hctx_stopped(hctx)))
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
	flush_busy_ctxs(hctx, &rq_list);

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	blk_mq_dispatch_rq_list(hctx, &rq_list);
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		blk_mq_process_rq_list(hctx);
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		blk_mq_process_rq_list(hctx);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

958 959 960 961 962 963 964 965
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
966 967
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
968 969

	if (--hctx->next_cpu_batch <= 0) {
970
		int next_cpu;
971 972 973 974 975 976 977 978 979

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

980
	return hctx->next_cpu;
981 982
}

983 984
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
985 986
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
987 988
		return;

989
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
990 991
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
992
			__blk_mq_run_hw_queue(hctx);
993
			put_cpu();
994 995
			return;
		}
996

997
		put_cpu();
998
	}
999

1000
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1001 1002
}

1003
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1004 1005 1006 1007 1008 1009 1010
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
1011
		    blk_mq_hctx_stopped(hctx))
1012 1013
			continue;

1014
		blk_mq_run_hw_queue(hctx, async);
1015 1016
	}
}
1017
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1039 1040
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1041
	cancel_work(&hctx->run_work);
1042
	cancel_delayed_work(&hctx->delay_work);
1043 1044 1045 1046
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1057 1058 1059
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1060

1061
	blk_mq_run_hw_queue(hctx, false);
1062 1063 1064
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1085
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1086 1087 1088 1089
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1090 1091
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1092 1093 1094
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1095
static void blk_mq_run_work_fn(struct work_struct *work)
1096 1097 1098
{
	struct blk_mq_hw_ctx *hctx;

1099
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1100

1101 1102 1103
	__blk_mq_run_hw_queue(hctx);
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1116 1117
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1118

1119 1120
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1121 1122 1123
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1124 1125 1126
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1127
{
J
Jens Axboe 已提交
1128 1129
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1130 1131
	trace_block_rq_insert(hctx->queue, rq);

1132 1133 1134 1135
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1136
}
1137

1138 1139 1140 1141 1142
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1143
	__blk_mq_insert_req_list(hctx, rq, at_head);
1144 1145 1146
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1147
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1148
			   bool async)
1149
{
J
Jens Axboe 已提交
1150
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1151
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1152
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1153

1154 1155 1156
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
C
Christoph Hellwig 已提交
1169
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	trace_block_unplug(q, depth, !from_schedule);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1182
		BUG_ON(rq->mq_ctx != ctx);
1183
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1184
		__blk_mq_insert_req_list(hctx, rq, false);
1185
	}
1186
	blk_mq_hctx_mark_pending(hctx, ctx);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1252

1253
	blk_account_io_start(rq, true);
1254 1255
}

1256 1257 1258 1259 1260 1261
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1262 1263 1264
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1265
{
1266
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1267 1268 1269 1270 1271 1272 1273
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1274 1275
		struct request_queue *q = hctx->queue;

1276 1277 1278 1279 1280
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1281

1282 1283 1284
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1285
	}
1286
}
1287

1288 1289
static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
1290
					  struct blk_mq_alloc_data *data)
1291 1292 1293 1294
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1295

1296
	blk_queue_enter_live(q);
1297
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1298
	hctx = blk_mq_map_queue(q, ctx->cpu);
1299

1300
	trace_block_getrq(q, bio, bio->bi_opf);
1301
	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1302
	rq = __blk_mq_alloc_request(data, bio->bi_opf);
1303

1304
	data->hctx->queued++;
1305 1306 1307
	return rq;
}

1308
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1309 1310 1311
{
	int ret;
	struct request_queue *q = rq->q;
1312
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1313 1314 1315 1316 1317
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1318
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1319

1320 1321 1322
	if (blk_mq_hctx_stopped(hctx))
		goto insert;

1323 1324 1325 1326 1327 1328
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1329 1330
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1331
		return;
1332
	}
1333

1334 1335 1336 1337 1338 1339
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1340
		return;
1341
	}
1342

1343 1344
insert:
	blk_mq_insert_request(rq, false, true, true);
1345 1346
}

1347 1348 1349 1350 1351
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1352
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1353
{
1354
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1355
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1356
	struct blk_mq_alloc_data data;
1357
	struct request *rq;
1358
	unsigned int request_count = 0, srcu_idx;
1359
	struct blk_plug *plug;
1360
	struct request *same_queue_rq = NULL;
1361
	blk_qc_t cookie;
J
Jens Axboe 已提交
1362
	unsigned int wb_acct;
1363 1364 1365 1366

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1367
		bio_io_error(bio);
1368
		return BLK_QC_T_NONE;
1369 1370
	}

1371 1372
	blk_queue_split(q, &bio, q->bio_split);

1373 1374 1375
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1376

J
Jens Axboe 已提交
1377 1378
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1379
	rq = blk_mq_map_request(q, bio, &data);
J
Jens Axboe 已提交
1380 1381
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1382
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1383 1384 1385
	}

	wbt_track(&rq->issue_stat, wb_acct);
1386

1387
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1388 1389 1390 1391 1392 1393 1394

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1395
	plug = current->plug;
1396 1397 1398 1399 1400
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1401 1402 1403
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1404 1405 1406 1407

		blk_mq_bio_to_request(rq, bio);

		/*
1408
		 * We do limited plugging. If the bio can be merged, do that.
1409 1410
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1411
		 */
1412
		if (plug) {
1413 1414
			/*
			 * The plug list might get flushed before this. If that
1415 1416 1417
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1418 1419
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1420
				list_del_init(&old_rq->queuelist);
1421
			}
1422 1423 1424 1425 1426
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1427
			goto done;
1428 1429 1430

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1431
			blk_mq_try_issue_directly(old_rq, &cookie);
1432 1433 1434
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1435
			blk_mq_try_issue_directly(old_rq, &cookie);
1436 1437
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1438
		goto done;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1452 1453
done:
	return cookie;
1454 1455 1456 1457 1458 1459
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1460
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1461
{
1462
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1463
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1464 1465
	struct blk_plug *plug;
	unsigned int request_count = 0;
1466
	struct blk_mq_alloc_data data;
1467
	struct request *rq;
1468
	blk_qc_t cookie;
J
Jens Axboe 已提交
1469
	unsigned int wb_acct;
1470 1471 1472 1473

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1474
		bio_io_error(bio);
1475
		return BLK_QC_T_NONE;
1476 1477
	}

1478 1479
	blk_queue_split(q, &bio, q->bio_split);

1480 1481 1482 1483 1484
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1485

J
Jens Axboe 已提交
1486 1487
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1488
	rq = blk_mq_map_request(q, bio, &data);
J
Jens Axboe 已提交
1489 1490
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1491
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1492 1493 1494
	}

	wbt_track(&rq->issue_stat, wb_acct);
1495

1496
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1509 1510
	plug = current->plug;
	if (plug) {
1511 1512
		struct request *last = NULL;

1513
		blk_mq_bio_to_request(rq, bio);
1514 1515 1516 1517 1518 1519 1520

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1521
		if (!request_count)
1522
			trace_block_plug(q);
1523 1524
		else
			last = list_entry_rq(plug->mq_list.prev);
1525 1526 1527

		blk_mq_put_ctx(data.ctx);

1528 1529
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1530 1531
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1532
		}
1533

1534
		list_add_tail(&rq->queuelist, &plug->mq_list);
1535
		return cookie;
1536 1537
	}

1538 1539 1540 1541 1542 1543 1544 1545 1546
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1547 1548
	}

1549
	blk_mq_put_ctx(data.ctx);
1550
	return cookie;
1551 1552
}

1553 1554
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1555
{
1556
	struct page *page;
1557

1558
	if (tags->rqs && set->ops->exit_request) {
1559
		int i;
1560

1561 1562
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1563
				continue;
1564 1565
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1566
			tags->rqs[i] = NULL;
1567
		}
1568 1569
	}

1570 1571
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1572
		list_del_init(&page->lru);
1573 1574 1575 1576 1577
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1578 1579 1580
		__free_pages(page, page->private);
	}

1581
	kfree(tags->rqs);
1582

1583
	blk_mq_free_tags(tags);
1584 1585 1586 1587
}

static size_t order_to_size(unsigned int order)
{
1588
	return (size_t)PAGE_SIZE << order;
1589 1590
}

1591 1592
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1593
{
1594
	struct blk_mq_tags *tags;
1595 1596 1597
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1598
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1599 1600
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1601 1602
	if (!tags)
		return NULL;
1603

1604 1605
	INIT_LIST_HEAD(&tags->page_list);

1606
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1607
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1608
				 set->numa_node);
1609 1610 1611 1612
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1613 1614 1615 1616 1617

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1618
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1619
				cache_line_size());
1620
	left = rq_size * set->queue_depth;
1621

1622
	for (i = 0; i < set->queue_depth; ) {
1623 1624 1625 1626 1627
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1628
		while (this_order && left < order_to_size(this_order - 1))
1629 1630 1631
			this_order--;

		do {
1632
			page = alloc_pages_node(set->numa_node,
1633
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1634
				this_order);
1635 1636 1637 1638 1639 1640 1641 1642 1643
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1644
			goto fail;
1645 1646

		page->private = this_order;
1647
		list_add_tail(&page->lru, &tags->page_list);
1648 1649

		p = page_address(page);
1650 1651 1652 1653
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1654
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1655
		entries_per_page = order_to_size(this_order) / rq_size;
1656
		to_do = min(entries_per_page, set->queue_depth - i);
1657 1658
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1659 1660 1661 1662
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1663 1664
						set->numa_node)) {
					tags->rqs[i] = NULL;
1665
					goto fail;
1666
				}
1667 1668
			}

1669 1670 1671 1672
			p += rq_size;
			i++;
		}
	}
1673
	return tags;
1674

1675 1676 1677
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1678 1679
}

J
Jens Axboe 已提交
1680 1681 1682 1683 1684
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1685
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1686
{
1687
	struct blk_mq_hw_ctx *hctx;
1688 1689 1690
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1691
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1692
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1693 1694 1695 1696 1697 1698 1699 1700 1701

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1702
		return 0;
1703

J
Jens Axboe 已提交
1704 1705 1706
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1707 1708

	blk_mq_run_hw_queue(hctx, true);
1709
	return 0;
1710 1711
}

1712
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1713
{
1714 1715
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1716 1717
}

1718
/* hctx->ctxs will be freed in queue's release handler */
1719 1720 1721 1722
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1723 1724
	unsigned flush_start_tag = set->queue_depth;

1725 1726
	blk_mq_tag_idle(hctx);

1727 1728 1729 1730 1731
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1732 1733 1734
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1735 1736 1737
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1738
	blk_mq_remove_cpuhp(hctx);
1739
	blk_free_flush_queue(hctx->fq);
1740
	sbitmap_free(&hctx->ctx_map);
1741 1742
}

M
Ming Lei 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1752
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1762
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1763 1764 1765
		free_cpumask_var(hctx->cpumask);
}

1766 1767 1768
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1769
{
1770
	int node;
1771
	unsigned flush_start_tag = set->queue_depth;
1772 1773 1774 1775 1776

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1777
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1778 1779 1780 1781 1782
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1783
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1784

1785
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1786 1787

	hctx->tags = set->tags[hctx_idx];
1788 1789

	/*
1790 1791
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1792
	 */
1793 1794 1795 1796
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1797

1798 1799
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1800
		goto free_ctxs;
1801

1802
	hctx->nr_ctx = 0;
1803

1804 1805 1806
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1807

1808 1809 1810
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1811

1812 1813 1814 1815 1816
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1817

1818 1819 1820
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1821
	return 0;
1822

1823 1824 1825 1826 1827
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1828
 free_bitmap:
1829
	sbitmap_free(&hctx->ctx_map);
1830 1831 1832
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1833
	blk_mq_remove_cpuhp(hctx);
1834 1835
	return -1;
}
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
1851 1852
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1853 1854 1855 1856 1857

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1858
		hctx = blk_mq_map_queue(q, i);
1859

1860 1861 1862 1863 1864
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1865
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1866 1867 1868
	}
}

1869 1870
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1871
{
1872
	unsigned int i, hctx_idx;
1873 1874
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1875
	struct blk_mq_tag_set *set = q->tag_set;
1876

1877 1878 1879 1880 1881
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1882
	queue_for_each_hw_ctx(q, hctx, i) {
1883
		cpumask_clear(hctx->cpumask);
1884 1885 1886 1887 1888 1889
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1890
	for_each_possible_cpu(i) {
1891
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1892
		if (!cpumask_test_cpu(i, online_mask))
1893 1894
			continue;

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx]) {
			set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx);

			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			if (!set->tags[hctx_idx])
				q->mq_map[i] = 0;
		}

1910
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1911
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1912

1913
		cpumask_set_cpu(i, hctx->cpumask);
1914 1915 1916
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1917

1918 1919
	mutex_unlock(&q->sysfs_lock);

1920
	queue_for_each_hw_ctx(q, hctx, i) {
1921
		/*
1922 1923
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1924 1925
		 */
		if (!hctx->nr_ctx) {
1926 1927 1928 1929 1930
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i]) {
1931 1932 1933
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1934
			hctx->tags = NULL;
1935 1936 1937
			continue;
		}

M
Ming Lei 已提交
1938 1939 1940
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1941 1942 1943 1944 1945
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1946
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1947

1948 1949 1950
		/*
		 * Initialize batch roundrobin counts
		 */
1951 1952 1953
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1954 1955
}

1956
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1957 1958 1959 1960
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1972 1973 1974

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1975
		queue_set_hctx_shared(q, shared);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1986 1987 1988 1989 1990 1991
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1992 1993 1994 1995 1996 1997 1998 1999 2000
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2001 2002 2003 2004 2005 2006 2007 2008 2009

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2010
	list_add_tail(&q->tag_set_list, &set->tag_list);
2011

2012 2013 2014
	mutex_unlock(&set->tag_list_lock);
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2027 2028 2029 2030
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2031
		kfree(hctx);
2032
	}
2033

2034 2035
	q->mq_map = NULL;

2036 2037 2038 2039 2040 2041
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2042
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2058 2059
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2060
{
K
Keith Busch 已提交
2061 2062
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2063

K
Keith Busch 已提交
2064
	blk_mq_sysfs_unregister(q);
2065
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2066
		int node;
2067

K
Keith Busch 已提交
2068 2069 2070 2071
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2072 2073
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2074
		if (!hctxs[i])
K
Keith Busch 已提交
2075
			break;
2076

2077
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2078 2079 2080 2081 2082
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2083

2084
		atomic_set(&hctxs[i]->nr_active, 0);
2085
		hctxs[i]->numa_node = node;
2086
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2087 2088 2089 2090 2091 2092 2093 2094

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2095
	}
K
Keith Busch 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2120 2121 2122
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2123 2124
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2125
		goto err_exit;
K
Keith Busch 已提交
2126 2127 2128 2129 2130 2131

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2132
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2133 2134 2135 2136

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2137

2138
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2139
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2140 2141 2142

	q->nr_queues = nr_cpu_ids;

2143
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2144

2145 2146 2147
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2148 2149
	q->sg_reserved_size = INT_MAX;

2150
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2151 2152 2153
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2154 2155 2156 2157 2158
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2159 2160 2161 2162 2163
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2164 2165 2166 2167 2168
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2169 2170
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2171

2172
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2173

2174
	get_online_cpus();
2175 2176
	mutex_lock(&all_q_mutex);

2177
	list_add_tail(&q->all_q_node, &all_q_list);
2178
	blk_mq_add_queue_tag_set(set, q);
2179
	blk_mq_map_swqueue(q, cpu_online_mask);
2180

2181
	mutex_unlock(&all_q_mutex);
2182
	put_online_cpus();
2183

2184
	return q;
2185

2186
err_hctxs:
K
Keith Busch 已提交
2187
	kfree(q->queue_hw_ctx);
2188
err_percpu:
K
Keith Busch 已提交
2189
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2190 2191
err_exit:
	q->mq_ops = NULL;
2192 2193
	return ERR_PTR(-ENOMEM);
}
2194
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2195 2196 2197

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2198
	struct blk_mq_tag_set	*set = q->tag_set;
2199

2200 2201 2202 2203
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2204 2205
	wbt_exit(q);

2206 2207
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2208 2209
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2210 2211 2212
}

/* Basically redo blk_mq_init_queue with queue frozen */
2213 2214
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2215
{
2216
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2217

2218 2219
	blk_mq_sysfs_unregister(q);

2220 2221 2222 2223 2224 2225
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2226
	blk_mq_map_swqueue(q, online_mask);
2227

2228
	blk_mq_sysfs_register(q);
2229 2230
}

2231 2232 2233 2234 2235 2236 2237 2238
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2239 2240 2241 2242
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2243 2244 2245 2246 2247 2248 2249 2250 2251
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2252
	list_for_each_entry(q, &all_q_list, all_q_node)
2253 2254
		blk_mq_freeze_queue_wait(q);

2255
	list_for_each_entry(q, &all_q_list, all_q_node)
2256
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2257 2258 2259 2260

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2261
	mutex_unlock(&all_q_mutex);
2262 2263 2264 2265
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2266
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
 * is ignored.
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2293 2294
}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2349 2350 2351 2352 2353 2354
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2355 2356
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2357 2358
	int ret;

B
Bart Van Assche 已提交
2359 2360
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2361 2362
	if (!set->nr_hw_queues)
		return -EINVAL;
2363
	if (!set->queue_depth)
2364 2365 2366 2367
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2368
	if (!set->ops->queue_rq)
2369 2370
		return -EINVAL;

2371 2372 2373 2374 2375
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2386 2387 2388 2389 2390
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2391

K
Keith Busch 已提交
2392
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2393 2394
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2395
		return -ENOMEM;
2396

2397 2398 2399
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2400 2401 2402
	if (!set->mq_map)
		goto out_free_tags;

2403 2404 2405 2406 2407 2408 2409 2410 2411
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2412
		goto out_free_mq_map;
2413

2414 2415 2416
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2417
	return 0;
2418 2419 2420 2421 2422

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2423 2424
	kfree(set->tags);
	set->tags = NULL;
2425
	return ret;
2426 2427 2428 2429 2430 2431 2432
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2433
	for (i = 0; i < nr_cpu_ids; i++) {
2434
		if (set->tags[i])
2435 2436 2437
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

2438 2439 2440
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2441
	kfree(set->tags);
2442
	set->tags = NULL;
2443 2444 2445
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2457 2458
		if (!hctx->tags)
			continue;
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2536
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2537
				     struct blk_mq_hw_ctx *hctx,
2538 2539 2540 2541
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2542
	unsigned int nsecs;
2543 2544
	ktime_t kt;

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2563 2564 2565 2566 2567 2568 2569 2570
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2571
	kt = nsecs;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2594 2595 2596 2597 2598
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2599 2600 2601 2602 2603 2604 2605
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2606
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2607 2608
		return true;

J
Jens Axboe 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
	rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2668 2669
static int __init blk_mq_init(void)
{
2670 2671
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2672

2673 2674 2675
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2676 2677 2678
	return 0;
}
subsys_initcall(blk_mq_init);