blk-mq.c 74.2 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98 99 100 101 102 103 104 105 106
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
107 108 109 110 111 112 113
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

114
	inflight[0] = inflight[1] = 0;
115 116 117
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139
	int freeze_depth;
140

141 142
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
143
		percpu_ref_kill(&q->q_usage_counter);
144 145
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
146
	}
147
}
148
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149

150
void blk_mq_freeze_queue_wait(struct request_queue *q)
151
{
152
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155

156 157 158 159 160 161 162 163
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164

165 166 167 168
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
169
void blk_freeze_queue(struct request_queue *q)
170
{
171 172 173 174 175 176 177
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
178
	blk_freeze_queue_start(q);
179 180
	if (!q->mq_ops)
		blk_drain_queue(q);
181 182
	blk_mq_freeze_queue_wait(q);
}
183 184 185 186 187 188 189 190 191

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193

194
void blk_mq_unfreeze_queue(struct request_queue *q)
195
{
196
	int freeze_depth;
197

198 199 200
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
201
		percpu_ref_reinit(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
}
205
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206

207 208 209 210 211 212
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
213
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 215 216
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

217
/**
218
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 220 221
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
222 223 224
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
225 226 227 228 229 230 231
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

232
	blk_mq_quiesce_queue_nowait(q);
233

234 235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
236
			synchronize_srcu(hctx->srcu);
237 238 239 240 241 242 243 244
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

245 246 247 248 249 250 251 252 253
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
254
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255

256 257
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
258 259 260
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

261 262 263 264 265 266 267 268 269 270
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

271 272 273 274 275 276
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

277 278
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282
	req_flags_t rq_flags = 0;
283

284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
289
			rq_flags = RQF_MQ_INFLIGHT;
290 291 292 293 294 295 296
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

297
	/* csd/requeue_work/fifo_time is initialized before use */
298 299
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
300
	rq->rq_flags = rq_flags;
301
	rq->cpu = -1;
302
	rq->cmd_flags = op;
303 304
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
305
	if (blk_queue_io_stat(data->q))
306
		rq->rq_flags |= RQF_IO_STAT;
307
	INIT_LIST_HEAD(&rq->queuelist);
308 309 310 311
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
312
	rq->start_time_ns = ktime_get_ns();
313
	rq->io_start_time_ns = 0;
314 315 316 317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
321
	rq->__deadline = 0;
322 323

	INIT_LIST_HEAD(&rq->timeout_list);
324 325
	rq->timeout = 0;

326 327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

330 331 332 333
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

334
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
335
	refcount_set(&rq->ref, 1);
336
	return rq;
337 338
}

339 340 341 342 343 344
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
345
	unsigned int tag;
346
	bool put_ctx_on_error = false;
347 348 349

	blk_queue_enter_live(q);
	data->q = q;
350 351 352 353
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
354 355
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 357
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
358 359 360 361 362 363

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
364 365
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
366
		 */
367 368
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
369
			e->type->ops.mq.limit_depth(op, data);
370 371
	}

372 373
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
374 375
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
376 377
			data->ctx = NULL;
		}
378 379
		blk_queue_exit(q);
		return NULL;
380 381
	}

382
	rq = blk_mq_rq_ctx_init(data, tag, op);
383 384
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
385
		if (e && e->type->ops.mq.prepare_request) {
386 387 388
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

389 390
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
391
		}
392 393 394
	}
	data->hctx->queued++;
	return rq;
395 396
}

397
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398
		blk_mq_req_flags_t flags)
399
{
400
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
401
	struct request *rq;
402
	int ret;
403

404
	ret = blk_queue_enter(q, flags);
405 406
	if (ret)
		return ERR_PTR(ret);
407

408
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409
	blk_queue_exit(q);
410

411
	if (!rq)
412
		return ERR_PTR(-EWOULDBLOCK);
413

414 415
	blk_mq_put_ctx(alloc_data.ctx);

416 417 418
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
419 420
	return rq;
}
421
EXPORT_SYMBOL(blk_mq_alloc_request);
422

423
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
425
{
426
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
427
	struct request *rq;
428
	unsigned int cpu;
M
Ming Lin 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

443
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
444 445 446
	if (ret)
		return ERR_PTR(ret);

447 448 449 450
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
451 452 453 454
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
455
	}
456
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
458

459
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460
	blk_queue_exit(q);
461

462 463 464 465
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
466 467 468
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

484
void blk_mq_free_request(struct request *rq)
485 486
{
	struct request_queue *q = rq->q;
487 488 489 490
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

491
	if (rq->rq_flags & RQF_ELVPRIV) {
492 493 494 495 496 497 498
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
499

500
	ctx->rq_completed[rq_is_sync(rq)]++;
501
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
502
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
503

504 505 506
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

507
	wbt_done(q->rq_wb, rq);
508

S
Shaohua Li 已提交
509 510 511
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

K
Keith Busch 已提交
512 513 514
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
515
}
J
Jens Axboe 已提交
516
EXPORT_SYMBOL_GPL(blk_mq_free_request);
517

518
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519
{
520 521
	u64 now = ktime_get_ns();

522 523
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
524
		blk_stat_add(rq, now);
525 526
	}

527
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
528

C
Christoph Hellwig 已提交
529
	if (rq->end_io) {
530
		wbt_done(rq->q->rq_wb, rq);
531
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
532 533 534
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
535
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
536
	}
537
}
538
EXPORT_SYMBOL(__blk_mq_end_request);
539

540
void blk_mq_end_request(struct request *rq, blk_status_t error)
541 542 543
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
544
	__blk_mq_end_request(rq, error);
545
}
546
EXPORT_SYMBOL(blk_mq_end_request);
547

548
static void __blk_mq_complete_request_remote(void *data)
549
{
550
	struct request *rq = data;
551

552
	rq->q->softirq_done_fn(rq);
553 554
}

555
static void __blk_mq_complete_request(struct request *rq)
556 557
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
558
	bool shared = false;
559 560
	int cpu;

K
Keith Busch 已提交
561 562 563
	if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) !=
			MQ_RQ_IN_FLIGHT)
		return;
564

565 566 567
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
568
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 570 571
		rq->q->softirq_done_fn(rq);
		return;
	}
572 573

	cpu = get_cpu();
C
Christoph Hellwig 已提交
574 575 576 577
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578
		rq->csd.func = __blk_mq_complete_request_remote;
579 580
		rq->csd.info = rq;
		rq->csd.flags = 0;
581
		smp_call_function_single_async(ctx->cpu, &rq->csd);
582
	} else {
583
		rq->q->softirq_done_fn(rq);
584
	}
585 586
	put_cpu();
}
587

588
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589
	__releases(hctx->srcu)
590 591 592 593
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
594
		srcu_read_unlock(hctx->srcu, srcu_idx);
595 596 597
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598
	__acquires(hctx->srcu)
599
{
600 601 602
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
603
		rcu_read_lock();
604
	} else
605
		*srcu_idx = srcu_read_lock(hctx->srcu);
606 607
}

608 609 610 611 612 613 614 615
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
616
void blk_mq_complete_request(struct request *rq)
617
{
K
Keith Busch 已提交
618
	if (unlikely(blk_should_fake_timeout(rq->q)))
619
		return;
K
Keith Busch 已提交
620
	__blk_mq_complete_request(rq);
621 622
}
EXPORT_SYMBOL(blk_mq_complete_request);
623

624 625
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
626
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 628 629
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

630
void blk_mq_start_request(struct request *rq)
631 632 633
{
	struct request_queue *q = rq->q;

634 635
	blk_mq_sched_started_request(rq);

636 637
	trace_block_rq_issue(q, rq);

638
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 640 641 642
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
643
		rq->rq_flags |= RQF_STATS;
644
		wbt_issue(q->rq_wb, rq);
645 646
	}

647
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648

649
	blk_add_timer(rq);
K
Keith Busch 已提交
650
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 652 653 654 655 656 657 658 659

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
660
}
661
EXPORT_SYMBOL(blk_mq_start_request);
662

663
static void __blk_mq_requeue_request(struct request *rq)
664 665 666
{
	struct request_queue *q = rq->q;

667 668
	blk_mq_put_driver_tag(rq);

669
	trace_block_rq_requeue(q, rq);
670
	wbt_requeue(q->rq_wb, rq);
671

K
Keith Busch 已提交
672 673
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674
		rq->rq_flags &= ~RQF_TIMED_OUT;
675 676 677
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
678 679
}

680
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 682 683
{
	__blk_mq_requeue_request(rq);

684 685 686
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

687
	BUG_ON(blk_queued_rq(rq));
688
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 690 691
}
EXPORT_SYMBOL(blk_mq_requeue_request);

692 693 694
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
695
		container_of(work, struct request_queue, requeue_work.work);
696 697 698
	LIST_HEAD(rq_list);
	struct request *rq, *next;

699
	spin_lock_irq(&q->requeue_lock);
700
	list_splice_init(&q->requeue_list, &rq_list);
701
	spin_unlock_irq(&q->requeue_lock);
702 703

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
705 706
			continue;

707
		rq->rq_flags &= ~RQF_SOFTBARRIER;
708
		list_del_init(&rq->queuelist);
709
		blk_mq_sched_insert_request(rq, true, false, false);
710 711 712 713 714
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
715
		blk_mq_sched_insert_request(rq, false, false, false);
716 717
	}

718
	blk_mq_run_hw_queues(q, false);
719 720
}

721 722
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
723 724 725 726 727 728
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
729
	 * request head insertion from the workqueue.
730
	 */
731
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
732 733 734

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
735
		rq->rq_flags |= RQF_SOFTBARRIER;
736 737 738 739 740
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
741 742 743

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
744 745 746 747 748
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
749
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
750 751 752
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

753 754 755
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
756 757
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
758 759 760
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

761 762
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
763 764
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
765
		return tags->rqs[tag];
766
	}
767 768

	return NULL;
769 770 771
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

772
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
773
{
774
	req->rq_flags |= RQF_TIMED_OUT;
775 776 777 778 779 780 781
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
782
	}
783 784

	blk_add_timer(req);
785
}
786

K
Keith Busch 已提交
787
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
788
{
K
Keith Busch 已提交
789
	unsigned long deadline;
790

K
Keith Busch 已提交
791 792
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
793 794
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
795

K
Keith Busch 已提交
796 797 798
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
799

K
Keith Busch 已提交
800 801 802 803 804
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
805 806
}

K
Keith Busch 已提交
807
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808 809
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

831
	/*
K
Keith Busch 已提交
832 833 834 835
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
836
	 */
K
Keith Busch 已提交
837
	if (blk_mq_req_expired(rq, next))
838
		blk_mq_rq_timed_out(rq, reserved);
K
Keith Busch 已提交
839 840
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
841 842
}

843
static void blk_mq_timeout_work(struct work_struct *work)
844
{
845 846
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
847
	unsigned long next = 0;
848
	struct blk_mq_hw_ctx *hctx;
849
	int i;
850

851 852 853 854 855 856 857 858 859
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
860
	 * blk_freeze_queue_start, and the moment the last request is
861 862 863 864
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
865 866
		return;

K
Keith Busch 已提交
867
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
868

K
Keith Busch 已提交
869 870
	if (next != 0) {
		mod_timer(&q->timeout, next);
871
	} else {
872 873 874 875 876 877
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
878 879 880 881 882
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
883
	}
884
	blk_queue_exit(q);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
900
	sbitmap_clear_bit(sb, bitnr);
901 902 903 904
	spin_unlock(&ctx->lock);
	return true;
}

905 906 907 908
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
909
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910
{
911 912 913 914
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
915

916
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917
}
918
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919

920 921 922 923 924 925 926 927 928 929 930 931 932
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
933
	if (!list_empty(&ctx->rq_list)) {
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

959 960 961 962
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
963

964
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 966
}

967 968
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
969 970 971 972 973 974 975
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

976 977
	might_sleep_if(wait);

978 979
	if (rq->tag != -1)
		goto done;
980

981 982 983
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

984 985
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
986 987 988 989
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
990 991 992
		data.hctx->tags->rqs[rq->tag] = rq;
	}

993 994 995 996
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
997 998
}

999 1000
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1001 1002 1003 1004 1005
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1006
	list_del_init(&wait->entry);
1007 1008 1009 1010
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1011 1012
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013 1014
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1015 1016 1017 1018
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1019
{
1020
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1021
	struct sbq_wait_state *ws;
1022 1023
	wait_queue_entry_t *wait;
	bool ret;
1024

1025
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1026 1027 1028
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1038 1039
	}

1040 1041 1042 1043 1044 1045 1046 1047
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1048 1049
	}

1050 1051 1052
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1053
	/*
1054 1055 1056
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1057
	 */
1058
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1059
	if (!ret) {
1060
		spin_unlock(&this_hctx->lock);
1061
		return false;
1062
	}
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1074 1075
}

1076 1077
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1078 1079 1080
/*
 * Returns true if we did some work AND can potentially do more.
 */
1081
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1082
			     bool got_budget)
1083
{
1084
	struct blk_mq_hw_ctx *hctx;
1085
	struct request *rq, *nxt;
1086
	bool no_tag = false;
1087
	int errors, queued;
1088
	blk_status_t ret = BLK_STS_OK;
1089

1090 1091 1092
	if (list_empty(list))
		return false;

1093 1094
	WARN_ON(!list_is_singular(list) && got_budget);

1095 1096 1097
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1098
	errors = queued = 0;
1099
	do {
1100
		struct blk_mq_queue_data bd;
1101

1102
		rq = list_first_entry(list, struct request, queuelist);
1103 1104 1105 1106 1107 1108

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1109
			/*
1110
			 * The initial allocation attempt failed, so we need to
1111 1112 1113 1114
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1115
			 */
1116
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1117
				blk_mq_put_dispatch_budget(hctx);
1118 1119 1120 1121 1122 1123
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1124 1125 1126 1127
				break;
			}
		}

1128 1129
		list_del_init(&rq->queuelist);

1130
		bd.rq = rq;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1142 1143

		ret = q->mq_ops->queue_rq(hctx, &bd);
1144
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1145 1146
			/*
			 * If an I/O scheduler has been configured and we got a
1147 1148
			 * driver tag for the next request already, free it
			 * again.
1149 1150 1151 1152 1153
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1154
			list_add(&rq->queuelist, list);
1155
			__blk_mq_requeue_request(rq);
1156
			break;
1157 1158 1159
		}

		if (unlikely(ret != BLK_STS_OK)) {
1160
			errors++;
1161
			blk_mq_end_request(rq, BLK_STS_IOERR);
1162
			continue;
1163 1164
		}

1165
		queued++;
1166
	} while (!list_empty(list));
1167

1168
	hctx->dispatched[queued_to_index(queued)]++;
1169 1170 1171 1172 1173

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1174
	if (!list_empty(list)) {
1175 1176
		bool needs_restart;

1177
		spin_lock(&hctx->lock);
1178
		list_splice_init(list, &hctx->dispatch);
1179
		spin_unlock(&hctx->lock);
1180

1181
		/*
1182 1183 1184
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1185
		 *
1186 1187 1188 1189
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1190
		 *
1191 1192 1193 1194 1195 1196 1197
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1198
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1199
		 *   and dm-rq.
1200 1201 1202 1203
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1204
		 */
1205 1206
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1207
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1208
			blk_mq_run_hw_queue(hctx, true);
1209 1210
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1211 1212

		return false;
1213
	}
1214

1215 1216 1217 1218 1219 1220 1221
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1222
	return (queued + errors) != 0;
1223 1224
}

1225 1226 1227 1228
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1229 1230 1231
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1245
	 */
1246 1247 1248 1249 1250 1251 1252
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1253

1254 1255 1256 1257 1258 1259
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1260
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1261

1262 1263 1264
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1265 1266
}

1267 1268 1269 1270 1271 1272 1273 1274 1275
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1276 1277 1278 1279 1280 1281 1282 1283
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1284
	bool tried = false;
1285
	int next_cpu = hctx->next_cpu;
1286

1287 1288
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1289 1290

	if (--hctx->next_cpu_batch <= 0) {
1291
select_cpu:
1292
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1293
				cpu_online_mask);
1294
		if (next_cpu >= nr_cpu_ids)
1295
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1296 1297 1298
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1299 1300 1301 1302
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1303
	if (!cpu_online(next_cpu)) {
1304 1305 1306 1307 1308 1309 1310 1311 1312
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1313
		hctx->next_cpu = next_cpu;
1314 1315 1316
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1317 1318 1319

	hctx->next_cpu = next_cpu;
	return next_cpu;
1320 1321
}

1322 1323
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1324
{
1325
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1326 1327
		return;

1328
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1329 1330
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1331
			__blk_mq_run_hw_queue(hctx);
1332
			put_cpu();
1333 1334
			return;
		}
1335

1336
		put_cpu();
1337
	}
1338

1339 1340
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1341 1342 1343 1344 1345 1346 1347 1348
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1349
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1350
{
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1362 1363 1364 1365
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1366 1367

	if (need_run) {
1368 1369 1370 1371 1372
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1373
}
O
Omar Sandoval 已提交
1374
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1375

1376
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1377 1378 1379 1380 1381
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1382
		if (blk_mq_hctx_stopped(hctx))
1383 1384
			continue;

1385
		blk_mq_run_hw_queue(hctx, async);
1386 1387
	}
}
1388
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1410 1411 1412
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1413
 * BLK_STS_RESOURCE is usually returned.
1414 1415 1416 1417 1418
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1419 1420
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1421
	cancel_delayed_work(&hctx->run_work);
1422

1423
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1424
}
1425
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1426

1427 1428 1429
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1430
 * BLK_STS_RESOURCE is usually returned.
1431 1432 1433 1434 1435
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1436 1437
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1438 1439 1440 1441 1442
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1443 1444 1445
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1446 1447 1448
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1449

1450
	blk_mq_run_hw_queue(hctx, false);
1451 1452 1453
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1474
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1475 1476 1477 1478
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1479 1480
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1481 1482 1483
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1484
static void blk_mq_run_work_fn(struct work_struct *work)
1485 1486 1487
{
	struct blk_mq_hw_ctx *hctx;

1488
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1489

1490
	/*
M
Ming Lei 已提交
1491
	 * If we are stopped, don't run the queue.
1492
	 */
M
Ming Lei 已提交
1493
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1494
		return;
1495 1496 1497 1498

	__blk_mq_run_hw_queue(hctx);
}

1499 1500 1501
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1502
{
J
Jens Axboe 已提交
1503 1504
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1505 1506
	lockdep_assert_held(&ctx->lock);

1507 1508
	trace_block_rq_insert(hctx->queue, rq);

1509 1510 1511 1512
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1513
}
1514

1515 1516
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1517 1518 1519
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1520 1521
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1522
	__blk_mq_insert_req_list(hctx, rq, at_head);
1523 1524 1525
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1526 1527 1528 1529
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1530
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1531 1532 1533 1534 1535 1536 1537 1538
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1539 1540
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1541 1542
}

1543 1544
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1556
		BUG_ON(rq->mq_ctx != ctx);
1557
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1558
		__blk_mq_insert_req_list(hctx, rq, false);
1559
	}
1560
	blk_mq_hctx_mark_pending(hctx, ctx);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1597 1598 1599 1600
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1617 1618 1619
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1620 1621 1622 1623 1624
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1625
	blk_init_request_from_bio(rq, bio);
1626

S
Shaohua Li 已提交
1627 1628
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1629
	blk_account_io_start(rq, true);
1630 1631
}

1632 1633
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1634 1635 1636 1637
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1638 1639
}

1640 1641 1642
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1643 1644 1645 1646
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1647
		.last = true,
1648
	};
1649
	blk_qc_t new_cookie;
1650
	blk_status_t ret;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1665
	case BLK_STS_DEV_RESOURCE:
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1678 1679
						blk_qc_t *cookie,
						bool bypass_insert)
1680 1681
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1682 1683
	bool run_queue = true;

1684 1685 1686 1687
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1688
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1689 1690
	 * and avoid driver to try to dispatch again.
	 */
1691
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1692
		run_queue = false;
1693
		bypass_insert = false;
M
Ming Lei 已提交
1694 1695
		goto insert;
	}
1696

1697
	if (q->elevator && !bypass_insert)
1698 1699
		goto insert;

1700
	if (!blk_mq_get_dispatch_budget(hctx))
1701 1702
		goto insert;

1703 1704
	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
		blk_mq_put_dispatch_budget(hctx);
1705
		goto insert;
1706
	}
1707

1708
	return __blk_mq_issue_directly(hctx, rq, cookie);
1709
insert:
1710 1711
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1712

1713
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1714
	return BLK_STS_OK;
1715 1716
}

1717 1718 1719
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1720
	blk_status_t ret;
1721
	int srcu_idx;
1722

1723
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1724

1725
	hctx_lock(hctx, &srcu_idx);
1726

1727
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1728
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1729
		blk_mq_sched_insert_request(rq, false, true, false);
1730 1731 1732
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1733
	hctx_unlock(hctx, srcu_idx);
1734 1735
}

1736
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1749 1750
}

1751
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1752
{
1753
	const int is_sync = op_is_sync(bio->bi_opf);
1754
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1755
	struct blk_mq_alloc_data data = { .flags = 0 };
1756
	struct request *rq;
1757
	unsigned int request_count = 0;
1758
	struct blk_plug *plug;
1759
	struct request *same_queue_rq = NULL;
1760
	blk_qc_t cookie;
J
Jens Axboe 已提交
1761
	unsigned int wb_acct;
1762 1763 1764

	blk_queue_bounce(q, &bio);

1765
	blk_queue_split(q, &bio);
1766

1767
	if (!bio_integrity_prep(bio))
1768
		return BLK_QC_T_NONE;
1769

1770 1771 1772
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1773

1774 1775 1776
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1777 1778
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1779 1780
	trace_block_getrq(q, bio, bio->bi_opf);

1781
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1782 1783
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1784 1785
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1786
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1787 1788
	}

1789
	wbt_track(rq, wb_acct);
1790

1791
	cookie = request_to_qc_t(data.hctx, rq);
1792

1793
	plug = current->plug;
1794
	if (unlikely(is_flush_fua)) {
1795
		blk_mq_put_ctx(data.ctx);
1796
		blk_mq_bio_to_request(rq, bio);
1797 1798 1799 1800

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1801
	} else if (plug && q->nr_hw_queues == 1) {
1802 1803
		struct request *last = NULL;

1804
		blk_mq_put_ctx(data.ctx);
1805
		blk_mq_bio_to_request(rq, bio);
1806 1807 1808 1809 1810 1811 1812

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1813 1814 1815
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1816
		if (!request_count)
1817
			trace_block_plug(q);
1818 1819
		else
			last = list_entry_rq(plug->mq_list.prev);
1820

1821 1822
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1823 1824
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1825
		}
1826

1827
		list_add_tail(&rq->queuelist, &plug->mq_list);
1828
	} else if (plug && !blk_queue_nomerges(q)) {
1829
		blk_mq_bio_to_request(rq, bio);
1830 1831

		/*
1832
		 * We do limited plugging. If the bio can be merged, do that.
1833 1834
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1835 1836
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1837
		 */
1838 1839 1840 1841 1842 1843
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1844 1845
		blk_mq_put_ctx(data.ctx);

1846 1847 1848
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1849 1850
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1851
		}
1852
	} else if (q->nr_hw_queues > 1 && is_sync) {
1853
		blk_mq_put_ctx(data.ctx);
1854 1855
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1856
	} else {
1857
		blk_mq_put_ctx(data.ctx);
1858
		blk_mq_bio_to_request(rq, bio);
1859
		blk_mq_sched_insert_request(rq, false, true, true);
1860
	}
1861

1862
	return cookie;
1863 1864
}

1865 1866
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1867
{
1868
	struct page *page;
1869

1870
	if (tags->rqs && set->ops->exit_request) {
1871
		int i;
1872

1873
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1874 1875 1876
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1877
				continue;
1878
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1879
			tags->static_rqs[i] = NULL;
1880
		}
1881 1882
	}

1883 1884
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1885
		list_del_init(&page->lru);
1886 1887 1888 1889 1890
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1891 1892
		__free_pages(page, page->private);
	}
1893
}
1894

1895 1896
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1897
	kfree(tags->rqs);
1898
	tags->rqs = NULL;
J
Jens Axboe 已提交
1899 1900
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1901

1902
	blk_mq_free_tags(tags);
1903 1904
}

1905 1906 1907 1908
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1909
{
1910
	struct blk_mq_tags *tags;
1911
	int node;
1912

1913 1914 1915 1916 1917
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1918
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1919 1920
	if (!tags)
		return NULL;
1921

1922
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1923
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1924
				 node);
1925 1926 1927 1928
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1929

J
Jens Axboe 已提交
1930 1931
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1932
				 node);
J
Jens Axboe 已提交
1933 1934 1935 1936 1937 1938
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1939 1940 1941 1942 1943 1944 1945 1946
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
1958
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1959 1960 1961
	return 0;
}

1962 1963 1964 1965 1966
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1967 1968 1969 1970 1971
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1972 1973 1974

	INIT_LIST_HEAD(&tags->page_list);

1975 1976 1977 1978
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1979
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1980
				cache_line_size());
1981
	left = rq_size * depth;
1982

1983
	for (i = 0; i < depth; ) {
1984 1985 1986 1987 1988
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1989
		while (this_order && left < order_to_size(this_order - 1))
1990 1991 1992
			this_order--;

		do {
1993
			page = alloc_pages_node(node,
1994
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1995
				this_order);
1996 1997 1998 1999 2000 2001 2002 2003 2004
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2005
			goto fail;
2006 2007

		page->private = this_order;
2008
		list_add_tail(&page->lru, &tags->page_list);
2009 2010

		p = page_address(page);
2011 2012 2013 2014
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2015
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2016
		entries_per_page = order_to_size(this_order) / rq_size;
2017
		to_do = min(entries_per_page, depth - i);
2018 2019
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2020 2021 2022
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2023 2024 2025
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2026 2027
			}

2028 2029 2030 2031
			p += rq_size;
			i++;
		}
	}
2032
	return 0;
2033

2034
fail:
2035 2036
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2037 2038
}

J
Jens Axboe 已提交
2039 2040 2041 2042 2043
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2044
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2045
{
2046
	struct blk_mq_hw_ctx *hctx;
2047 2048 2049
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2050
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2051
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2052 2053 2054 2055 2056 2057 2058 2059 2060

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2061
		return 0;
2062

J
Jens Axboe 已提交
2063 2064 2065
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2066 2067

	blk_mq_run_hw_queue(hctx, true);
2068
	return 0;
2069 2070
}

2071
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2072
{
2073 2074
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2075 2076
}

2077
/* hctx->ctxs will be freed in queue's release handler */
2078 2079 2080 2081
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2082 2083
	blk_mq_debugfs_unregister_hctx(hctx);

2084 2085
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2086

2087
	if (set->ops->exit_request)
2088
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2089

2090 2091
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2092 2093 2094
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2095
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2096
		cleanup_srcu_struct(hctx->srcu);
2097

2098
	blk_mq_remove_cpuhp(hctx);
2099
	blk_free_flush_queue(hctx->fq);
2100
	sbitmap_free(&hctx->ctx_map);
2101 2102
}

M
Ming Lei 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2112
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2113 2114 2115
	}
}

2116 2117 2118
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2119
{
2120 2121 2122 2123 2124 2125
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2126
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2127 2128 2129
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2130
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2131

2132
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2133 2134

	hctx->tags = set->tags[hctx_idx];
2135 2136

	/*
2137 2138
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2139
	 */
2140
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2141 2142 2143
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2144

2145 2146
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2147
		goto free_ctxs;
2148

2149
	hctx->nr_ctx = 0;
2150

2151 2152 2153
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2154 2155 2156
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2157

2158 2159 2160
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2161 2162
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2163
		goto sched_exit_hctx;
2164

2165
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2166
		goto free_fq;
2167

2168
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2169
		init_srcu_struct(hctx->srcu);
2170

2171 2172
	blk_mq_debugfs_register_hctx(q, hctx);

2173
	return 0;
2174

2175 2176
 free_fq:
	kfree(hctx->fq);
2177 2178
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2179 2180 2181
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2182
 free_bitmap:
2183
	sbitmap_free(&hctx->ctx_map);
2184 2185 2186
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2187
	blk_mq_remove_cpuhp(hctx);
2188 2189
	return -1;
}
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2209
		hctx = blk_mq_map_queue(q, i);
2210
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2211
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2212 2213 2214
	}
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2237 2238 2239 2240 2241
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2242 2243
}

2244
static void blk_mq_map_swqueue(struct request_queue *q)
2245
{
2246
	unsigned int i, hctx_idx;
2247 2248
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2249
	struct blk_mq_tag_set *set = q->tag_set;
2250

2251 2252 2253 2254 2255
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2256
	queue_for_each_hw_ctx(q, hctx, i) {
2257
		cpumask_clear(hctx->cpumask);
2258
		hctx->nr_ctx = 0;
2259
		hctx->dispatch_from = NULL;
2260 2261 2262
	}

	/*
2263
	 * Map software to hardware queues.
2264 2265
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2266
	 */
2267
	for_each_possible_cpu(i) {
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2281
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2282
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2283

2284
		cpumask_set_cpu(i, hctx->cpumask);
2285 2286 2287
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2288

2289 2290
	mutex_unlock(&q->sysfs_lock);

2291
	queue_for_each_hw_ctx(q, hctx, i) {
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2307

M
Ming Lei 已提交
2308 2309 2310
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2311 2312 2313 2314 2315
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2316
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2317

2318 2319 2320
		/*
		 * Initialize batch roundrobin counts
		 */
2321
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2322 2323
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2324 2325
}

2326 2327 2328 2329
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2330
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2331 2332 2333 2334
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2335
	queue_for_each_hw_ctx(q, hctx, i) {
2336 2337 2338
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2339
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2340 2341 2342
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2343
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2344
		}
2345 2346 2347
	}
}

2348 2349
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2350 2351
{
	struct request_queue *q;
2352

2353 2354
	lockdep_assert_held(&set->tag_list_lock);

2355 2356
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2357
		queue_set_hctx_shared(q, shared);
2358 2359 2360 2361 2362 2363 2364 2365 2366
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2367
	list_del_rcu(&q->tag_set_list);
2368 2369 2370 2371 2372 2373
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2374
	mutex_unlock(&set->tag_list_lock);
2375
	synchronize_rcu();
2376
	INIT_LIST_HEAD(&q->tag_set_list);
2377 2378 2379 2380 2381 2382 2383 2384
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2385

2386 2387 2388 2389 2390
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2391 2392 2393 2394 2395 2396
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2397
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2398

2399 2400 2401
	mutex_unlock(&set->tag_list_lock);
}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2414 2415 2416
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2417
		kobject_put(&hctx->kobj);
2418
	}
2419

2420 2421
	q->mq_map = NULL;

2422 2423
	kfree(q->queue_hw_ctx);

2424 2425 2426 2427 2428 2429
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2430 2431 2432
	free_percpu(q->queue_ctx);
}

2433
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2434 2435 2436
{
	struct request_queue *uninit_q, *q;

2437
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2449 2450 2451 2452
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2453
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2454 2455 2456 2457 2458 2459 2460 2461 2462
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2463 2464
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2465
{
K
Keith Busch 已提交
2466 2467
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2468

K
Keith Busch 已提交
2469
	blk_mq_sysfs_unregister(q);
2470 2471 2472

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2473
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2474
		int node;
2475

K
Keith Busch 已提交
2476 2477 2478 2479
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2480
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2481
					GFP_KERNEL, node);
2482
		if (!hctxs[i])
K
Keith Busch 已提交
2483
			break;
2484

2485
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2486 2487 2488 2489 2490
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2491

2492
		atomic_set(&hctxs[i]->nr_active, 0);
2493
		hctxs[i]->numa_node = node;
2494
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2495 2496 2497 2498 2499 2500 2501 2502

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2503
	}
K
Keith Busch 已提交
2504 2505 2506 2507
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2508 2509
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2510 2511 2512 2513 2514 2515 2516
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2517
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2518 2519 2520 2521 2522 2523
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2524 2525 2526
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2527
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2528 2529
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2530 2531 2532
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2533 2534
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2535
		goto err_exit;
K
Keith Busch 已提交
2536

2537 2538 2539
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2540 2541 2542 2543 2544
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2545
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2546 2547 2548 2549

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2550

2551
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2552
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2553 2554 2555

	q->nr_queues = nr_cpu_ids;

2556
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2557

2558
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2559
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2560

2561 2562
	q->sg_reserved_size = INT_MAX;

2563
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2564 2565 2566
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2567
	blk_queue_make_request(q, blk_mq_make_request);
2568 2569
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2570

2571 2572 2573 2574 2575
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2576 2577 2578 2579 2580
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2581 2582
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2583

2584
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2585
	blk_mq_add_queue_tag_set(set, q);
2586
	blk_mq_map_swqueue(q);
2587

2588 2589 2590
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2591
		ret = elevator_init_mq(q);
2592 2593 2594 2595
		if (ret)
			return ERR_PTR(ret);
	}

2596
	return q;
2597

2598
err_hctxs:
K
Keith Busch 已提交
2599
	kfree(q->queue_hw_ctx);
2600
err_percpu:
K
Keith Busch 已提交
2601
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2602 2603
err_exit:
	q->mq_ops = NULL;
2604 2605
	return ERR_PTR(-ENOMEM);
}
2606
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2607 2608 2609

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2610
	struct blk_mq_tag_set	*set = q->tag_set;
2611

2612
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2613
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2614 2615 2616
}

/* Basically redo blk_mq_init_queue with queue frozen */
2617
static void blk_mq_queue_reinit(struct request_queue *q)
2618
{
2619
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2620

2621
	blk_mq_debugfs_unregister_hctxs(q);
2622 2623
	blk_mq_sysfs_unregister(q);

2624 2625
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2626 2627
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2628
	 */
2629
	blk_mq_map_swqueue(q);
2630

2631
	blk_mq_sysfs_register(q);
2632
	blk_mq_debugfs_register_hctxs(q);
2633 2634
}

2635 2636 2637 2638
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2639 2640
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2641 2642 2643 2644 2645 2646
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2647
		blk_mq_free_rq_map(set->tags[i]);
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2687 2688
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2708
		return set->ops->map_queues(set);
2709
	} else
2710 2711 2712
		return blk_mq_map_queues(set);
}

2713 2714 2715 2716 2717 2718
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2719 2720
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2721 2722
	int ret;

B
Bart Van Assche 已提交
2723 2724
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2725 2726
	if (!set->nr_hw_queues)
		return -EINVAL;
2727
	if (!set->queue_depth)
2728 2729 2730 2731
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2732
	if (!set->ops->queue_rq)
2733 2734
		return -EINVAL;

2735 2736 2737
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2738 2739 2740 2741 2742
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2753 2754 2755 2756 2757
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2758

K
Keith Busch 已提交
2759
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2760 2761
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2762
		return -ENOMEM;
2763

2764 2765 2766
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2767 2768 2769
	if (!set->mq_map)
		goto out_free_tags;

2770
	ret = blk_mq_update_queue_map(set);
2771 2772 2773 2774 2775
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2776
		goto out_free_mq_map;
2777

2778 2779 2780
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2781
	return 0;
2782 2783 2784 2785 2786

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2787 2788
	kfree(set->tags);
	set->tags = NULL;
2789
	return ret;
2790 2791 2792 2793 2794 2795 2796
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2797 2798
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2799

2800 2801 2802
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2803
	kfree(set->tags);
2804
	set->tags = NULL;
2805 2806 2807
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2808 2809 2810 2811 2812 2813
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2814
	if (!set)
2815 2816
		return -EINVAL;

2817
	blk_mq_freeze_queue(q);
2818
	blk_mq_quiesce_queue(q);
2819

2820 2821
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2822 2823
		if (!hctx->tags)
			continue;
2824 2825 2826 2827
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2828
		if (!hctx->sched_tags) {
2829
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2830 2831 2832 2833 2834
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2835 2836 2837 2838 2839 2840 2841
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2842
	blk_mq_unquiesce_queue(q);
2843 2844
	blk_mq_unfreeze_queue(q);

2845 2846 2847
	return ret;
}

2848 2849
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2850 2851 2852
{
	struct request_queue *q;

2853 2854
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2864
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2865 2866
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2867
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2868 2869 2870 2871 2872
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2873 2874 2875 2876 2877 2878 2879

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2880 2881
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2882 2883 2884 2885
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2886
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2908
	int bucket;
2909

2910 2911 2912 2913
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2914 2915
}

2916 2917 2918 2919 2920
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2921
	int bucket;
2922 2923 2924 2925 2926

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2927
	if (!blk_poll_stats_enable(q))
2928 2929 2930 2931 2932 2933 2934 2935
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2936 2937
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2938
	 */
2939 2940 2941 2942 2943 2944
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2945 2946 2947 2948

	return ret;
}

2949
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2950
				     struct blk_mq_hw_ctx *hctx,
2951 2952 2953 2954
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2955
	unsigned int nsecs;
2956 2957
	ktime_t kt;

J
Jens Axboe 已提交
2958
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2976 2977
		return false;

J
Jens Axboe 已提交
2978
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2979 2980 2981 2982 2983

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2984
	kt = nsecs;
2985 2986 2987 2988 2989 2990 2991

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
2992
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3007 3008 3009 3010 3011
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3012 3013 3014 3015 3016 3017 3018
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3019
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3020 3021
		return true;

J
Jens Axboe 已提交
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3047
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3048 3049 3050
	return false;
}

3051
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3052 3053 3054 3055
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3056
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3057 3058 3059
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3060 3061
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3062
	else {
3063
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3064 3065 3066 3067 3068 3069 3070 3071 3072
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3073 3074 3075 3076

	return __blk_mq_poll(hctx, rq);
}

3077 3078
static int __init blk_mq_init(void)
{
3079 3080
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3081 3082 3083
	return 0;
}
subsys_initcall(blk_mq_init);