blk-mq.c 74.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98
	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128 129
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	blk_mq_freeze_queue_wait(q);
}
165 166 167 168 169 170 171 172 173

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
174
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175

176
void blk_mq_unfreeze_queue(struct request_queue *q)
177
{
178
	int freeze_depth;
179

180 181 182
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
183
		percpu_ref_reinit(&q->q_usage_counter);
184
		wake_up_all(&q->mq_freeze_wq);
185
	}
186
}
187
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

203
/**
204
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 206 207
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
208 209 210
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
211 212 213 214 215 216 217
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

218
	blk_mq_quiesce_queue_nowait(q);
219

220 221
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
222
			synchronize_srcu(hctx->srcu);
223 224 225 226 227 228 229 230
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

231 232 233 234 235 236 237 238 239
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
240 241 242
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
243
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244
	spin_unlock_irqrestore(q->queue_lock, flags);
245

246 247
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
248 249 250
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

251 252 253 254 255 256 257 258 259 260
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

261 262 263 264 265 266
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

267 268
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
269
{
270 271 272
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

273 274
	rq->rq_flags = 0;

275 276 277 278 279 280 281 282 283 284 285 286 287
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

288 289
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
290 291
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
292
	rq->cmd_flags = op;
293 294
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
295
	if (blk_queue_io_stat(data->q))
296
		rq->rq_flags |= RQF_IO_STAT;
297 298 299 300 301 302
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
303
	rq->start_time = jiffies;
304 305
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
306
	set_start_time_ns(rq);
307 308 309 310 311 312 313 314 315 316 317
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
318 319
	rq->timeout = 0;

320 321 322 323
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

324 325
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
326 327
}

328 329 330 331 332 333
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
334
	unsigned int tag;
335
	bool put_ctx_on_error = false;
336 337 338

	blk_queue_enter_live(q);
	data->q = q;
339 340 341 342
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
343 344
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
345 346
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
347 348 349 350 351 352 353 354

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
355 356
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
357 358
	}

359 360
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
361 362
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
363 364
			data->ctx = NULL;
		}
365 366
		blk_queue_exit(q);
		return NULL;
367 368
	}

369
	rq = blk_mq_rq_ctx_init(data, tag, op);
370 371
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
372
		if (e && e->type->ops.mq.prepare_request) {
373 374 375
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

376 377
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
378
		}
379 380 381
	}
	data->hctx->queued++;
	return rq;
382 383
}

384
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
385
		blk_mq_req_flags_t flags)
386
{
387
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
388
	struct request *rq;
389
	int ret;
390

391
	ret = blk_queue_enter(q, flags);
392 393
	if (ret)
		return ERR_PTR(ret);
394

395
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
396
	blk_queue_exit(q);
397

398
	if (!rq)
399
		return ERR_PTR(-EWOULDBLOCK);
400

401 402
	blk_mq_put_ctx(alloc_data.ctx);

403 404 405
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
406 407
	return rq;
}
408
EXPORT_SYMBOL(blk_mq_alloc_request);
409

410
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
411
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
412
{
413
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
414
	struct request *rq;
415
	unsigned int cpu;
M
Ming Lin 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

430
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
431 432 433
	if (ret)
		return ERR_PTR(ret);

434 435 436 437
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
438 439 440 441
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
442
	}
443 444
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
445

446
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
447
	blk_queue_exit(q);
448

449 450 451 452
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
453 454 455
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

456
void blk_mq_free_request(struct request *rq)
457 458
{
	struct request_queue *q = rq->q;
459 460 461 462 463
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

464
	if (rq->rq_flags & RQF_ELVPRIV) {
465 466 467 468 469 470 471
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
472

473
	ctx->rq_completed[rq_is_sync(rq)]++;
474
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
475
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
476

477 478 479
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
480
	wbt_done(q->rq_wb, &rq->issue_stat);
481

S
Shaohua Li 已提交
482 483 484
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

485
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
486
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
487 488 489
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
490
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
491
	blk_mq_sched_restart(hctx);
492
	blk_queue_exit(q);
493
}
J
Jens Axboe 已提交
494
EXPORT_SYMBOL_GPL(blk_mq_free_request);
495

496
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
497
{
M
Ming Lei 已提交
498 499
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
500
	if (rq->end_io) {
J
Jens Axboe 已提交
501
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
502
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
503 504 505
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
506
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
507
	}
508
}
509
EXPORT_SYMBOL(__blk_mq_end_request);
510

511
void blk_mq_end_request(struct request *rq, blk_status_t error)
512 513 514
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
515
	__blk_mq_end_request(rq, error);
516
}
517
EXPORT_SYMBOL(blk_mq_end_request);
518

519
static void __blk_mq_complete_request_remote(void *data)
520
{
521
	struct request *rq = data;
522

523
	rq->q->softirq_done_fn(rq);
524 525
}

526
static void __blk_mq_complete_request(struct request *rq)
527 528
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
529
	bool shared = false;
530 531
	int cpu;

532
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
533
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
534

535 536 537 538 539 540 541
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
542
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 544 545
		rq->q->softirq_done_fn(rq);
		return;
	}
546 547

	cpu = get_cpu();
C
Christoph Hellwig 已提交
548 549 550 551
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552
		rq->csd.func = __blk_mq_complete_request_remote;
553 554
		rq->csd.info = rq;
		rq->csd.flags = 0;
555
		smp_call_function_single_async(ctx->cpu, &rq->csd);
556
	} else {
557
		rq->q->softirq_done_fn(rq);
558
	}
559 560
	put_cpu();
}
561

562 563 564 565 566
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
567
		srcu_read_unlock(hctx->srcu, srcu_idx);
568 569 570 571 572 573 574
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_lock();
	else
575
		*srcu_idx = srcu_read_lock(hctx->srcu);
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

608 609 610 611 612 613 614 615
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
616
void blk_mq_complete_request(struct request *rq)
617
{
618
	struct request_queue *q = rq->q;
619 620
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
621 622

	if (unlikely(blk_should_fake_timeout(q)))
623
		return;
624

625 626 627 628 629 630 631 632 633 634 635
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
636
	hctx_lock(hctx, &srcu_idx);
637
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
638
		__blk_mq_complete_request(rq);
639
	hctx_unlock(hctx, srcu_idx);
640 641
}
EXPORT_SYMBOL(blk_mq_complete_request);
642

643 644
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
645
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
646 647 648
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

649
void blk_mq_start_request(struct request *rq)
650 651 652
{
	struct request_queue *q = rq->q;

653 654
	blk_mq_sched_started_request(rq);

655 656
	trace_block_rq_issue(q, rq);

657
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
658
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
659
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
660
		wbt_issue(q->rq_wb, &rq->issue_stat);
661 662
	}

663
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
664

665
	/*
666 667 668 669
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
670
	 *
671 672 673 674
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
675
	 */
676 677 678 679 680 681 682 683 684
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();

685 686 687 688 689 690 691 692
	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
693
}
694
EXPORT_SYMBOL(blk_mq_start_request);
695

696
/*
T
Tejun Heo 已提交
697 698 699
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
700
 */
701
static void __blk_mq_requeue_request(struct request *rq)
702 703 704
{
	struct request_queue *q = rq->q;

705 706
	blk_mq_put_driver_tag(rq);

707
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
708
	wbt_requeue(q->rq_wb, &rq->issue_stat);
709
	blk_mq_sched_requeue_request(rq);
710

T
Tejun Heo 已提交
711
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
712
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
713 714 715
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
716 717
}

718
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
719 720 721 722
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
723
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
724 725 726
}
EXPORT_SYMBOL(blk_mq_requeue_request);

727 728 729
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
730
		container_of(work, struct request_queue, requeue_work.work);
731 732 733
	LIST_HEAD(rq_list);
	struct request *rq, *next;

734
	spin_lock_irq(&q->requeue_lock);
735
	list_splice_init(&q->requeue_list, &rq_list);
736
	spin_unlock_irq(&q->requeue_lock);
737 738

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
739
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
740 741
			continue;

742
		rq->rq_flags &= ~RQF_SOFTBARRIER;
743
		list_del_init(&rq->queuelist);
744
		blk_mq_sched_insert_request(rq, true, false, false, true);
745 746 747 748 749
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
750
		blk_mq_sched_insert_request(rq, false, false, false, true);
751 752
	}

753
	blk_mq_run_hw_queues(q, false);
754 755
}

756 757
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
758 759 760 761 762 763
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
764
	 * request head insertion from the workqueue.
765
	 */
766
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
767 768 769

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
770
		rq->rq_flags |= RQF_SOFTBARRIER;
771 772 773 774 775
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
776 777 778

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
779 780 781 782 783
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
784
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
785 786 787
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

788 789 790
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
791 792
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
793 794 795
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

796 797
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
798 799
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
800
		return tags->rqs[tag];
801
	}
802 803

	return NULL;
804 805 806
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

807
struct blk_mq_timeout_data {
808 809
	unsigned long next;
	unsigned int next_set;
810
	unsigned int nr_expired;
811 812
};

813
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
814
{
J
Jens Axboe 已提交
815
	const struct blk_mq_ops *ops = req->q->mq_ops;
816
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
817

818 819
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;

820
	if (ops->timeout)
821
		ret = ops->timeout(req, reserved);
822 823 824 825 826 827

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
828 829 830 831 832 833
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
834 835 836 837 838 839 840 841
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
842
}
843

844 845 846 847
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
848 849 850 851
	unsigned long gstate, deadline;
	int start;

	might_sleep();
852

T
Tejun Heo 已提交
853
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
854
		return;
855

856 857 858 859 860 861 862 863 864
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
		deadline = rq->deadline;
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
865

866 867 868 869 870 871
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
872 873
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
874 875
		data->next_set = 1;
	}
876 877
}

878 879 880 881 882 883 884 885 886 887
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
888 889
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
890 891 892
		blk_mq_rq_timed_out(rq, reserved);
}

893
static void blk_mq_timeout_work(struct work_struct *work)
894
{
895 896
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
897 898 899
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
900
		.nr_expired	= 0,
901
	};
902
	struct blk_mq_hw_ctx *hctx;
903
	int i;
904

905 906 907 908 909 910 911 912 913
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
914
	 * blk_freeze_queue_start, and the moment the last request is
915 916 917 918
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
919 920
		return;

921
	/* scan for the expired ones and set their ->aborted_gstate */
922
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
940
				synchronize_srcu(hctx->srcu);
941 942 943 944 945 946 947 948 949 950

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

951 952 953
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
954
	} else {
955 956 957 958 959
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
960
	}
961
	blk_queue_exit(q);
962 963
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

982 983 984 985
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
986
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
987
{
988 989 990 991
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
992

993
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
994
}
995
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
996

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1036 1037 1038 1039
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1040

1041
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1042 1043
}

1044 1045
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1046 1047 1048 1049 1050 1051 1052
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1053 1054
	might_sleep_if(wait);

1055 1056
	if (rq->tag != -1)
		goto done;
1057

1058 1059 1060
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1061 1062
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1063 1064 1065 1066
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1067 1068 1069
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1070 1071 1072 1073
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1074 1075
}

1076 1077
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1078 1079 1080 1081 1082
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1083
	list_del_init(&wait->entry);
1084 1085 1086 1087
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1088 1089 1090 1091 1092 1093 1094 1095
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
 * restart. For both caes, take care to check the condition again after
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1096
{
1097
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1098
	bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1099
	struct sbq_wait_state *ws;
1100 1101
	wait_queue_entry_t *wait;
	bool ret;
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	if (!shared_tags) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
	} else {
		wait = &this_hctx->dispatch_wait;
		if (!list_empty_careful(&wait->entry))
			return false;

		spin_lock(&this_hctx->lock);
		if (!list_empty(&wait->entry)) {
			spin_unlock(&this_hctx->lock);
			return false;
		}
1116

1117 1118
		ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
		add_wait_queue(&ws->wait, wait);
1119 1120
	}

1121
	/*
1122 1123 1124
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1125
	 */
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	ret = blk_mq_get_driver_tag(rq, hctx, false);

	if (!shared_tags) {
		/*
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return ret;
	} else {
		if (!ret) {
			spin_unlock(&this_hctx->lock);
			return false;
		}

		/*
		 * We got a tag, remove ourselves from the wait queue to ensure
		 * someone else gets the wakeup.
		 */
		spin_lock_irq(&ws->wait.lock);
		list_del_init(&wait->entry);
		spin_unlock_irq(&ws->wait.lock);
1147
		spin_unlock(&this_hctx->lock);
1148
		return true;
1149
	}
1150 1151
}

1152
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1153
			     bool got_budget)
1154
{
1155
	struct blk_mq_hw_ctx *hctx;
1156
	struct request *rq, *nxt;
1157
	bool no_tag = false;
1158
	int errors, queued;
1159

1160 1161 1162
	if (list_empty(list))
		return false;

1163 1164
	WARN_ON(!list_is_singular(list) && got_budget);

1165 1166 1167
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1168
	errors = queued = 0;
1169
	do {
1170
		struct blk_mq_queue_data bd;
1171
		blk_status_t ret;
1172

1173
		rq = list_first_entry(list, struct request, queuelist);
1174
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1175
			/*
1176
			 * The initial allocation attempt failed, so we need to
1177 1178 1179 1180
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1181
			 */
1182
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1183 1184
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1185 1186 1187 1188 1189 1190
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1191 1192 1193 1194
				break;
			}
		}

1195 1196
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1197
			break;
1198
		}
1199

1200 1201
		list_del_init(&rq->queuelist);

1202
		bd.rq = rq;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1214 1215

		ret = q->mq_ops->queue_rq(hctx, &bd);
1216
		if (ret == BLK_STS_RESOURCE) {
1217 1218
			/*
			 * If an I/O scheduler has been configured and we got a
1219 1220
			 * driver tag for the next request already, free it
			 * again.
1221 1222 1223 1224 1225
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1226
			list_add(&rq->queuelist, list);
1227
			__blk_mq_requeue_request(rq);
1228
			break;
1229 1230 1231
		}

		if (unlikely(ret != BLK_STS_OK)) {
1232
			errors++;
1233
			blk_mq_end_request(rq, BLK_STS_IOERR);
1234
			continue;
1235 1236
		}

1237
		queued++;
1238
	} while (!list_empty(list));
1239

1240
	hctx->dispatched[queued_to_index(queued)]++;
1241 1242 1243 1244 1245

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1246
	if (!list_empty(list)) {
1247
		spin_lock(&hctx->lock);
1248
		list_splice_init(list, &hctx->dispatch);
1249
		spin_unlock(&hctx->lock);
1250

1251
		/*
1252 1253 1254
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1255
		 *
1256 1257 1258 1259
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1260
		 *
1261 1262 1263 1264 1265 1266 1267
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1268
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1269
		 *   and dm-rq.
1270
		 */
1271 1272
		if (!blk_mq_sched_needs_restart(hctx) ||
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1273
			blk_mq_run_hw_queue(hctx, true);
1274
	}
1275

1276
	return (queued + errors) != 0;
1277 1278
}

1279 1280 1281 1282
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1283 1284 1285 1286
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1287 1288 1289
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1290 1291 1292 1293 1294 1295
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1296
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1297

1298 1299 1300
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1301 1302
}

1303 1304 1305 1306 1307 1308 1309 1310
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1311 1312
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1313 1314

	if (--hctx->next_cpu_batch <= 0) {
1315
		int next_cpu;
1316 1317 1318 1319 1320 1321 1322 1323 1324

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1325
	return hctx->next_cpu;
1326 1327
}

1328 1329
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1330
{
1331 1332 1333 1334
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1335 1336
		return;

1337
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1338 1339
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1340
			__blk_mq_run_hw_queue(hctx);
1341
			put_cpu();
1342 1343
			return;
		}
1344

1345
		put_cpu();
1346
	}
1347

1348 1349 1350
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1351 1352 1353 1354 1355 1356 1357 1358
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1359
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1360
{
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1372 1373 1374 1375
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1376 1377

	if (need_run) {
1378 1379 1380 1381 1382
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1383
}
O
Omar Sandoval 已提交
1384
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1385

1386
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1387 1388 1389 1390 1391
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1392
		if (blk_mq_hctx_stopped(hctx))
1393 1394
			continue;

1395
		blk_mq_run_hw_queue(hctx, async);
1396 1397
	}
}
1398
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1420 1421 1422
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1423
 * BLK_STS_RESOURCE is usually returned.
1424 1425 1426 1427 1428
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1429 1430
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1431
	cancel_delayed_work(&hctx->run_work);
1432

1433
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1434
}
1435
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1436

1437 1438 1439
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1440
 * BLK_STS_RESOURCE is usually returned.
1441 1442 1443 1444 1445
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1446 1447
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1448 1449 1450 1451 1452
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1453 1454 1455
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1456 1457 1458
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1459

1460
	blk_mq_run_hw_queue(hctx, false);
1461 1462 1463
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1484
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1485 1486 1487 1488
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1489 1490
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1491 1492 1493
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1494
static void blk_mq_run_work_fn(struct work_struct *work)
1495 1496 1497
{
	struct blk_mq_hw_ctx *hctx;

1498
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1499

1500 1501 1502 1503 1504 1505 1506 1507
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1508

1509 1510 1511
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1512 1513 1514 1515

	__blk_mq_run_hw_queue(hctx);
}

1516 1517 1518

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1519
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1520
		return;
1521

1522 1523 1524 1525 1526
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1527
	blk_mq_stop_hw_queue(hctx);
1528 1529 1530 1531
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1532 1533 1534
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1535 1536 1537
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1538
{
J
Jens Axboe 已提交
1539 1540
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1541 1542
	lockdep_assert_held(&ctx->lock);

1543 1544
	trace_block_rq_insert(hctx->queue, rq);

1545 1546 1547 1548
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1549
}
1550

1551 1552
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1553 1554 1555
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1556 1557
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1558
	__blk_mq_insert_req_list(hctx, rq, at_head);
1559 1560 1561
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1562 1563 1564 1565
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1566
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1567 1568 1569 1570 1571 1572 1573 1574
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1575 1576
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1577 1578
}

1579 1580
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1592
		BUG_ON(rq->mq_ctx != ctx);
1593
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1594
		__blk_mq_insert_req_list(hctx, rq, false);
1595
	}
1596
	blk_mq_hctx_mark_pending(hctx, ctx);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1633 1634 1635 1636
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1653 1654 1655
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1656 1657 1658 1659 1660
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1661
	blk_init_request_from_bio(rq, bio);
1662

S
Shaohua Li 已提交
1663 1664
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1665
	blk_account_io_start(rq, true);
1666 1667
}

1668 1669 1670 1671 1672 1673 1674
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1675
}
1676

1677 1678
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1679 1680 1681 1682
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1683 1684
}

M
Ming Lei 已提交
1685 1686
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
1687
					blk_qc_t *cookie)
1688 1689 1690 1691
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1692
		.last = true,
1693
	};
1694
	blk_qc_t new_cookie;
1695
	blk_status_t ret;
M
Ming Lei 已提交
1696 1697
	bool run_queue = true;

1698 1699
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1700 1701 1702
		run_queue = false;
		goto insert;
	}
1703

1704
	if (q->elevator)
1705 1706
		goto insert;

M
Ming Lei 已提交
1707
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1708 1709
		goto insert;

1710
	if (!blk_mq_get_dispatch_budget(hctx)) {
1711 1712
		blk_mq_put_driver_tag(rq);
		goto insert;
1713
	}
1714

1715 1716
	new_cookie = request_to_qc_t(hctx, rq);

1717 1718 1719 1720 1721 1722
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1723 1724
	switch (ret) {
	case BLK_STS_OK:
1725
		*cookie = new_cookie;
1726
		return;
1727 1728 1729 1730
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1731
		*cookie = BLK_QC_T_NONE;
1732
		blk_mq_end_request(rq, ret);
1733
		return;
1734
	}
1735

1736
insert:
1737 1738
	blk_mq_sched_insert_request(rq, false, run_queue, false,
					hctx->flags & BLK_MQ_F_BLOCKING);
1739 1740
}

1741 1742 1743
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1744
	int srcu_idx;
1745

1746
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1747

1748 1749 1750
	hctx_lock(hctx, &srcu_idx);
	__blk_mq_try_issue_directly(hctx, rq, cookie);
	hctx_unlock(hctx, srcu_idx);
1751 1752
}

1753
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1754
{
1755
	const int is_sync = op_is_sync(bio->bi_opf);
1756
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1757
	struct blk_mq_alloc_data data = { .flags = 0 };
1758
	struct request *rq;
1759
	unsigned int request_count = 0;
1760
	struct blk_plug *plug;
1761
	struct request *same_queue_rq = NULL;
1762
	blk_qc_t cookie;
J
Jens Axboe 已提交
1763
	unsigned int wb_acct;
1764 1765 1766

	blk_queue_bounce(q, &bio);

1767
	blk_queue_split(q, &bio);
1768

1769
	if (!bio_integrity_prep(bio))
1770
		return BLK_QC_T_NONE;
1771

1772 1773 1774
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1775

1776 1777 1778
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1779 1780
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1781 1782
	trace_block_getrq(q, bio, bio->bi_opf);

1783
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1784 1785
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1786 1787
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1788
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1789 1790 1791
	}

	wbt_track(&rq->issue_stat, wb_acct);
1792

1793
	cookie = request_to_qc_t(data.hctx, rq);
1794

1795
	plug = current->plug;
1796
	if (unlikely(is_flush_fua)) {
1797
		blk_mq_put_ctx(data.ctx);
1798
		blk_mq_bio_to_request(rq, bio);
1799 1800 1801 1802

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1803
	} else if (plug && q->nr_hw_queues == 1) {
1804 1805
		struct request *last = NULL;

1806
		blk_mq_put_ctx(data.ctx);
1807
		blk_mq_bio_to_request(rq, bio);
1808 1809 1810 1811 1812 1813 1814

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1815 1816 1817
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1818
		if (!request_count)
1819
			trace_block_plug(q);
1820 1821
		else
			last = list_entry_rq(plug->mq_list.prev);
1822

1823 1824
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1825 1826
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1827
		}
1828

1829
		list_add_tail(&rq->queuelist, &plug->mq_list);
1830
	} else if (plug && !blk_queue_nomerges(q)) {
1831
		blk_mq_bio_to_request(rq, bio);
1832 1833

		/*
1834
		 * We do limited plugging. If the bio can be merged, do that.
1835 1836
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1837 1838
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1839
		 */
1840 1841 1842 1843 1844 1845
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1846 1847
		blk_mq_put_ctx(data.ctx);

1848 1849 1850
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1851 1852
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1853
		}
1854
	} else if (q->nr_hw_queues > 1 && is_sync) {
1855
		blk_mq_put_ctx(data.ctx);
1856 1857
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1858
	} else if (q->elevator) {
1859
		blk_mq_put_ctx(data.ctx);
1860
		blk_mq_bio_to_request(rq, bio);
1861
		blk_mq_sched_insert_request(rq, false, true, true, true);
1862
	} else {
1863
		blk_mq_put_ctx(data.ctx);
1864 1865
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1866
		blk_mq_run_hw_queue(data.hctx, true);
1867
	}
1868

1869
	return cookie;
1870 1871
}

1872 1873
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1874
{
1875
	struct page *page;
1876

1877
	if (tags->rqs && set->ops->exit_request) {
1878
		int i;
1879

1880
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1881 1882 1883
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1884
				continue;
1885
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1886
			tags->static_rqs[i] = NULL;
1887
		}
1888 1889
	}

1890 1891
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1892
		list_del_init(&page->lru);
1893 1894 1895 1896 1897
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1898 1899
		__free_pages(page, page->private);
	}
1900
}
1901

1902 1903
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1904
	kfree(tags->rqs);
1905
	tags->rqs = NULL;
J
Jens Axboe 已提交
1906 1907
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1908

1909
	blk_mq_free_tags(tags);
1910 1911
}

1912 1913 1914 1915
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1916
{
1917
	struct blk_mq_tags *tags;
1918
	int node;
1919

1920 1921 1922 1923 1924
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1925
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1926 1927
	if (!tags)
		return NULL;
1928

1929
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1930
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1931
				 node);
1932 1933 1934 1935
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1936

J
Jens Axboe 已提交
1937 1938
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1939
				 node);
J
Jens Axboe 已提交
1940 1941 1942 1943 1944 1945
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1946 1947 1948 1949 1950 1951 1952 1953
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
	return 0;
}

1970 1971 1972 1973 1974
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1975 1976 1977 1978 1979
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1980 1981 1982

	INIT_LIST_HEAD(&tags->page_list);

1983 1984 1985 1986
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1987
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1988
				cache_line_size());
1989
	left = rq_size * depth;
1990

1991
	for (i = 0; i < depth; ) {
1992 1993 1994 1995 1996
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1997
		while (this_order && left < order_to_size(this_order - 1))
1998 1999 2000
			this_order--;

		do {
2001
			page = alloc_pages_node(node,
2002
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2003
				this_order);
2004 2005 2006 2007 2008 2009 2010 2011 2012
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2013
			goto fail;
2014 2015

		page->private = this_order;
2016
		list_add_tail(&page->lru, &tags->page_list);
2017 2018

		p = page_address(page);
2019 2020 2021 2022
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2023
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2024
		entries_per_page = order_to_size(this_order) / rq_size;
2025
		to_do = min(entries_per_page, depth - i);
2026 2027
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2028 2029 2030
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2031 2032 2033
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2034 2035
			}

2036 2037 2038 2039
			p += rq_size;
			i++;
		}
	}
2040
	return 0;
2041

2042
fail:
2043 2044
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2045 2046
}

J
Jens Axboe 已提交
2047 2048 2049 2050 2051
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2052
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2053
{
2054
	struct blk_mq_hw_ctx *hctx;
2055 2056 2057
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2058
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2059
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2060 2061 2062 2063 2064 2065 2066 2067 2068

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2069
		return 0;
2070

J
Jens Axboe 已提交
2071 2072 2073
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2074 2075

	blk_mq_run_hw_queue(hctx, true);
2076
	return 0;
2077 2078
}

2079
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2080
{
2081 2082
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2083 2084
}

2085
/* hctx->ctxs will be freed in queue's release handler */
2086 2087 2088 2089
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2090 2091
	blk_mq_debugfs_unregister_hctx(hctx);

2092 2093
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2094

2095
	if (set->ops->exit_request)
2096
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2097

2098 2099
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2100 2101 2102
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2103
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2104
		cleanup_srcu_struct(hctx->srcu);
2105

2106
	blk_mq_remove_cpuhp(hctx);
2107
	blk_free_flush_queue(hctx->fq);
2108
	sbitmap_free(&hctx->ctx_map);
2109 2110
}

M
Ming Lei 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2120
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2121 2122 2123
	}
}

2124 2125 2126
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2127
{
2128 2129 2130 2131 2132 2133
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2134
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2135 2136 2137
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2138
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2139

2140
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2141 2142

	hctx->tags = set->tags[hctx_idx];
2143 2144

	/*
2145 2146
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2147
	 */
2148
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2149 2150 2151
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2152

2153 2154
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2155
		goto free_ctxs;
2156

2157
	hctx->nr_ctx = 0;
2158

2159 2160 2161
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2162 2163 2164
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2165

2166 2167 2168
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2169 2170
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2171
		goto sched_exit_hctx;
2172

2173
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2174
		goto free_fq;
2175

2176
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2177
		init_srcu_struct(hctx->srcu);
2178

2179 2180
	blk_mq_debugfs_register_hctx(q, hctx);

2181
	return 0;
2182

2183 2184
 free_fq:
	kfree(hctx->fq);
2185 2186
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2187 2188 2189
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2190
 free_bitmap:
2191
	sbitmap_free(&hctx->ctx_map);
2192 2193 2194
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2195
	blk_mq_remove_cpuhp(hctx);
2196 2197
	return -1;
}
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2213 2214
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2215 2216
			continue;

C
Christoph Hellwig 已提交
2217
		hctx = blk_mq_map_queue(q, i);
2218

2219 2220 2221 2222 2223
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2224
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2225 2226 2227
	}
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2250 2251 2252 2253 2254
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2255 2256
}

2257
static void blk_mq_map_swqueue(struct request_queue *q)
2258
{
2259
	unsigned int i, hctx_idx;
2260 2261
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2262
	struct blk_mq_tag_set *set = q->tag_set;
2263

2264 2265 2266 2267 2268
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2269
	queue_for_each_hw_ctx(q, hctx, i) {
2270
		cpumask_clear(hctx->cpumask);
2271 2272 2273 2274
		hctx->nr_ctx = 0;
	}

	/*
2275 2276 2277
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2278
	 */
2279
	for_each_present_cpu(i) {
2280 2281
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2282 2283
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2284 2285 2286 2287 2288 2289
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2290
			q->mq_map[i] = 0;
2291 2292
		}

2293
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2294
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2295

2296
		cpumask_set_cpu(i, hctx->cpumask);
2297 2298 2299
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2300

2301 2302
	mutex_unlock(&q->sysfs_lock);

2303
	queue_for_each_hw_ctx(q, hctx, i) {
2304
		/*
2305 2306
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2307 2308
		 */
		if (!hctx->nr_ctx) {
2309 2310 2311 2312
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2313 2314 2315
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2316
			hctx->tags = NULL;
2317 2318 2319
			continue;
		}

M
Ming Lei 已提交
2320 2321 2322
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2323 2324 2325 2326 2327
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2328
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2329

2330 2331 2332
		/*
		 * Initialize batch roundrobin counts
		 */
2333 2334 2335
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2336 2337
}

2338 2339 2340 2341
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2342
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2343 2344 2345 2346
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2347
	queue_for_each_hw_ctx(q, hctx, i) {
2348 2349 2350
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2351
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2352 2353 2354
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2355
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2356
		}
2357 2358 2359
	}
}

2360 2361
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2362 2363
{
	struct request_queue *q;
2364

2365 2366
	lockdep_assert_held(&set->tag_list_lock);

2367 2368
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2369
		queue_set_hctx_shared(q, shared);
2370 2371 2372 2373 2374 2375 2376 2377 2378
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2379 2380
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2381 2382 2383 2384 2385 2386
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2387
	mutex_unlock(&set->tag_list_lock);
2388 2389

	synchronize_rcu();
2390 2391 2392 2393 2394 2395 2396 2397
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2398

2399 2400 2401 2402 2403
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404 2405 2406 2407 2408 2409
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2410
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2411

2412 2413 2414
	mutex_unlock(&set->tag_list_lock);
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2427 2428 2429
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2430
		kobject_put(&hctx->kobj);
2431
	}
2432

2433 2434
	q->mq_map = NULL;

2435 2436
	kfree(q->queue_hw_ctx);

2437 2438 2439 2440 2441 2442
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2443 2444 2445
	free_percpu(q->queue_ctx);
}

2446
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2462 2463 2464 2465
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2466
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2467 2468 2469 2470 2471 2472 2473 2474 2475
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2476 2477
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2478
{
K
Keith Busch 已提交
2479 2480
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2481

K
Keith Busch 已提交
2482
	blk_mq_sysfs_unregister(q);
2483 2484 2485

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2486
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2487
		int node;
2488

K
Keith Busch 已提交
2489 2490 2491 2492
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2493
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2494
					GFP_KERNEL, node);
2495
		if (!hctxs[i])
K
Keith Busch 已提交
2496
			break;
2497

2498
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2499 2500 2501 2502 2503
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2504

2505
		atomic_set(&hctxs[i]->nr_active, 0);
2506
		hctxs[i]->numa_node = node;
2507
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2508 2509 2510 2511 2512 2513 2514 2515

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2516
	}
K
Keith Busch 已提交
2517 2518 2519 2520
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2521 2522
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2523 2524 2525 2526 2527 2528 2529
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2530
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2531 2532 2533 2534 2535 2536
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2537 2538 2539
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2540
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2541 2542
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2543 2544 2545
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2546 2547
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2548
		goto err_exit;
K
Keith Busch 已提交
2549

2550 2551 2552
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2553 2554 2555 2556 2557
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2558
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2559 2560 2561 2562

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2563

2564
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2565
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2566 2567 2568

	q->nr_queues = nr_cpu_ids;

2569
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2570

2571 2572 2573
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2574 2575
	q->sg_reserved_size = INT_MAX;

2576
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2577 2578 2579
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2580
	blk_queue_make_request(q, blk_mq_make_request);
2581 2582
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2583

2584 2585 2586 2587 2588
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2589 2590 2591 2592 2593
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2594 2595
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2596

2597
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2598
	blk_mq_add_queue_tag_set(set, q);
2599
	blk_mq_map_swqueue(q);
2600

2601 2602 2603 2604 2605 2606 2607 2608
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2609
	return q;
2610

2611
err_hctxs:
K
Keith Busch 已提交
2612
	kfree(q->queue_hw_ctx);
2613
err_percpu:
K
Keith Busch 已提交
2614
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2615 2616
err_exit:
	q->mq_ops = NULL;
2617 2618
	return ERR_PTR(-ENOMEM);
}
2619
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2620 2621 2622

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2623
	struct blk_mq_tag_set	*set = q->tag_set;
2624

2625
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2626
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2627 2628 2629
}

/* Basically redo blk_mq_init_queue with queue frozen */
2630
static void blk_mq_queue_reinit(struct request_queue *q)
2631
{
2632
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2633

2634
	blk_mq_debugfs_unregister_hctxs(q);
2635 2636
	blk_mq_sysfs_unregister(q);

2637 2638
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2639 2640
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2641
	 */
2642
	blk_mq_map_swqueue(q);
2643

2644
	blk_mq_sysfs_register(q);
2645
	blk_mq_debugfs_register_hctxs(q);
2646 2647
}

2648 2649 2650 2651
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2652 2653
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2654 2655 2656 2657 2658 2659
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2660
		blk_mq_free_rq_map(set->tags[i]);
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2700 2701
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2721
		return set->ops->map_queues(set);
2722
	} else
2723 2724 2725
		return blk_mq_map_queues(set);
}

2726 2727 2728 2729 2730 2731
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2732 2733
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2734 2735
	int ret;

B
Bart Van Assche 已提交
2736 2737
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2738 2739
	if (!set->nr_hw_queues)
		return -EINVAL;
2740
	if (!set->queue_depth)
2741 2742 2743 2744
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2745
	if (!set->ops->queue_rq)
2746 2747
		return -EINVAL;

2748 2749 2750
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2751 2752 2753 2754 2755
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2756

2757 2758 2759 2760 2761 2762 2763 2764 2765
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2766 2767 2768 2769 2770
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2771

K
Keith Busch 已提交
2772
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2773 2774
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2775
		return -ENOMEM;
2776

2777 2778 2779
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2780 2781 2782
	if (!set->mq_map)
		goto out_free_tags;

2783
	ret = blk_mq_update_queue_map(set);
2784 2785 2786 2787 2788
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2789
		goto out_free_mq_map;
2790

2791 2792 2793
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2794
	return 0;
2795 2796 2797 2798 2799

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2800 2801
	kfree(set->tags);
	set->tags = NULL;
2802
	return ret;
2803 2804 2805 2806 2807 2808 2809
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2810 2811
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2812

2813 2814 2815
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2816
	kfree(set->tags);
2817
	set->tags = NULL;
2818 2819 2820
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2821 2822 2823 2824 2825 2826
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2827
	if (!set)
2828 2829
		return -EINVAL;

2830
	blk_mq_freeze_queue(q);
2831
	blk_mq_quiesce_queue(q);
2832

2833 2834
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2835 2836
		if (!hctx->tags)
			continue;
2837 2838 2839 2840
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2841
		if (!hctx->sched_tags) {
2842
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2843 2844 2845 2846 2847
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2848 2849 2850 2851 2852 2853 2854
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2855
	blk_mq_unquiesce_queue(q);
2856 2857
	blk_mq_unfreeze_queue(q);

2858 2859 2860
	return ret;
}

2861 2862
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2863 2864 2865
{
	struct request_queue *q;

2866 2867
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2877
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2878 2879
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2880
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2881 2882 2883 2884 2885
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2886 2887 2888 2889 2890 2891 2892

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2893 2894
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2921
	int bucket;
2922

2923 2924 2925 2926
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2927 2928
}

2929 2930 2931 2932 2933
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2934
	int bucket;
2935 2936 2937 2938 2939

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2940
	if (!blk_poll_stats_enable(q))
2941 2942 2943 2944 2945 2946 2947 2948
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2949 2950
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2951
	 */
2952 2953 2954 2955 2956 2957
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2958 2959 2960 2961

	return ret;
}

2962
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2963
				     struct blk_mq_hw_ctx *hctx,
2964 2965 2966 2967
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2968
	unsigned int nsecs;
2969 2970
	ktime_t kt;

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2989 2990 2991 2992 2993 2994 2995 2996
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2997
	kt = nsecs;
2998 2999 3000 3001 3002 3003 3004

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3005
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3020 3021 3022 3023 3024
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3025 3026 3027 3028 3029 3030 3031
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3032
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3033 3034
		return true;

J
Jens Axboe 已提交
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

3063
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3064 3065 3066 3067
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3068
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3069 3070 3071
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3072 3073
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3074
	else {
3075
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3076 3077 3078 3079 3080 3081 3082 3083 3084
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3085 3086 3087 3088

	return __blk_mq_poll(hctx, rq);
}

3089 3090
static int __init blk_mq_init(void)
{
3091 3092
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3093 3094 3095
	return 0;
}
subsys_initcall(blk_mq_init);