blk-mq.c 77.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98 99 100 101 102 103 104 105 106
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
107 108 109 110 111 112 113
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

114
	inflight[0] = inflight[1] = 0;
115 116 117
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139
	int freeze_depth;
140

141 142
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
143
		percpu_ref_kill(&q->q_usage_counter);
144 145
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
146
	}
147
}
148
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149

150
void blk_mq_freeze_queue_wait(struct request_queue *q)
151
{
152
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155

156 157 158 159 160 161 162 163
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164

165 166 167 168
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
169
void blk_freeze_queue(struct request_queue *q)
170
{
171 172 173 174 175 176 177
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
178
	blk_freeze_queue_start(q);
179 180
	if (!q->mq_ops)
		blk_drain_queue(q);
181 182
	blk_mq_freeze_queue_wait(q);
}
183 184 185 186 187 188 189 190 191

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193

194
void blk_mq_unfreeze_queue(struct request_queue *q)
195
{
196
	int freeze_depth;
197

198 199 200
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
201
		percpu_ref_reinit(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
}
205
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206

207 208 209 210 211 212
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
213
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 215 216
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

217
/**
218
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 220 221
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
222 223 224
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
225 226 227 228 229 230 231
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

232
	blk_mq_quiesce_queue_nowait(q);
233

234 235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
236
			synchronize_srcu(hctx->srcu);
237 238 239 240 241 242 243 244
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

245 246 247 248 249 250 251 252 253
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
254
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255

256 257
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
258 259 260
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

261 262 263 264 265 266 267 268 269 270
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

271 272 273 274 275 276
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

277 278
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282
	req_flags_t rq_flags = 0;
283

284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
289
			rq_flags = RQF_MQ_INFLIGHT;
290 291 292 293 294 295 296
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

297
	/* csd/requeue_work/fifo_time is initialized before use */
298 299
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
300
	rq->rq_flags = rq_flags;
301
	rq->cpu = -1;
302
	rq->cmd_flags = op;
303 304
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
305
	if (blk_queue_io_stat(data->q))
306
		rq->rq_flags |= RQF_IO_STAT;
307
	INIT_LIST_HEAD(&rq->queuelist);
308 309 310 311
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
312
	rq->start_time = jiffies;
313
	rq->io_start_time_ns = 0;
314 315 316 317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
321
	rq->__deadline = 0;
322 323

	INIT_LIST_HEAD(&rq->timeout_list);
324 325
	rq->timeout = 0;

326 327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

330 331 332
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
	set_start_time_ns(rq);
333
	rq->cgroup_io_start_time_ns = 0;
334 335
#endif

336 337
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
338 339
}

340 341 342 343 344 345
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
346
	unsigned int tag;
347
	bool put_ctx_on_error = false;
348 349 350

	blk_queue_enter_live(q);
	data->q = q;
351 352 353 354
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
355 356
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
357 358
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
359 360 361 362 363 364 365 366

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
367 368
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
369 370
	}

371 372
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
373 374
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
375 376
			data->ctx = NULL;
		}
377 378
		blk_queue_exit(q);
		return NULL;
379 380
	}

381
	rq = blk_mq_rq_ctx_init(data, tag, op);
382 383
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
384
		if (e && e->type->ops.mq.prepare_request) {
385 386 387
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

388 389
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
390
		}
391 392 393
	}
	data->hctx->queued++;
	return rq;
394 395
}

396
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
397
		blk_mq_req_flags_t flags)
398
{
399
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
400
	struct request *rq;
401
	int ret;
402

403
	ret = blk_queue_enter(q, flags);
404 405
	if (ret)
		return ERR_PTR(ret);
406

407
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
408
	blk_queue_exit(q);
409

410
	if (!rq)
411
		return ERR_PTR(-EWOULDBLOCK);
412

413 414
	blk_mq_put_ctx(alloc_data.ctx);

415 416 417
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
418 419
	return rq;
}
420
EXPORT_SYMBOL(blk_mq_alloc_request);
421

422
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
423
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
424
{
425
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
426
	struct request *rq;
427
	unsigned int cpu;
M
Ming Lin 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

442
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
443 444 445
	if (ret)
		return ERR_PTR(ret);

446 447 448 449
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
450 451 452 453
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
454
	}
455
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
456
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
457

458
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
459
	blk_queue_exit(q);
460

461 462 463 464
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
465 466 467
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

468
void blk_mq_free_request(struct request *rq)
469 470
{
	struct request_queue *q = rq->q;
471 472 473 474 475
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

476
	if (rq->rq_flags & RQF_ELVPRIV) {
477 478 479 480 481 482 483
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
484

485
	ctx->rq_completed[rq_is_sync(rq)]++;
486
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
487
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
488

489 490 491
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

492
	wbt_done(q->rq_wb, rq);
493

S
Shaohua Li 已提交
494 495 496
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

497
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
498 499 500
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
501
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
502
	blk_mq_sched_restart(hctx);
503
	blk_queue_exit(q);
504
}
J
Jens Axboe 已提交
505
EXPORT_SYMBOL_GPL(blk_mq_free_request);
506

507
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
508
{
509 510 511 512 513
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

M
Ming Lei 已提交
514 515
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
516
	if (rq->end_io) {
517
		wbt_done(rq->q->rq_wb, rq);
518
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
519 520 521
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
522
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
523
	}
524
}
525
EXPORT_SYMBOL(__blk_mq_end_request);
526

527
void blk_mq_end_request(struct request *rq, blk_status_t error)
528 529 530
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
531
	__blk_mq_end_request(rq, error);
532
}
533
EXPORT_SYMBOL(blk_mq_end_request);
534

535
static void __blk_mq_complete_request_remote(void *data)
536
{
537
	struct request *rq = data;
538

539
	rq->q->softirq_done_fn(rq);
540 541
}

542
static void __blk_mq_complete_request(struct request *rq)
543 544
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
545
	bool shared = false;
546 547
	int cpu;

548
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
549
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
550

551 552 553
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
554
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
555 556 557
		rq->q->softirq_done_fn(rq);
		return;
	}
558 559

	cpu = get_cpu();
C
Christoph Hellwig 已提交
560 561 562 563
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
564
		rq->csd.func = __blk_mq_complete_request_remote;
565 566
		rq->csd.info = rq;
		rq->csd.flags = 0;
567
		smp_call_function_single_async(ctx->cpu, &rq->csd);
568
	} else {
569
		rq->q->softirq_done_fn(rq);
570
	}
571 572
	put_cpu();
}
573

574
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
575
	__releases(hctx->srcu)
576 577 578 579
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
580
		srcu_read_unlock(hctx->srcu, srcu_idx);
581 582 583
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
584
	__acquires(hctx->srcu)
585
{
586 587 588
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
589
		rcu_read_lock();
590
	} else
591
		*srcu_idx = srcu_read_lock(hctx->srcu);
592 593
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

624 625 626 627 628 629 630 631
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
632
void blk_mq_complete_request(struct request *rq)
633
{
634
	struct request_queue *q = rq->q;
635 636
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
637 638

	if (unlikely(blk_should_fake_timeout(q)))
639
		return;
640

641 642 643 644 645 646 647 648 649 650 651
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
652
	hctx_lock(hctx, &srcu_idx);
653
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
654
		__blk_mq_complete_request(rq);
655
	hctx_unlock(hctx, srcu_idx);
656 657
}
EXPORT_SYMBOL(blk_mq_complete_request);
658

659 660
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
661
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
662 663 664
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

665
void blk_mq_start_request(struct request *rq)
666 667 668
{
	struct request_queue *q = rq->q;

669 670
	blk_mq_sched_started_request(rq);

671 672
	trace_block_rq_issue(q, rq);

673
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
674 675 676 677
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
678
		rq->rq_flags |= RQF_STATS;
679
		wbt_issue(q->rq_wb, rq);
680 681
	}

682
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
683

684
	/*
685 686 687 688
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
689
	 *
690 691 692 693
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
694
	 */
695 696 697 698 699 700 701 702
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();
703 704 705 706 707 708 709 710 711

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
712
}
713
EXPORT_SYMBOL(blk_mq_start_request);
714

715
/*
T
Tejun Heo 已提交
716 717 718
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
719
 */
720
static void __blk_mq_requeue_request(struct request *rq)
721 722 723
{
	struct request_queue *q = rq->q;

724 725
	blk_mq_put_driver_tag(rq);

726
	trace_block_rq_requeue(q, rq);
727
	wbt_requeue(q->rq_wb, rq);
728

T
Tejun Heo 已提交
729
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
730
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
731 732 733
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
734 735
}

736
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
737 738 739
{
	__blk_mq_requeue_request(rq);

740 741 742
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

743
	BUG_ON(blk_queued_rq(rq));
744
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
745 746 747
}
EXPORT_SYMBOL(blk_mq_requeue_request);

748 749 750
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
751
		container_of(work, struct request_queue, requeue_work.work);
752 753 754
	LIST_HEAD(rq_list);
	struct request *rq, *next;

755
	spin_lock_irq(&q->requeue_lock);
756
	list_splice_init(&q->requeue_list, &rq_list);
757
	spin_unlock_irq(&q->requeue_lock);
758 759

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
760
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
761 762
			continue;

763
		rq->rq_flags &= ~RQF_SOFTBARRIER;
764
		list_del_init(&rq->queuelist);
765
		blk_mq_sched_insert_request(rq, true, false, false);
766 767 768 769 770
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
771
		blk_mq_sched_insert_request(rq, false, false, false);
772 773
	}

774
	blk_mq_run_hw_queues(q, false);
775 776
}

777 778
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
779 780 781 782 783 784
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
785
	 * request head insertion from the workqueue.
786
	 */
787
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
788 789 790

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
791
		rq->rq_flags |= RQF_SOFTBARRIER;
792 793 794 795 796
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
797 798 799

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
800 801 802 803 804
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
805
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
806 807 808
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

809 810 811
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
812 813
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
814 815 816
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

817 818
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
819 820
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
821
		return tags->rqs[tag];
822
	}
823 824

	return NULL;
825 826 827
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

828
struct blk_mq_timeout_data {
829 830
	unsigned long next;
	unsigned int next_set;
831
	unsigned int nr_expired;
832 833
};

834
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
835
{
J
Jens Axboe 已提交
836
	const struct blk_mq_ops *ops = req->q->mq_ops;
837
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
838

839
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
840

841
	if (ops->timeout)
842
		ret = ops->timeout(req, reserved);
843 844 845 846 847 848

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
849 850 851 852 853 854
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
855 856 857 858 859 860 861 862
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
863
}
864

865 866 867 868
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
869 870
	unsigned long gstate, deadline;
	int start;
871

872
	might_sleep();
873

T
Tejun Heo 已提交
874
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
875
		return;
876

877 878 879 880
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
881
		deadline = blk_rq_deadline(rq);
882 883 884 885
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
886

887 888 889 890 891 892
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
893 894
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
895 896
		data->next_set = 1;
	}
897 898
}

899 900 901 902 903 904 905 906 907 908
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
909 910
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
911 912 913
		blk_mq_rq_timed_out(rq, reserved);
}

914
static void blk_mq_timeout_work(struct work_struct *work)
915
{
916 917
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
918 919 920
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
921
		.nr_expired	= 0,
922
	};
923
	struct blk_mq_hw_ctx *hctx;
924
	int i;
925

926 927 928 929 930 931 932 933 934
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
935
	 * blk_freeze_queue_start, and the moment the last request is
936 937 938 939
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
940 941
		return;

942
	/* scan for the expired ones and set their ->aborted_gstate */
943
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
944

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
961
				synchronize_srcu(hctx->srcu);
962 963 964 965 966 967 968 969 970 971

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

972 973 974
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
975
	} else {
976 977 978 979 980 981
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
982 983 984 985 986
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
987
	}
988
	blk_queue_exit(q);
989 990
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
1004
	sbitmap_clear_bit(sb, bitnr);
1005 1006 1007 1008
	spin_unlock(&ctx->lock);
	return true;
}

1009 1010 1011 1012
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1013
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1014
{
1015 1016 1017 1018
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1019

1020
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1021
}
1022
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1063 1064 1065 1066
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1067

1068
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1069 1070
}

1071 1072
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1073 1074 1075 1076 1077 1078 1079
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1080 1081
	might_sleep_if(wait);

1082 1083
	if (rq->tag != -1)
		goto done;
1084

1085 1086 1087
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1088 1089
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1090 1091 1092 1093
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1094 1095 1096
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1097 1098 1099 1100
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1101 1102
}

1103 1104
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1105 1106 1107 1108 1109
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1110
	list_del_init(&wait->entry);
1111 1112 1113 1114
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1115 1116
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1117 1118
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1119 1120 1121 1122
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1123
{
1124
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1125
	struct sbq_wait_state *ws;
1126 1127
	wait_queue_entry_t *wait;
	bool ret;
1128

1129
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1130 1131 1132
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1133 1134 1135 1136 1137 1138 1139 1140 1141
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1142 1143
	}

1144 1145 1146 1147 1148 1149 1150 1151
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1152 1153
	}

1154 1155 1156
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1157
	/*
1158 1159 1160
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1161
	 */
1162
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1163
	if (!ret) {
1164
		spin_unlock(&this_hctx->lock);
1165
		return false;
1166
	}
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1178 1179
}

1180 1181
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1182
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1183
			     bool got_budget)
1184
{
1185
	struct blk_mq_hw_ctx *hctx;
1186
	struct request *rq, *nxt;
1187
	bool no_tag = false;
1188
	int errors, queued;
1189
	blk_status_t ret = BLK_STS_OK;
1190

1191 1192 1193
	if (list_empty(list))
		return false;

1194 1195
	WARN_ON(!list_is_singular(list) && got_budget);

1196 1197 1198
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1199
	errors = queued = 0;
1200
	do {
1201
		struct blk_mq_queue_data bd;
1202

1203
		rq = list_first_entry(list, struct request, queuelist);
1204 1205 1206 1207 1208 1209

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1210
			/*
1211
			 * The initial allocation attempt failed, so we need to
1212 1213 1214 1215
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1216
			 */
1217
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1218
				blk_mq_put_dispatch_budget(hctx);
1219 1220 1221 1222 1223 1224
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1225 1226 1227 1228
				break;
			}
		}

1229 1230
		list_del_init(&rq->queuelist);

1231
		bd.rq = rq;
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1243 1244

		ret = q->mq_ops->queue_rq(hctx, &bd);
1245
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1246 1247
			/*
			 * If an I/O scheduler has been configured and we got a
1248 1249
			 * driver tag for the next request already, free it
			 * again.
1250 1251 1252 1253 1254
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1255
			list_add(&rq->queuelist, list);
1256
			__blk_mq_requeue_request(rq);
1257
			break;
1258 1259 1260
		}

		if (unlikely(ret != BLK_STS_OK)) {
1261
			errors++;
1262
			blk_mq_end_request(rq, BLK_STS_IOERR);
1263
			continue;
1264 1265
		}

1266
		queued++;
1267
	} while (!list_empty(list));
1268

1269
	hctx->dispatched[queued_to_index(queued)]++;
1270 1271 1272 1273 1274

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1275
	if (!list_empty(list)) {
1276 1277
		bool needs_restart;

1278
		spin_lock(&hctx->lock);
1279
		list_splice_init(list, &hctx->dispatch);
1280
		spin_unlock(&hctx->lock);
1281

1282
		/*
1283 1284 1285
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1286
		 *
1287 1288 1289 1290
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1291
		 *
1292 1293 1294 1295 1296 1297 1298
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1299
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1300
		 *   and dm-rq.
1301 1302 1303 1304
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1305
		 */
1306 1307
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1308
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1309
			blk_mq_run_hw_queue(hctx, true);
1310 1311
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1312
	}
1313

1314
	return (queued + errors) != 0;
1315 1316
}

1317 1318 1319 1320
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1321 1322 1323
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1337
	 */
1338 1339 1340 1341 1342 1343 1344
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1345

1346 1347 1348 1349 1350 1351
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1352
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1353

1354 1355 1356
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1357 1358
}

1359 1360 1361 1362 1363 1364 1365 1366 1367
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1368 1369 1370 1371 1372 1373 1374 1375
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1376
	bool tried = false;
1377
	int next_cpu = hctx->next_cpu;
1378

1379 1380
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1381 1382

	if (--hctx->next_cpu_batch <= 0) {
1383
select_cpu:
1384
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1385
				cpu_online_mask);
1386
		if (next_cpu >= nr_cpu_ids)
1387
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1388 1389 1390
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1391 1392 1393 1394
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1395
	if (!cpu_online(next_cpu)) {
1396 1397 1398 1399 1400 1401 1402 1403 1404
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1405
		hctx->next_cpu = next_cpu;
1406 1407 1408
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1409 1410 1411

	hctx->next_cpu = next_cpu;
	return next_cpu;
1412 1413
}

1414 1415
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1416
{
1417
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1418 1419
		return;

1420
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1421 1422
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1423
			__blk_mq_run_hw_queue(hctx);
1424
			put_cpu();
1425 1426
			return;
		}
1427

1428
		put_cpu();
1429
	}
1430

1431 1432
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1433 1434 1435 1436 1437 1438 1439 1440
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1441
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1442
{
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1454 1455 1456 1457
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1458 1459

	if (need_run) {
1460 1461 1462 1463 1464
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1465
}
O
Omar Sandoval 已提交
1466
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1467

1468
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1469 1470 1471 1472 1473
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1474
		if (blk_mq_hctx_stopped(hctx))
1475 1476
			continue;

1477
		blk_mq_run_hw_queue(hctx, async);
1478 1479
	}
}
1480
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1502 1503 1504
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1505
 * BLK_STS_RESOURCE is usually returned.
1506 1507 1508 1509 1510
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1511 1512
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1513
	cancel_delayed_work(&hctx->run_work);
1514

1515
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1516
}
1517
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1518

1519 1520 1521
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1522
 * BLK_STS_RESOURCE is usually returned.
1523 1524 1525 1526 1527
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1528 1529
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1530 1531 1532 1533 1534
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1535 1536 1537
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1538 1539 1540
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1541

1542
	blk_mq_run_hw_queue(hctx, false);
1543 1544 1545
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1566
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1567 1568 1569 1570
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1571 1572
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1573 1574 1575
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1576
static void blk_mq_run_work_fn(struct work_struct *work)
1577 1578 1579
{
	struct blk_mq_hw_ctx *hctx;

1580
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1581

1582
	/*
M
Ming Lei 已提交
1583
	 * If we are stopped, don't run the queue.
1584
	 */
M
Ming Lei 已提交
1585
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1586
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1587 1588 1589 1590

	__blk_mq_run_hw_queue(hctx);
}

1591 1592 1593
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1594
{
J
Jens Axboe 已提交
1595 1596
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1597 1598
	lockdep_assert_held(&ctx->lock);

1599 1600
	trace_block_rq_insert(hctx->queue, rq);

1601 1602 1603 1604
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1605
}
1606

1607 1608
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1609 1610 1611
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1612 1613
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1614
	__blk_mq_insert_req_list(hctx, rq, at_head);
1615 1616 1617
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1618 1619 1620 1621
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1622
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1623 1624 1625 1626 1627 1628 1629 1630
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1631 1632
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1633 1634
}

1635 1636
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1648
		BUG_ON(rq->mq_ctx != ctx);
1649
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1650
		__blk_mq_insert_req_list(hctx, rq, false);
1651
	}
1652
	blk_mq_hctx_mark_pending(hctx, ctx);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1689 1690 1691 1692
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1709 1710 1711
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1712 1713 1714 1715 1716
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1717
	blk_init_request_from_bio(rq, bio);
1718

S
Shaohua Li 已提交
1719 1720
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1721
	blk_account_io_start(rq, true);
1722 1723
}

1724 1725 1726 1727 1728 1729 1730
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1731
}
1732

1733 1734
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1735 1736 1737 1738
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1739 1740
}

1741 1742 1743
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1744 1745 1746 1747
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1748
		.last = true,
1749
	};
1750
	blk_qc_t new_cookie;
1751
	blk_status_t ret;
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1766
	case BLK_STS_DEV_RESOURCE:
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1779 1780
						blk_qc_t *cookie,
						bool bypass_insert)
1781 1782
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1783 1784
	bool run_queue = true;

1785 1786 1787 1788
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1789
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1790 1791
	 * and avoid driver to try to dispatch again.
	 */
1792
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1793
		run_queue = false;
1794
		bypass_insert = false;
M
Ming Lei 已提交
1795 1796
		goto insert;
	}
1797

1798
	if (q->elevator && !bypass_insert)
1799 1800
		goto insert;

1801
	if (!blk_mq_get_dispatch_budget(hctx))
1802 1803
		goto insert;

1804 1805
	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
		blk_mq_put_dispatch_budget(hctx);
1806
		goto insert;
1807
	}
1808

1809
	return __blk_mq_issue_directly(hctx, rq, cookie);
1810
insert:
1811 1812
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1813

1814
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1815
	return BLK_STS_OK;
1816 1817
}

1818 1819 1820
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1821
	blk_status_t ret;
1822
	int srcu_idx;
1823

1824
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1825

1826
	hctx_lock(hctx, &srcu_idx);
1827

1828
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1829
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1830
		blk_mq_sched_insert_request(rq, false, true, false);
1831 1832 1833
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1834
	hctx_unlock(hctx, srcu_idx);
1835 1836
}

1837
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1850 1851
}

1852
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1853
{
1854
	const int is_sync = op_is_sync(bio->bi_opf);
1855
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1856
	struct blk_mq_alloc_data data = { .flags = 0 };
1857
	struct request *rq;
1858
	unsigned int request_count = 0;
1859
	struct blk_plug *plug;
1860
	struct request *same_queue_rq = NULL;
1861
	blk_qc_t cookie;
J
Jens Axboe 已提交
1862
	unsigned int wb_acct;
1863 1864 1865

	blk_queue_bounce(q, &bio);

1866
	blk_queue_split(q, &bio);
1867

1868
	if (!bio_integrity_prep(bio))
1869
		return BLK_QC_T_NONE;
1870

1871 1872 1873
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1874

1875 1876 1877
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1878 1879
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1880 1881
	trace_block_getrq(q, bio, bio->bi_opf);

1882
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1883 1884
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1885 1886
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1887
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1888 1889
	}

1890
	wbt_track(rq, wb_acct);
1891

1892
	cookie = request_to_qc_t(data.hctx, rq);
1893

1894
	plug = current->plug;
1895
	if (unlikely(is_flush_fua)) {
1896
		blk_mq_put_ctx(data.ctx);
1897
		blk_mq_bio_to_request(rq, bio);
1898 1899 1900 1901

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1902
	} else if (plug && q->nr_hw_queues == 1) {
1903 1904
		struct request *last = NULL;

1905
		blk_mq_put_ctx(data.ctx);
1906
		blk_mq_bio_to_request(rq, bio);
1907 1908 1909 1910 1911 1912 1913

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1914 1915 1916
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1917
		if (!request_count)
1918
			trace_block_plug(q);
1919 1920
		else
			last = list_entry_rq(plug->mq_list.prev);
1921

1922 1923
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1924 1925
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1926
		}
1927

1928
		list_add_tail(&rq->queuelist, &plug->mq_list);
1929
	} else if (plug && !blk_queue_nomerges(q)) {
1930
		blk_mq_bio_to_request(rq, bio);
1931 1932

		/*
1933
		 * We do limited plugging. If the bio can be merged, do that.
1934 1935
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1936 1937
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1938
		 */
1939 1940 1941 1942 1943 1944
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1945 1946
		blk_mq_put_ctx(data.ctx);

1947 1948 1949
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1950 1951
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1952
		}
1953
	} else if (q->nr_hw_queues > 1 && is_sync) {
1954
		blk_mq_put_ctx(data.ctx);
1955 1956
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1957
	} else if (q->elevator) {
1958
		blk_mq_put_ctx(data.ctx);
1959
		blk_mq_bio_to_request(rq, bio);
1960
		blk_mq_sched_insert_request(rq, false, true, true);
1961
	} else {
1962
		blk_mq_put_ctx(data.ctx);
1963 1964
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1965
		blk_mq_run_hw_queue(data.hctx, true);
1966
	}
1967

1968
	return cookie;
1969 1970
}

1971 1972
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1973
{
1974
	struct page *page;
1975

1976
	if (tags->rqs && set->ops->exit_request) {
1977
		int i;
1978

1979
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1980 1981 1982
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1983
				continue;
1984
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1985
			tags->static_rqs[i] = NULL;
1986
		}
1987 1988
	}

1989 1990
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1991
		list_del_init(&page->lru);
1992 1993 1994 1995 1996
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1997 1998
		__free_pages(page, page->private);
	}
1999
}
2000

2001 2002
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2003
	kfree(tags->rqs);
2004
	tags->rqs = NULL;
J
Jens Axboe 已提交
2005 2006
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2007

2008
	blk_mq_free_tags(tags);
2009 2010
}

2011 2012 2013 2014
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2015
{
2016
	struct blk_mq_tags *tags;
2017
	int node;
2018

2019 2020 2021 2022 2023
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2024
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2025 2026
	if (!tags)
		return NULL;
2027

2028
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2029
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2030
				 node);
2031 2032 2033 2034
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2035

J
Jens Axboe 已提交
2036 2037
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2038
				 node);
J
Jens Axboe 已提交
2039 2040 2041 2042 2043 2044
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2045 2046 2047 2048 2049 2050 2051 2052
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
2066 2067 2068 2069 2070 2071 2072
	/*
	 * start gstate with gen 1 instead of 0, otherwise it will be equal
	 * to aborted_gstate, and be identified timed out by
	 * blk_mq_terminate_expired.
	 */
	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);

2073 2074 2075
	return 0;
}

2076 2077 2078 2079 2080
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2081 2082 2083 2084 2085
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2086 2087 2088

	INIT_LIST_HEAD(&tags->page_list);

2089 2090 2091 2092
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2093
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2094
				cache_line_size());
2095
	left = rq_size * depth;
2096

2097
	for (i = 0; i < depth; ) {
2098 2099 2100 2101 2102
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2103
		while (this_order && left < order_to_size(this_order - 1))
2104 2105 2106
			this_order--;

		do {
2107
			page = alloc_pages_node(node,
2108
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2109
				this_order);
2110 2111 2112 2113 2114 2115 2116 2117 2118
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2119
			goto fail;
2120 2121

		page->private = this_order;
2122
		list_add_tail(&page->lru, &tags->page_list);
2123 2124

		p = page_address(page);
2125 2126 2127 2128
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2129
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2130
		entries_per_page = order_to_size(this_order) / rq_size;
2131
		to_do = min(entries_per_page, depth - i);
2132 2133
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2134 2135 2136
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2137 2138 2139
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2140 2141
			}

2142 2143 2144 2145
			p += rq_size;
			i++;
		}
	}
2146
	return 0;
2147

2148
fail:
2149 2150
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2151 2152
}

J
Jens Axboe 已提交
2153 2154 2155 2156 2157
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2158
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2159
{
2160
	struct blk_mq_hw_ctx *hctx;
2161 2162 2163
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2164
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2165
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2166 2167 2168 2169 2170 2171 2172 2173 2174

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2175
		return 0;
2176

J
Jens Axboe 已提交
2177 2178 2179
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2180 2181

	blk_mq_run_hw_queue(hctx, true);
2182
	return 0;
2183 2184
}

2185
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2186
{
2187 2188
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2189 2190
}

2191
/* hctx->ctxs will be freed in queue's release handler */
2192 2193 2194 2195
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2196 2197
	blk_mq_debugfs_unregister_hctx(hctx);

2198 2199
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2200

2201
	if (set->ops->exit_request)
2202
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2203

2204 2205
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2206 2207 2208
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2209
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2210
		cleanup_srcu_struct(hctx->srcu);
2211

2212
	blk_mq_remove_cpuhp(hctx);
2213
	blk_free_flush_queue(hctx->fq);
2214
	sbitmap_free(&hctx->ctx_map);
2215 2216
}

M
Ming Lei 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2226
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2227 2228 2229
	}
}

2230 2231 2232
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2233
{
2234 2235 2236 2237 2238 2239
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2240
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2241 2242 2243
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2244
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2245

2246
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2247 2248

	hctx->tags = set->tags[hctx_idx];
2249 2250

	/*
2251 2252
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2253
	 */
2254
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2255 2256 2257
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2258

2259 2260
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2261
		goto free_ctxs;
2262

2263
	hctx->nr_ctx = 0;
2264

2265 2266 2267
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2268 2269 2270
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2271

2272 2273 2274
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2275 2276
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2277
		goto sched_exit_hctx;
2278

2279
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2280
		goto free_fq;
2281

2282
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2283
		init_srcu_struct(hctx->srcu);
2284

2285 2286
	blk_mq_debugfs_register_hctx(q, hctx);

2287
	return 0;
2288

2289 2290
 free_fq:
	kfree(hctx->fq);
2291 2292
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2293 2294 2295
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2296
 free_bitmap:
2297
	sbitmap_free(&hctx->ctx_map);
2298 2299 2300
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2301
	blk_mq_remove_cpuhp(hctx);
2302 2303
	return -1;
}
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2323
		hctx = blk_mq_map_queue(q, i);
2324
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2325
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2326 2327 2328
	}
}

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2351 2352 2353 2354 2355
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2356 2357
}

2358
static void blk_mq_map_swqueue(struct request_queue *q)
2359
{
2360
	unsigned int i, hctx_idx;
2361 2362
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2363
	struct blk_mq_tag_set *set = q->tag_set;
2364

2365 2366 2367 2368 2369
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2370
	queue_for_each_hw_ctx(q, hctx, i) {
2371
		cpumask_clear(hctx->cpumask);
2372 2373 2374 2375
		hctx->nr_ctx = 0;
	}

	/*
2376
	 * Map software to hardware queues.
2377 2378
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2379
	 */
2380
	for_each_possible_cpu(i) {
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2394
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2395
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2396

2397
		cpumask_set_cpu(i, hctx->cpumask);
2398 2399 2400
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2401

2402 2403
	mutex_unlock(&q->sysfs_lock);

2404
	queue_for_each_hw_ctx(q, hctx, i) {
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2420

M
Ming Lei 已提交
2421 2422 2423
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2424 2425 2426 2427 2428
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2429
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2430

2431 2432 2433
		/*
		 * Initialize batch roundrobin counts
		 */
2434
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2435 2436
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2437 2438
}

2439 2440 2441 2442
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2443
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2444 2445 2446 2447
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2448
	queue_for_each_hw_ctx(q, hctx, i) {
2449 2450 2451
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2452
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2453 2454 2455
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2456
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2457
		}
2458 2459 2460
	}
}

2461 2462
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2463 2464
{
	struct request_queue *q;
2465

2466 2467
	lockdep_assert_held(&set->tag_list_lock);

2468 2469
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2470
		queue_set_hctx_shared(q, shared);
2471 2472 2473 2474 2475 2476 2477 2478 2479
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2480 2481
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2482 2483 2484 2485 2486 2487
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2488
	mutex_unlock(&set->tag_list_lock);
2489 2490

	synchronize_rcu();
2491 2492 2493 2494 2495 2496 2497 2498
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2499

2500 2501 2502 2503 2504
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2505 2506 2507 2508 2509 2510
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2511
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2512

2513 2514 2515
	mutex_unlock(&set->tag_list_lock);
}

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2528 2529 2530
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2531
		kobject_put(&hctx->kobj);
2532
	}
2533

2534 2535
	q->mq_map = NULL;

2536 2537
	kfree(q->queue_hw_ctx);

2538 2539 2540 2541 2542 2543
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2544 2545 2546
	free_percpu(q->queue_ctx);
}

2547
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2548 2549 2550
{
	struct request_queue *uninit_q, *q;

2551
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2563 2564 2565 2566
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2567
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2568 2569 2570 2571 2572 2573 2574 2575 2576
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2577 2578
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2579
{
K
Keith Busch 已提交
2580 2581
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2582

K
Keith Busch 已提交
2583
	blk_mq_sysfs_unregister(q);
2584 2585 2586

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2587
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2588
		int node;
2589

K
Keith Busch 已提交
2590 2591 2592 2593
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2594
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2595
					GFP_KERNEL, node);
2596
		if (!hctxs[i])
K
Keith Busch 已提交
2597
			break;
2598

2599
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2600 2601 2602 2603 2604
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2605

2606
		atomic_set(&hctxs[i]->nr_active, 0);
2607
		hctxs[i]->numa_node = node;
2608
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2609 2610 2611 2612 2613 2614 2615 2616

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2617
	}
K
Keith Busch 已提交
2618 2619 2620 2621
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2622 2623
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2624 2625 2626 2627 2628 2629 2630
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2631
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2632 2633 2634 2635 2636 2637
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2638 2639 2640
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2641
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2642 2643
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2644 2645 2646
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2647 2648
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2649
		goto err_exit;
K
Keith Busch 已提交
2650

2651 2652 2653
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2654 2655 2656 2657 2658
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2659
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2660 2661 2662 2663

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2664

2665
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2666
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2667 2668 2669

	q->nr_queues = nr_cpu_ids;

2670
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2671

2672
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2673
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2674

2675 2676
	q->sg_reserved_size = INT_MAX;

2677
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2678 2679 2680
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2681
	blk_queue_make_request(q, blk_mq_make_request);
2682 2683
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2684

2685 2686 2687 2688 2689
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2690 2691 2692 2693 2694
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2695 2696
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2697

2698
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2699
	blk_mq_add_queue_tag_set(set, q);
2700
	blk_mq_map_swqueue(q);
2701

2702 2703 2704 2705 2706 2707 2708 2709
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2710
	return q;
2711

2712
err_hctxs:
K
Keith Busch 已提交
2713
	kfree(q->queue_hw_ctx);
2714
err_percpu:
K
Keith Busch 已提交
2715
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2716 2717
err_exit:
	q->mq_ops = NULL;
2718 2719
	return ERR_PTR(-ENOMEM);
}
2720
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2721 2722 2723

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2724
	struct blk_mq_tag_set	*set = q->tag_set;
2725

2726
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2727
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2728 2729 2730
}

/* Basically redo blk_mq_init_queue with queue frozen */
2731
static void blk_mq_queue_reinit(struct request_queue *q)
2732
{
2733
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2734

2735
	blk_mq_debugfs_unregister_hctxs(q);
2736 2737
	blk_mq_sysfs_unregister(q);

2738 2739
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2740 2741
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2742
	 */
2743
	blk_mq_map_swqueue(q);
2744

2745
	blk_mq_sysfs_register(q);
2746
	blk_mq_debugfs_register_hctxs(q);
2747 2748
}

2749 2750 2751 2752
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2753 2754
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2755 2756 2757 2758 2759 2760
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2761
		blk_mq_free_rq_map(set->tags[i]);
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2801 2802
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2822
		return set->ops->map_queues(set);
2823
	} else
2824 2825 2826
		return blk_mq_map_queues(set);
}

2827 2828 2829 2830 2831 2832
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2833 2834
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2835 2836
	int ret;

B
Bart Van Assche 已提交
2837 2838
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2839 2840
	if (!set->nr_hw_queues)
		return -EINVAL;
2841
	if (!set->queue_depth)
2842 2843 2844 2845
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2846
	if (!set->ops->queue_rq)
2847 2848
		return -EINVAL;

2849 2850 2851
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2852 2853 2854 2855 2856
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2857

2858 2859 2860 2861 2862 2863 2864 2865 2866
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2867 2868 2869 2870 2871
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2872

K
Keith Busch 已提交
2873
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2874 2875
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2876
		return -ENOMEM;
2877

2878 2879 2880
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2881 2882 2883
	if (!set->mq_map)
		goto out_free_tags;

2884
	ret = blk_mq_update_queue_map(set);
2885 2886 2887 2888 2889
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2890
		goto out_free_mq_map;
2891

2892 2893 2894
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2895
	return 0;
2896 2897 2898 2899 2900

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2901 2902
	kfree(set->tags);
	set->tags = NULL;
2903
	return ret;
2904 2905 2906 2907 2908 2909 2910
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2911 2912
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2913

2914 2915 2916
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2917
	kfree(set->tags);
2918
	set->tags = NULL;
2919 2920 2921
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2922 2923 2924 2925 2926 2927
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2928
	if (!set)
2929 2930
		return -EINVAL;

2931
	blk_mq_freeze_queue(q);
2932
	blk_mq_quiesce_queue(q);
2933

2934 2935
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2936 2937
		if (!hctx->tags)
			continue;
2938 2939 2940 2941
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2942
		if (!hctx->sched_tags) {
2943
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2944 2945 2946 2947 2948
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2949 2950 2951 2952 2953 2954 2955
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2956
	blk_mq_unquiesce_queue(q);
2957 2958
	blk_mq_unfreeze_queue(q);

2959 2960 2961
	return ret;
}

2962 2963
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2964 2965 2966
{
	struct request_queue *q;

2967 2968
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2978
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2979 2980
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2981
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2982 2983 2984 2985 2986
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2987 2988 2989 2990 2991 2992 2993

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2994 2995
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2996 2997 2998 2999
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3000
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3022
	int bucket;
3023

3024 3025 3026 3027
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3028 3029
}

3030 3031 3032 3033 3034
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3035
	int bucket;
3036 3037 3038 3039 3040

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3041
	if (!blk_poll_stats_enable(q))
3042 3043 3044 3045 3046 3047 3048 3049
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3050 3051
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3052
	 */
3053 3054 3055 3056 3057 3058
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3059 3060 3061 3062

	return ret;
}

3063
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3064
				     struct blk_mq_hw_ctx *hctx,
3065 3066 3067 3068
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3069
	unsigned int nsecs;
3070 3071
	ktime_t kt;

J
Jens Axboe 已提交
3072
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3090 3091
		return false;

J
Jens Axboe 已提交
3092
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3093 3094 3095 3096 3097

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3098
	kt = nsecs;
3099 3100 3101 3102 3103 3104 3105

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3106
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3121 3122 3123 3124 3125
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3126 3127 3128 3129 3130 3131 3132
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3133
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3134 3135
		return true;

J
Jens Axboe 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3161
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3162 3163 3164
	return false;
}

3165
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3166 3167 3168 3169
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3170
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3171 3172 3173
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3174 3175
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3176
	else {
3177
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3178 3179 3180 3181 3182 3183 3184 3185 3186
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3187 3188 3189 3190

	return __blk_mq_poll(hctx, rq);
}

3191 3192
static int __init blk_mq_init(void)
{
3193 3194
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3195 3196 3197
	return 0;
}
subsys_initcall(blk_mq_init);