blk-mq.c 69.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
48
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49
{
50 51 52
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
53 54
}

55 56 57 58 59 60
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
61 62
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 64 65 66 67
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
68
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 70
}

71
void blk_freeze_queue_start(struct request_queue *q)
72
{
73
	int freeze_depth;
74

75 76
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
77
		percpu_ref_kill(&q->q_usage_counter);
78
		blk_mq_run_hw_queues(q, false);
79
	}
80
}
81
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82

83
void blk_mq_freeze_queue_wait(struct request_queue *q)
84
{
85
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86
}
87
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88

89 90 91 92 93 94 95 96
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111
	blk_freeze_queue_start(q);
112 113
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

165 166 167 168 169 170 171 172
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
173 174 175 176 177 178 179

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
180 181
}

182 183 184 185 186 187
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

188 189
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
190
{
191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags = op;
196 197
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
198 199 200 201 202 203
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
204
	rq->start_time = jiffies;
205 206
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
207
	set_start_time_ns(rq);
208 209 210 211 212 213 214 215 216 217 218 219
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
220 221
	rq->timeout = 0;

222 223 224 225
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

226
	ctx->rq_dispatched[op_is_sync(op)]++;
227
}
228
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229

230 231
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
232 233 234 235
{
	struct request *rq;
	unsigned int tag;

236
	tag = blk_mq_get_tag(data);
237
	if (tag != BLK_MQ_TAG_FAIL) {
238 239 240
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
241

242 243 244 245
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
246 247 248 249
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
250 251
			rq->tag = tag;
			rq->internal_tag = -1;
252
			data->hctx->tags->rqs[rq->tag] = rq;
253 254
		}

255
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 257 258 259 260
		return rq;
	}

	return NULL;
}
261
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262

263 264
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
265
{
266
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
267
	struct request *rq;
268
	int ret;
269

270
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 272
	if (ret)
		return ERR_PTR(ret);
273

274
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275

276 277 278 279
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
280
		return ERR_PTR(-EWOULDBLOCK);
281 282 283 284

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288

M
Ming Lin 已提交
289 290 291
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
292
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
293
	struct request *rq;
294
	unsigned int cpu;
M
Ming Lin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

313 314 315 316
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
317 318 319 320
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
321
	}
322 323
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
324

325
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326 327

	blk_queue_exit(q);
328 329 330 331 332

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
333 334 335
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

336 337
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
338
{
339
	const int sched_tag = rq->internal_tag;
340 341
	struct request_queue *q = rq->q;

342
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
343
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
344 345

	wbt_done(q->rq_wb, &rq->issue_stat);
346
	rq->rq_flags = 0;
347

348
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350 351 352 353
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
354
	blk_mq_sched_restart(hctx);
355
	blk_queue_exit(q);
356 357
}

358
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359
				     struct request *rq)
360 361 362 363
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
364 365 366 367 368 369
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370 371 372 373
}

void blk_mq_free_request(struct request *rq)
{
374
	blk_mq_sched_put_request(rq);
375
}
J
Jens Axboe 已提交
376
EXPORT_SYMBOL_GPL(blk_mq_free_request);
377

378
inline void __blk_mq_end_request(struct request *rq, int error)
379
{
M
Ming Lei 已提交
380 381
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
382
	if (rq->end_io) {
J
Jens Axboe 已提交
383
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
384
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
385 386 387
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
388
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
389
	}
390
}
391
EXPORT_SYMBOL(__blk_mq_end_request);
392

393
void blk_mq_end_request(struct request *rq, int error)
394 395 396
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
397
	__blk_mq_end_request(rq, error);
398
}
399
EXPORT_SYMBOL(blk_mq_end_request);
400

401
static void __blk_mq_complete_request_remote(void *data)
402
{
403
	struct request *rq = data;
404

405
	rq->q->softirq_done_fn(rq);
406 407
}

408
static void blk_mq_ipi_complete_request(struct request *rq)
409 410
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
411
	bool shared = false;
412 413
	int cpu;

C
Christoph Hellwig 已提交
414
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
415 416 417
		rq->q->softirq_done_fn(rq);
		return;
	}
418 419

	cpu = get_cpu();
C
Christoph Hellwig 已提交
420 421 422 423
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
424
		rq->csd.func = __blk_mq_complete_request_remote;
425 426
		rq->csd.info = rq;
		rq->csd.flags = 0;
427
		smp_call_function_single_async(ctx->cpu, &rq->csd);
428
	} else {
429
		rq->q->softirq_done_fn(rq);
430
	}
431 432
	put_cpu();
}
433

434 435 436
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
437 438
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
439 440 441
	}
}

442
static void __blk_mq_complete_request(struct request *rq)
443 444 445
{
	struct request_queue *q = rq->q;

446 447
	blk_mq_stat_add(rq);

448
	if (!q->softirq_done_fn)
449
		blk_mq_end_request(rq, rq->errors);
450 451 452 453
	else
		blk_mq_ipi_complete_request(rq);
}

454 455 456 457 458 459 460 461
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
462
void blk_mq_complete_request(struct request *rq, int error)
463
{
464 465 466
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
467
		return;
468 469
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
470
		__blk_mq_complete_request(rq);
471
	}
472 473
}
EXPORT_SYMBOL(blk_mq_complete_request);
474

475 476 477 478 479 480
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

481
void blk_mq_start_request(struct request *rq)
482 483 484
{
	struct request_queue *q = rq->q;

485 486
	blk_mq_sched_started_request(rq);

487 488
	trace_block_rq_issue(q, rq);

489
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
490
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
491
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
492
		wbt_issue(q->rq_wb, &rq->issue_stat);
493 494
	}

495
	blk_add_timer(rq);
496

497 498 499 500 501 502
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

503 504 505 506 507 508
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
509 510 511 512
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
513 514 515 516 517 518 519 520 521

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
522
}
523
EXPORT_SYMBOL(blk_mq_start_request);
524

525 526
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
527
 * flag isn't set yet, so there may be race with timeout handler,
528 529 530 531 532 533
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
534
static void __blk_mq_requeue_request(struct request *rq)
535 536 537 538
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
539
	wbt_requeue(q->rq_wb, &rq->issue_stat);
540
	blk_mq_sched_requeue_request(rq);
541

542 543 544 545
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
546 547
}

548
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
549 550 551 552
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
553
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
554 555 556
}
EXPORT_SYMBOL(blk_mq_requeue_request);

557 558 559
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
560
		container_of(work, struct request_queue, requeue_work.work);
561 562 563 564 565 566 567 568 569
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
570
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
571 572
			continue;

573
		rq->rq_flags &= ~RQF_SOFTBARRIER;
574
		list_del_init(&rq->queuelist);
575
		blk_mq_sched_insert_request(rq, true, false, false, true);
576 577 578 579 580
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
581
		blk_mq_sched_insert_request(rq, false, false, false, true);
582 583
	}

584
	blk_mq_run_hw_queues(q, false);
585 586
}

587 588
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
589 590 591 592 593 594 595 596
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
597
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
598 599 600

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
601
		rq->rq_flags |= RQF_SOFTBARRIER;
602 603 604 605 606
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
607 608 609

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
610 611 612 613 614
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
615
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
616 617 618
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

619 620 621 622 623 624 625 626
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

647 648
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
649 650
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
651
		return tags->rqs[tag];
652
	}
653 654

	return NULL;
655 656 657
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

658
struct blk_mq_timeout_data {
659 660
	unsigned long next;
	unsigned int next_set;
661 662
};

663
void blk_mq_rq_timed_out(struct request *req, bool reserved)
664
{
J
Jens Axboe 已提交
665
	const struct blk_mq_ops *ops = req->q->mq_ops;
666
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
667 668 669 670 671 672 673

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
674
	 * both flags will get cleared. So check here again, and ignore
675 676
	 * a timeout event with a request that isn't active.
	 */
677 678
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
679

680
	if (ops->timeout)
681
		ret = ops->timeout(req, reserved);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
697
}
698

699 700 701 702
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
703

704
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
705
		return;
706

707 708 709 710 711 712 713 714 715 716 717 718 719
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
720 721
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
722
			blk_mq_rq_timed_out(rq, reserved);
723 724 725 726
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
727 728
}

729
static void blk_mq_timeout_work(struct work_struct *work)
730
{
731 732
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
733 734 735 736 737
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
738

739 740 741 742 743 744 745 746 747
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
748
	 * blk_freeze_queue_start, and the moment the last request is
749 750 751 752
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
753 754
		return;

755
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
756

757 758 759
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
760
	} else {
761 762
		struct blk_mq_hw_ctx *hctx;

763 764 765 766 767
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
768
	}
769
	blk_queue_exit(q);
770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
784
		bool merged = false;
785 786 787 788 789 790 791

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

792 793 794 795
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
796
			break;
797 798 799
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
800
			break;
801 802
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
803
			break;
804 805
		default:
			continue;
806
		}
807 808 809 810

		if (merged)
			ctx->rq_merged++;
		return merged;
811 812 813 814 815
	}

	return false;
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

834 835 836 837
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
838
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
839
{
840 841 842 843
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
844

845
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
846
}
847
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
848

849 850 851 852
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
853

854
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
855 856
}

857 858
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
859 860 861 862 863 864 865
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

866 867
	if (rq->tag != -1)
		goto done;
868

869 870 871
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

872 873
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
874 875 876 877
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
878 879 880
		data.hctx->tags->rqs[rq->tag] = rq;
	}

881 882 883 884
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
885 886
}

887 888
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
889 890 891 892 893 894 895 896 897 898
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

981
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
982
{
983
	struct blk_mq_hw_ctx *hctx;
984
	struct request *rq;
985
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
986

987 988 989
	if (list_empty(list))
		return false;

990 991 992
	/*
	 * Now process all the entries, sending them to the driver.
	 */
993
	errors = queued = 0;
994
	do {
995
		struct blk_mq_queue_data bd;
996

997
		rq = list_first_entry(list, struct request, queuelist);
998 999 1000
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1001 1002

			/*
1003 1004
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1005
			 */
1006 1007 1008 1009 1010 1011 1012 1013 1014
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1015
				break;
1016
		}
1017

1018 1019
		list_del_init(&rq->queuelist);

1020
		bd.rq = rq;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1034 1035

		ret = q->mq_ops->queue_rq(hctx, &bd);
1036 1037 1038
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1039
			break;
1040
		case BLK_MQ_RQ_QUEUE_BUSY:
1041
			blk_mq_put_driver_tag_hctx(hctx, rq);
1042
			list_add(&rq->queuelist, list);
1043
			__blk_mq_requeue_request(rq);
1044 1045 1046 1047
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1048
			errors++;
1049
			rq->errors = -EIO;
1050
			blk_mq_end_request(rq, rq->errors);
1051 1052 1053 1054 1055
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1056
	} while (!list_empty(list));
1057

1058
	hctx->dispatched[queued_to_index(queued)]++;
1059 1060 1061 1062 1063

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1064
	if (!list_empty(list)) {
1065
		/*
1066 1067
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1068 1069 1070 1071
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1072
		spin_lock(&hctx->lock);
1073
		list_splice_init(list, &hctx->dispatch);
1074
		spin_unlock(&hctx->lock);
1075

1076
		/*
1077 1078 1079
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1080
		 *
1081 1082 1083 1084
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1085
		 *
1086 1087 1088 1089 1090 1091 1092 1093 1094
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
		 *   and dm-rq.
1095
		 */
1096 1097
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1098
			blk_mq_run_hw_queue(hctx, true);
1099
	}
1100

1101
	return (queued + errors) != 0;
1102 1103
}

1104 1105 1106 1107 1108 1109 1110 1111 1112
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1113
		blk_mq_sched_dispatch_requests(hctx);
1114 1115
		rcu_read_unlock();
	} else {
1116 1117
		might_sleep();

1118
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1119
		blk_mq_sched_dispatch_requests(hctx);
1120 1121 1122 1123
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1124 1125 1126 1127 1128 1129 1130 1131
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1132 1133
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1134 1135

	if (--hctx->next_cpu_batch <= 0) {
1136
		int next_cpu;
1137 1138 1139 1140 1141 1142 1143 1144 1145

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1146
	return hctx->next_cpu;
1147 1148
}

1149 1150
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1151
{
1152 1153
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1154 1155
		return;

1156
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1157 1158
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1159
			__blk_mq_run_hw_queue(hctx);
1160
			put_cpu();
1161 1162
			return;
		}
1163

1164
		put_cpu();
1165
	}
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (msecs == 0)
		kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work);
	else
		kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
						 &hctx->delayed_run_work,
						 msecs_to_jiffies(msecs));
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1185 1186
}

1187
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1188 1189 1190 1191 1192
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1193
		if (!blk_mq_hctx_has_pending(hctx) ||
1194
		    blk_mq_hctx_stopped(hctx))
1195 1196
			continue;

1197
		blk_mq_run_hw_queue(hctx, async);
1198 1199
	}
}
1200
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1222 1223
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1224
	cancel_work(&hctx->run_work);
1225
	cancel_delayed_work(&hctx->delay_work);
1226 1227 1228 1229
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1240 1241 1242
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1243

1244
	blk_mq_run_hw_queue(hctx, false);
1245 1246 1247
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1268
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1269 1270 1271 1272
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1273 1274
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1275 1276 1277
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1278
static void blk_mq_run_work_fn(struct work_struct *work)
1279 1280 1281
{
	struct blk_mq_hw_ctx *hctx;

1282
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1283

1284 1285 1286
	__blk_mq_run_hw_queue(hctx);
}

1287 1288 1289 1290 1291 1292 1293 1294 1295
static void blk_mq_delayed_run_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);

	__blk_mq_run_hw_queue(hctx);
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1308 1309
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1310

1311
	blk_mq_stop_hw_queue(hctx);
1312 1313
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1314 1315 1316
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1317 1318 1319
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1320
{
J
Jens Axboe 已提交
1321 1322
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1323 1324
	trace_block_rq_insert(hctx->queue, rq);

1325 1326 1327 1328
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1329
}
1330

1331 1332
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1333 1334 1335
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1336
	__blk_mq_insert_req_list(hctx, rq, at_head);
1337 1338 1339
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1340 1341
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1353
		BUG_ON(rq->mq_ctx != ctx);
1354
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1355
		__blk_mq_insert_req_list(hctx, rq, false);
1356
	}
1357
	blk_mq_hctx_mark_pending(hctx, ctx);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1394 1395 1396 1397
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1414 1415 1416
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1417 1418 1419 1420 1421 1422
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1423

1424
	blk_account_io_start(rq, true);
1425 1426
}

1427 1428 1429 1430 1431 1432
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1433 1434 1435
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1436
{
1437
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1438 1439 1440 1441 1442 1443 1444
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1445 1446
		struct request_queue *q = hctx->queue;

1447 1448 1449 1450 1451
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1452

1453
		spin_unlock(&ctx->lock);
1454
		__blk_mq_finish_request(hctx, ctx, rq);
1455
		return true;
1456
	}
1457
}
1458

1459 1460
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1461 1462 1463 1464
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1465 1466
}

1467
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1468
				      bool may_sleep)
1469 1470 1471 1472
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1473
		.last = true,
1474
	};
1475 1476 1477
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1478

1479
	if (q->elevator)
1480 1481
		goto insert;

1482 1483 1484 1485 1486
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1487 1488 1489 1490 1491 1492
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1493 1494
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1495
		return;
1496
	}
1497

1498 1499 1500 1501
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1502
		return;
1503
	}
1504

1505
	__blk_mq_requeue_request(rq);
1506
insert:
1507
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1508 1509
}

1510 1511 1512 1513 1514 1515 1516 1517
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
1518 1519 1520 1521 1522
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1523 1524 1525 1526 1527
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1528
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1529
{
1530
	const int is_sync = op_is_sync(bio->bi_opf);
1531
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1532
	struct blk_mq_alloc_data data = { .flags = 0 };
1533
	struct request *rq;
1534
	unsigned int request_count = 0;
1535
	struct blk_plug *plug;
1536
	struct request *same_queue_rq = NULL;
1537
	blk_qc_t cookie;
J
Jens Axboe 已提交
1538
	unsigned int wb_acct;
1539 1540 1541 1542

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1543
		bio_io_error(bio);
1544
		return BLK_QC_T_NONE;
1545 1546
	}

1547 1548
	blk_queue_split(q, &bio, q->bio_split);

1549 1550 1551
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1552

1553 1554 1555
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1556 1557
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1558 1559 1560
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1561 1562
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1563
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1564 1565 1566
	}

	wbt_track(&rq->issue_stat, wb_acct);
1567

1568
	cookie = request_to_qc_t(data.hctx, rq);
1569

1570
	plug = current->plug;
1571 1572
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1573 1574 1575 1576 1577 1578 1579 1580
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
1606
	} else if (plug && !blk_queue_nomerges(q)) {
1607 1608 1609
		blk_mq_bio_to_request(rq, bio);

		/*
1610
		 * We do limited plugging. If the bio can be merged, do that.
1611 1612
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1613 1614
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1615
		 */
1616 1617 1618 1619 1620 1621
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1622 1623
		blk_mq_put_ctx(data.ctx);

1624 1625 1626
		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1627 1628

		return cookie;
1629
	} else if (q->nr_hw_queues > 1 && is_sync) {
1630
		blk_mq_put_ctx(data.ctx);
1631 1632
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1633
		return cookie;
1634
	} else if (q->elevator) {
1635
		blk_mq_bio_to_request(rq, bio);
1636
		blk_mq_sched_insert_request(rq, false, true, true, true);
1637
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1638 1639
		blk_mq_run_hw_queue(data.hctx, true);

1640
	blk_mq_put_ctx(data.ctx);
1641
	return cookie;
1642 1643
}

1644 1645
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1646
{
1647
	struct page *page;
1648

1649
	if (tags->rqs && set->ops->exit_request) {
1650
		int i;
1651

1652
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1653 1654 1655
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1656
				continue;
J
Jens Axboe 已提交
1657
			set->ops->exit_request(set->driver_data, rq,
1658
						hctx_idx, i);
J
Jens Axboe 已提交
1659
			tags->static_rqs[i] = NULL;
1660
		}
1661 1662
	}

1663 1664
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1665
		list_del_init(&page->lru);
1666 1667 1668 1669 1670
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1671 1672
		__free_pages(page, page->private);
	}
1673
}
1674

1675 1676
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1677
	kfree(tags->rqs);
1678
	tags->rqs = NULL;
J
Jens Axboe 已提交
1679 1680
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1681

1682
	blk_mq_free_tags(tags);
1683 1684
}

1685 1686 1687 1688
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1689
{
1690
	struct blk_mq_tags *tags;
1691
	int node;
1692

1693 1694 1695 1696 1697
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1698
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1699 1700
	if (!tags)
		return NULL;
1701

1702
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1703
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1704
				 node);
1705 1706 1707 1708
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1709

J
Jens Axboe 已提交
1710 1711
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1712
				 node);
J
Jens Axboe 已提交
1713 1714 1715 1716 1717 1718
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1732 1733 1734 1735 1736
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1737 1738 1739

	INIT_LIST_HEAD(&tags->page_list);

1740 1741 1742 1743
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1744
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1745
				cache_line_size());
1746
	left = rq_size * depth;
1747

1748
	for (i = 0; i < depth; ) {
1749 1750 1751 1752 1753
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1754
		while (this_order && left < order_to_size(this_order - 1))
1755 1756 1757
			this_order--;

		do {
1758
			page = alloc_pages_node(node,
1759
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1760
				this_order);
1761 1762 1763 1764 1765 1766 1767 1768 1769
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1770
			goto fail;
1771 1772

		page->private = this_order;
1773
		list_add_tail(&page->lru, &tags->page_list);
1774 1775

		p = page_address(page);
1776 1777 1778 1779
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1780
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1781
		entries_per_page = order_to_size(this_order) / rq_size;
1782
		to_do = min(entries_per_page, depth - i);
1783 1784
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1785 1786 1787
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1788 1789
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1790
						rq, hctx_idx, i,
1791
						node)) {
J
Jens Axboe 已提交
1792
					tags->static_rqs[i] = NULL;
1793
					goto fail;
1794
				}
1795 1796
			}

1797 1798 1799 1800
			p += rq_size;
			i++;
		}
	}
1801
	return 0;
1802

1803
fail:
1804 1805
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1806 1807
}

J
Jens Axboe 已提交
1808 1809 1810 1811 1812
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1813
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1814
{
1815
	struct blk_mq_hw_ctx *hctx;
1816 1817 1818
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1819
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1820
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1821 1822 1823 1824 1825 1826 1827 1828 1829

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1830
		return 0;
1831

J
Jens Axboe 已提交
1832 1833 1834
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1835 1836

	blk_mq_run_hw_queue(hctx, true);
1837
	return 0;
1838 1839
}

1840
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1841
{
1842 1843
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1844 1845
}

1846
/* hctx->ctxs will be freed in queue's release handler */
1847 1848 1849 1850
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1851 1852
	unsigned flush_start_tag = set->queue_depth;

1853 1854
	blk_mq_tag_idle(hctx);

1855 1856 1857 1858 1859
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1860 1861
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1862 1863 1864
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1865 1866 1867
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1868
	blk_mq_remove_cpuhp(hctx);
1869
	blk_free_flush_queue(hctx->fq);
1870
	sbitmap_free(&hctx->ctx_map);
1871 1872
}

M
Ming Lei 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1882
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1883 1884 1885
	}
}

1886 1887 1888
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1889
{
1890
	int node;
1891
	unsigned flush_start_tag = set->queue_depth;
1892 1893 1894 1895 1896

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1897
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1898
	INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1899 1900 1901 1902 1903
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1904
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1905

1906
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1907 1908

	hctx->tags = set->tags[hctx_idx];
1909 1910

	/*
1911 1912
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1913
	 */
1914 1915 1916 1917
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1918

1919 1920
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1921
		goto free_ctxs;
1922

1923
	hctx->nr_ctx = 0;
1924

1925 1926 1927
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1928

1929 1930 1931
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1932 1933
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1934
		goto sched_exit_hctx;
1935

1936 1937 1938 1939 1940
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1941

1942 1943 1944
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1945
	return 0;
1946

1947 1948
 free_fq:
	kfree(hctx->fq);
1949 1950
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1951 1952 1953
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1954
 free_bitmap:
1955
	sbitmap_free(&hctx->ctx_map);
1956 1957 1958
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1959
	blk_mq_remove_cpuhp(hctx);
1960 1961
	return -1;
}
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1981
		hctx = blk_mq_map_queue(q, i);
1982

1983 1984 1985 1986 1987
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1988
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1989 1990 1991
	}
}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2014 2015 2016 2017 2018
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2019 2020
}

2021 2022
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2023
{
2024
	unsigned int i, hctx_idx;
2025 2026
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2027
	struct blk_mq_tag_set *set = q->tag_set;
2028

2029 2030 2031 2032 2033
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2034
	queue_for_each_hw_ctx(q, hctx, i) {
2035
		cpumask_clear(hctx->cpumask);
2036 2037 2038 2039 2040 2041
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2042
	for_each_possible_cpu(i) {
2043
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2044
		if (!cpumask_test_cpu(i, online_mask))
2045 2046
			continue;

2047 2048
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2049 2050
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2051 2052 2053 2054 2055 2056
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2057
			q->mq_map[i] = 0;
2058 2059
		}

2060
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2061
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2062

2063
		cpumask_set_cpu(i, hctx->cpumask);
2064 2065 2066
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2067

2068 2069
	mutex_unlock(&q->sysfs_lock);

2070
	queue_for_each_hw_ctx(q, hctx, i) {
2071
		/*
2072 2073
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2074 2075
		 */
		if (!hctx->nr_ctx) {
2076 2077 2078 2079
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2080 2081 2082
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2083
			hctx->tags = NULL;
2084 2085 2086
			continue;
		}

M
Ming Lei 已提交
2087 2088 2089
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2090 2091 2092 2093 2094
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2095
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2096

2097 2098 2099
		/*
		 * Initialize batch roundrobin counts
		 */
2100 2101 2102
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2103 2104
}

2105
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2106 2107 2108 2109
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2121

2122 2123
	lockdep_assert_held(&set->tag_list_lock);

2124 2125
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2126
		queue_set_hctx_shared(q, shared);
2127 2128 2129 2130 2131 2132 2133 2134 2135
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2136 2137
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2138 2139 2140 2141 2142 2143
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2144
	mutex_unlock(&set->tag_list_lock);
2145 2146

	synchronize_rcu();
2147 2148 2149 2150 2151 2152 2153 2154
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2155 2156 2157 2158 2159 2160 2161 2162 2163

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2164
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2165

2166 2167 2168
	mutex_unlock(&set->tag_list_lock);
}

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2181 2182 2183
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2184
		kobject_put(&hctx->kobj);
2185
	}
2186

2187 2188
	q->mq_map = NULL;

2189 2190
	kfree(q->queue_hw_ctx);

2191 2192 2193 2194 2195 2196
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2197 2198 2199
	free_percpu(q->queue_ctx);
}

2200
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2216 2217
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2218
{
K
Keith Busch 已提交
2219 2220
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2221

K
Keith Busch 已提交
2222
	blk_mq_sysfs_unregister(q);
2223
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2224
		int node;
2225

K
Keith Busch 已提交
2226 2227 2228 2229
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2230 2231
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2232
		if (!hctxs[i])
K
Keith Busch 已提交
2233
			break;
2234

2235
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2236 2237 2238 2239 2240
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2241

2242
		atomic_set(&hctxs[i]->nr_active, 0);
2243
		hctxs[i]->numa_node = node;
2244
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2245 2246 2247 2248 2249 2250 2251 2252

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2253
	}
K
Keith Busch 已提交
2254 2255 2256 2257
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2258 2259
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2273 2274 2275
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2276 2277 2278 2279 2280
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_stat_rq_ddir, 2, q);
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2281 2282
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2283
		goto err_exit;
K
Keith Busch 已提交
2284

2285 2286 2287
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2288 2289 2290 2291 2292
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2293
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2294 2295 2296 2297

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2298

2299
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2300
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2301 2302 2303

	q->nr_queues = nr_cpu_ids;

2304
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2305

2306 2307 2308
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2309 2310
	q->sg_reserved_size = INT_MAX;

2311
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2312 2313 2314
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2315
	blk_queue_make_request(q, blk_mq_make_request);
2316

2317 2318 2319 2320 2321
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2322 2323 2324 2325 2326
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2327 2328
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2329

2330
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2331

2332
	get_online_cpus();
2333 2334
	mutex_lock(&all_q_mutex);

2335
	list_add_tail(&q->all_q_node, &all_q_list);
2336
	blk_mq_add_queue_tag_set(set, q);
2337
	blk_mq_map_swqueue(q, cpu_online_mask);
2338

2339
	mutex_unlock(&all_q_mutex);
2340
	put_online_cpus();
2341

2342 2343 2344 2345 2346 2347 2348 2349
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2350
	return q;
2351

2352
err_hctxs:
K
Keith Busch 已提交
2353
	kfree(q->queue_hw_ctx);
2354
err_percpu:
K
Keith Busch 已提交
2355
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2356 2357
err_exit:
	q->mq_ops = NULL;
2358 2359
	return ERR_PTR(-ENOMEM);
}
2360
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2361 2362 2363

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2364
	struct blk_mq_tag_set	*set = q->tag_set;
2365

2366 2367 2368 2369
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2370 2371
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2372
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2373 2374 2375
}

/* Basically redo blk_mq_init_queue with queue frozen */
2376 2377
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2378
{
2379
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2380

2381 2382
	blk_mq_sysfs_unregister(q);

2383 2384 2385 2386 2387 2388
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2389
	blk_mq_map_swqueue(q, online_mask);
2390

2391
	blk_mq_sysfs_register(q);
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2402 2403 2404 2405
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2406 2407 2408 2409 2410 2411 2412 2413
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2414
		blk_freeze_queue_start(q);
2415
	list_for_each_entry(q, &all_q_list, all_q_node)
2416 2417
		blk_mq_freeze_queue_wait(q);

2418
	list_for_each_entry(q, &all_q_list, all_q_node)
2419
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2420 2421 2422 2423

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2424
	mutex_unlock(&all_q_mutex);
2425 2426 2427 2428
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2429
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2445 2446 2447 2448
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2449 2450 2451 2452 2453 2454 2455
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2456 2457
}

2458 2459 2460 2461
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2462 2463
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2464 2465 2466 2467 2468 2469
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2470
		blk_mq_free_rq_map(set->tags[i]);
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2510 2511 2512 2513 2514 2515 2516 2517
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2518 2519 2520 2521 2522 2523
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2524 2525
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2526 2527
	int ret;

B
Bart Van Assche 已提交
2528 2529
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2530 2531
	if (!set->nr_hw_queues)
		return -EINVAL;
2532
	if (!set->queue_depth)
2533 2534 2535 2536
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2537
	if (!set->ops->queue_rq)
2538 2539
		return -EINVAL;

2540 2541 2542 2543 2544
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2545

2546 2547 2548 2549 2550 2551 2552 2553 2554
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2555 2556 2557 2558 2559
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2560

K
Keith Busch 已提交
2561
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2562 2563
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2564
		return -ENOMEM;
2565

2566 2567 2568
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2569 2570 2571
	if (!set->mq_map)
		goto out_free_tags;

2572
	ret = blk_mq_update_queue_map(set);
2573 2574 2575 2576 2577
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2578
		goto out_free_mq_map;
2579

2580 2581 2582
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2583
	return 0;
2584 2585 2586 2587 2588

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2589 2590
	kfree(set->tags);
	set->tags = NULL;
2591
	return ret;
2592 2593 2594 2595 2596 2597 2598
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2599 2600
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2601

2602 2603 2604
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2605
	kfree(set->tags);
2606
	set->tags = NULL;
2607 2608 2609
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2610 2611 2612 2613 2614 2615
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2616
	if (!set)
2617 2618
		return -EINVAL;

2619 2620 2621
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2622 2623
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2624 2625
		if (!hctx->tags)
			continue;
2626 2627 2628 2629
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2630 2631 2632 2633 2634 2635 2636 2637
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2638 2639 2640 2641 2642 2643 2644
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2645 2646 2647
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2648 2649 2650
	return ret;
}

K
Keith Busch 已提交
2651 2652 2653 2654
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

2655 2656
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2657 2658 2659 2660 2661 2662 2663 2664 2665
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2666
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;

	if (cb->stat[READ].nr_samples)
		q->poll_stat[READ] = cb->stat[READ];
	if (cb->stat[WRITE].nr_samples)
		q->poll_stat[WRITE] = cb->stat[WRITE];
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2720
	if (!blk_poll_stats_enable(q))
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
2731 2732 2733 2734
	if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
		ret = (q->poll_stat[READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
		ret = (q->poll_stat[WRITE].mean + 1) / 2;
2735 2736 2737 2738

	return ret;
}

2739
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2740
				     struct blk_mq_hw_ctx *hctx,
2741 2742 2743 2744
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2745
	unsigned int nsecs;
2746 2747
	ktime_t kt;

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2766 2767 2768 2769 2770 2771 2772 2773
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2774
	kt = nsecs;
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2797 2798 2799 2800 2801
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2802 2803 2804 2805 2806 2807 2808
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2809
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2810 2811
		return true;

J
Jens Axboe 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2855 2856 2857 2858
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2859 2860 2861 2862 2863

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2874 2875
static int __init blk_mq_init(void)
{
2876 2877
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2878

2879 2880 2881
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2882 2883 2884
	return 0;
}
subsys_initcall(blk_mq_init);