blk-mq.c 68.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35
#include "blk-mq-sched.h"
36 37 38 39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
43
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44
{
45 46 47
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
48 49
}

50 51 52 53 54 55
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
56 57
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 59 60 61 62
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
63
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 65
}

66
void blk_mq_freeze_queue_start(struct request_queue *q)
67
{
68
	int freeze_depth;
69

70 71
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
72
		percpu_ref_kill(&q->q_usage_counter);
73
		blk_mq_run_hw_queues(q, false);
74
	}
75
}
76
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77

78
void blk_mq_freeze_queue_wait(struct request_queue *q)
79
{
80
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81
}
82
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
83

84 85 86 87
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
88
void blk_freeze_queue(struct request_queue *q)
89
{
90 91 92 93 94 95 96
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
97 98 99
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
100 101 102 103 104 105 106 107 108

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
109
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
110

111
void blk_mq_unfreeze_queue(struct request_queue *q)
112
{
113
	int freeze_depth;
114

115 116 117
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
118
		percpu_ref_reinit(&q->q_usage_counter);
119
		wake_up_all(&q->mq_freeze_wq);
120
	}
121
}
122
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

151 152 153 154 155 156 157 158
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
159 160 161 162 163 164 165

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
166 167
}

168 169 170 171 172 173
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

174 175
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
176
{
177 178 179
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
180
	rq->mq_ctx = ctx;
181
	rq->cmd_flags = op;
182 183
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
184 185 186 187 188 189
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
190
	rq->start_time = jiffies;
191 192
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
193
	set_start_time_ns(rq);
194 195 196 197 198 199 200 201 202 203 204 205
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
206 207
	rq->timeout = 0;

208 209 210 211
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

212
	ctx->rq_dispatched[op_is_sync(op)]++;
213
}
214
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
215

216 217
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
218 219 220 221
{
	struct request *rq;
	unsigned int tag;

222
	tag = blk_mq_get_tag(data);
223
	if (tag != BLK_MQ_TAG_FAIL) {
224 225 226
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
227

228 229 230 231
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
232 233 234 235
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
236 237
			rq->tag = tag;
			rq->internal_tag = -1;
238
			data->hctx->tags->rqs[rq->tag] = rq;
239 240
		}

241
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
242 243 244 245 246
		return rq;
	}

	return NULL;
}
247
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
248

249 250
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
251
{
252
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
253
	struct request *rq;
254
	int ret;
255

256
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
257 258
	if (ret)
		return ERR_PTR(ret);
259

260
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
261

262 263 264 265
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
266
		return ERR_PTR(-EWOULDBLOCK);
267 268 269 270

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
271 272
	return rq;
}
273
EXPORT_SYMBOL(blk_mq_alloc_request);
274

M
Ming Lin 已提交
275 276 277
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
278
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
279
	struct request *rq;
280
	unsigned int cpu;
M
Ming Lin 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

299 300 301 302
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
303 304 305 306
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
M
Ming Lin 已提交
307
	}
308 309
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
310

311
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
312

313
	blk_mq_put_ctx(alloc_data.ctx);
314
	blk_queue_exit(q);
315 316 317 318 319

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
320 321 322
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

323 324
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
325
{
326
	const int sched_tag = rq->internal_tag;
327 328
	struct request_queue *q = rq->q;

329
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
330
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
331 332

	wbt_done(q->rq_wb, &rq->issue_stat);
333
	rq->rq_flags = 0;
334

335
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
336
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
337 338 339 340
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
341
	blk_mq_sched_restart_queues(hctx);
342
	blk_queue_exit(q);
343 344
}

345
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
346
				     struct request *rq)
347 348 349 350
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
351 352 353 354 355 356
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
357 358 359 360
}

void blk_mq_free_request(struct request *rq)
{
361
	blk_mq_sched_put_request(rq);
362
}
J
Jens Axboe 已提交
363
EXPORT_SYMBOL_GPL(blk_mq_free_request);
364

365
inline void __blk_mq_end_request(struct request *rq, int error)
366
{
M
Ming Lei 已提交
367 368
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
369
	if (rq->end_io) {
J
Jens Axboe 已提交
370
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
371
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
372 373 374
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
375
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
376
	}
377
}
378
EXPORT_SYMBOL(__blk_mq_end_request);
379

380
void blk_mq_end_request(struct request *rq, int error)
381 382 383
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
384
	__blk_mq_end_request(rq, error);
385
}
386
EXPORT_SYMBOL(blk_mq_end_request);
387

388
static void __blk_mq_complete_request_remote(void *data)
389
{
390
	struct request *rq = data;
391

392
	rq->q->softirq_done_fn(rq);
393 394
}

395
static void blk_mq_ipi_complete_request(struct request *rq)
396 397
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
398
	bool shared = false;
399 400
	int cpu;

C
Christoph Hellwig 已提交
401
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
402 403 404
		rq->q->softirq_done_fn(rq);
		return;
	}
405 406

	cpu = get_cpu();
C
Christoph Hellwig 已提交
407 408 409 410
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
411
		rq->csd.func = __blk_mq_complete_request_remote;
412 413
		rq->csd.info = rq;
		rq->csd.flags = 0;
414
		smp_call_function_single_async(ctx->cpu, &rq->csd);
415
	} else {
416
		rq->q->softirq_done_fn(rq);
417
	}
418 419
	put_cpu();
}
420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

436
static void __blk_mq_complete_request(struct request *rq)
437 438 439
{
	struct request_queue *q = rq->q;

440 441
	blk_mq_stat_add(rq);

442
	if (!q->softirq_done_fn)
443
		blk_mq_end_request(rq, rq->errors);
444 445 446 447
	else
		blk_mq_ipi_complete_request(rq);
}

448 449 450 451 452 453 454 455
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
456
void blk_mq_complete_request(struct request *rq, int error)
457
{
458 459 460
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
461
		return;
462 463
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
464
		__blk_mq_complete_request(rq);
465
	}
466 467
}
EXPORT_SYMBOL(blk_mq_complete_request);
468

469 470 471 472 473 474
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

475
void blk_mq_start_request(struct request *rq)
476 477 478
{
	struct request_queue *q = rq->q;

479 480
	blk_mq_sched_started_request(rq);

481 482
	trace_block_rq_issue(q, rq);

483 484 485
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
486
		wbt_issue(q->rq_wb, &rq->issue_stat);
487 488
	}

489
	blk_add_timer(rq);
490

491 492 493 494 495 496
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

497 498 499 500 501 502
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
503 504 505 506
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
507 508 509 510 511 512 513 514 515

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
516
}
517
EXPORT_SYMBOL(blk_mq_start_request);
518

519
static void __blk_mq_requeue_request(struct request *rq)
520 521 522 523
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
524
	wbt_requeue(q->rq_wb, &rq->issue_stat);
525
	blk_mq_sched_requeue_request(rq);
526

527 528 529 530
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
531 532
}

533
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
534 535 536 537
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
538
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
539 540 541
}
EXPORT_SYMBOL(blk_mq_requeue_request);

542 543 544
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
545
		container_of(work, struct request_queue, requeue_work.work);
546 547 548 549 550 551 552 553 554
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
555
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
556 557
			continue;

558
		rq->rq_flags &= ~RQF_SOFTBARRIER;
559
		list_del_init(&rq->queuelist);
560
		blk_mq_sched_insert_request(rq, true, false, false, true);
561 562 563 564 565
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
566
		blk_mq_sched_insert_request(rq, false, false, false, true);
567 568
	}

569
	blk_mq_run_hw_queues(q, false);
570 571
}

572 573
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
574 575 576 577 578 579 580 581
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
582
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
583 584 585

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
586
		rq->rq_flags |= RQF_SOFTBARRIER;
587 588 589 590 591
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
592 593 594

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
595 596 597 598 599
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
600
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
601 602 603
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

604 605 606 607 608 609 610 611
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

632 633
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
634 635
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
636
		return tags->rqs[tag];
637
	}
638 639

	return NULL;
640 641 642
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

643
struct blk_mq_timeout_data {
644 645
	unsigned long next;
	unsigned int next_set;
646 647
};

648
void blk_mq_rq_timed_out(struct request *req, bool reserved)
649
{
J
Jens Axboe 已提交
650
	const struct blk_mq_ops *ops = req->q->mq_ops;
651
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
652 653 654 655 656 657 658 659 660 661

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
662 663
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
664

665
	if (ops->timeout)
666
		ret = ops->timeout(req, reserved);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
682
}
683

684 685 686 687
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
688

689 690 691 692 693
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
694 695 696 697
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
698
		return;
699
	}
700

701 702
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
703
			blk_mq_rq_timed_out(rq, reserved);
704 705 706 707
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
708 709
}

710
static void blk_mq_timeout_work(struct work_struct *work)
711
{
712 713
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
714 715 716 717 718
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
734 735
		return;

736
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
737

738 739 740
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
741
	} else {
742 743
		struct blk_mq_hw_ctx *hctx;

744 745 746 747 748
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
749
	}
750
	blk_queue_exit(q);
751 752 753 754 755 756 757 758 759 760 761 762 763 764
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
765
		bool merged = false;
766 767 768 769 770 771 772

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

773 774 775 776
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
777
			break;
778 779 780
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
781
			break;
782 783
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
784
			break;
785 786
		default:
			continue;
787
		}
788 789 790 791

		if (merged)
			ctx->rq_merged++;
		return merged;
792 793 794 795 796
	}

	return false;
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

815 816 817 818
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
819
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
820
{
821 822 823 824
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
825

826
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
827
}
828
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
829

830 831 832 833
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
834

835
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
836 837
}

838 839
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
840 841 842 843 844 845 846 847 848 849 850 851 852 853
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

854 855 856
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

857 858
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
859 860 861 862
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
863 864 865 866 867 868 869
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				  struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

947
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
948 949 950
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
951 952
	LIST_HEAD(driver_list);
	struct list_head *dptr;
953
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
954

955 956 957 958 959 960
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

961 962 963
	/*
	 * Now process all the entries, sending them to the driver.
	 */
964
	queued = 0;
965
	while (!list_empty(list)) {
966
		struct blk_mq_queue_data bd;
967

968
		rq = list_first_entry(list, struct request, queuelist);
969 970 971
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
972 973

			/*
974 975
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
976
			 */
977 978 979 980 981 982 983 984 985
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
986
				break;
987
			}
988
		}
989

990 991
		list_del_init(&rq->queuelist);

992 993
		bd.rq = rq;
		bd.list = dptr;
994
		bd.last = list_empty(list);
995 996

		ret = q->mq_ops->queue_rq(hctx, &bd);
997 998 999
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1000
			break;
1001
		case BLK_MQ_RQ_QUEUE_BUSY:
1002
			blk_mq_put_driver_tag(hctx, rq);
1003
			list_add(&rq->queuelist, list);
1004
			__blk_mq_requeue_request(rq);
1005 1006 1007 1008
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1009
			rq->errors = -EIO;
1010
			blk_mq_end_request(rq, rq->errors);
1011 1012 1013 1014 1015
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1016 1017 1018 1019 1020

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
1021
		if (!dptr && list->next != list->prev)
1022
			dptr = &driver_list;
1023 1024
	}

1025
	hctx->dispatched[queued_to_index(queued)]++;
1026 1027 1028 1029 1030

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1031
	if (!list_empty(list)) {
1032
		spin_lock(&hctx->lock);
1033
		list_splice_init(list, &hctx->dispatch);
1034
		spin_unlock(&hctx->lock);
1035

1036 1037 1038 1039 1040 1041 1042 1043
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1044
		 *
1045 1046
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1047
		 */
1048 1049
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1050
			blk_mq_run_hw_queue(hctx, true);
1051
	}
1052

1053
	return queued != 0;
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063 1064
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1065
		blk_mq_sched_dispatch_requests(hctx);
1066 1067 1068
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1069
		blk_mq_sched_dispatch_requests(hctx);
1070 1071 1072 1073
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1074 1075 1076 1077 1078 1079 1080 1081
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1082 1083
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1084 1085

	if (--hctx->next_cpu_batch <= 0) {
1086
		int next_cpu;
1087 1088 1089 1090 1091 1092 1093 1094 1095

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1096
	return hctx->next_cpu;
1097 1098
}

1099 1100
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1101 1102
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1103 1104
		return;

1105
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1106 1107
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1108
			__blk_mq_run_hw_queue(hctx);
1109
			put_cpu();
1110 1111
			return;
		}
1112

1113
		put_cpu();
1114
	}
1115

1116
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1117 1118
}

1119
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1120 1121 1122 1123 1124
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1125
		if (!blk_mq_hctx_has_pending(hctx) ||
1126
		    blk_mq_hctx_stopped(hctx))
1127 1128
			continue;

1129
		blk_mq_run_hw_queue(hctx, async);
1130 1131
	}
}
1132
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1154 1155
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1156
	cancel_work(&hctx->run_work);
1157
	cancel_delayed_work(&hctx->delay_work);
1158 1159 1160 1161
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1172 1173 1174
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1175

1176
	blk_mq_run_hw_queue(hctx, false);
1177 1178 1179
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1200
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1201 1202 1203 1204
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1205 1206
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1207 1208 1209
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1210
static void blk_mq_run_work_fn(struct work_struct *work)
1211 1212 1213
{
	struct blk_mq_hw_ctx *hctx;

1214
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1215

1216 1217 1218
	__blk_mq_run_hw_queue(hctx);
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1231 1232
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1233

1234
	blk_mq_stop_hw_queue(hctx);
1235 1236
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1237 1238 1239
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1240 1241 1242
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1243
{
J
Jens Axboe 已提交
1244 1245
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1246 1247
	trace_block_rq_insert(hctx->queue, rq);

1248 1249 1250 1251
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1252
}
1253

1254 1255
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1256 1257 1258
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1259
	__blk_mq_insert_req_list(hctx, rq, at_head);
1260 1261 1262
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1263 1264
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1276
		BUG_ON(rq->mq_ctx != ctx);
1277
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1278
		__blk_mq_insert_req_list(hctx, rq, false);
1279
	}
1280
	blk_mq_hctx_mark_pending(hctx, ctx);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1317 1318 1319 1320
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1337 1338 1339
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1340 1341 1342 1343 1344 1345
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1346

1347
	blk_account_io_start(rq, true);
1348 1349
}

1350 1351 1352 1353 1354 1355
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1356 1357 1358
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1359
{
1360
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1361 1362 1363 1364 1365 1366 1367
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1368 1369
		struct request_queue *q = hctx->queue;

1370 1371 1372 1373 1374
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1375

1376
		spin_unlock(&ctx->lock);
1377
		__blk_mq_finish_request(hctx, ctx, rq);
1378
		return true;
1379
	}
1380
}
1381

1382 1383
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1384 1385 1386 1387
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1388 1389
}

1390
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1391 1392 1393 1394 1395 1396 1397
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1398 1399 1400
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1401

1402
	if (q->elevator)
1403 1404
		goto insert;

1405 1406 1407 1408 1409
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1410 1411 1412 1413 1414 1415
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1416 1417
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1418
		return;
1419
	}
1420

1421 1422 1423 1424 1425 1426
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1427
		return;
1428
	}
1429

1430
insert:
1431
	blk_mq_sched_insert_request(rq, false, true, true, false);
1432 1433
}

1434 1435 1436 1437 1438
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1439
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1440
{
1441
	const int is_sync = op_is_sync(bio->bi_opf);
1442
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1443
	struct blk_mq_alloc_data data = { .flags = 0 };
1444
	struct request *rq;
1445
	unsigned int request_count = 0, srcu_idx;
1446
	struct blk_plug *plug;
1447
	struct request *same_queue_rq = NULL;
1448
	blk_qc_t cookie;
J
Jens Axboe 已提交
1449
	unsigned int wb_acct;
1450 1451 1452 1453

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1454
		bio_io_error(bio);
1455
		return BLK_QC_T_NONE;
1456 1457
	}

1458 1459
	blk_queue_split(q, &bio, q->bio_split);

1460 1461 1462
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1463

1464 1465 1466
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1467 1468
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1469 1470 1471
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1472 1473
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1474
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1475 1476 1477
	}

	wbt_track(&rq->issue_stat, wb_acct);
1478

1479
	cookie = request_to_qc_t(data.hctx, rq);
1480 1481

	if (unlikely(is_flush_fua)) {
1482 1483
		if (q->elevator)
			goto elv_insert;
1484 1485
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1486
		goto run_queue;
1487 1488
	}

1489
	plug = current->plug;
1490 1491 1492 1493 1494
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1495 1496 1497
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1498 1499 1500 1501

		blk_mq_bio_to_request(rq, bio);

		/*
1502
		 * We do limited plugging. If the bio can be merged, do that.
1503 1504
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1505
		 */
1506
		if (plug) {
1507 1508
			/*
			 * The plug list might get flushed before this. If that
1509 1510 1511
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1512 1513
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1514
				list_del_init(&old_rq->queuelist);
1515
			}
1516 1517 1518 1519 1520
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1521
			goto done;
1522 1523 1524

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1525
			blk_mq_try_issue_directly(old_rq, &cookie);
1526 1527 1528
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1529
			blk_mq_try_issue_directly(old_rq, &cookie);
1530 1531
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1532
		goto done;
1533 1534
	}

1535
	if (q->elevator) {
1536
elv_insert:
1537 1538
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1539
		blk_mq_sched_insert_request(rq, false, true,
1540
						!is_sync || is_flush_fua, true);
1541 1542
		goto done;
	}
1543 1544 1545 1546 1547 1548 1549
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1550
run_queue:
1551 1552 1553
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1554 1555
done:
	return cookie;
1556 1557 1558 1559 1560 1561
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1562
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1563
{
1564
	const int is_sync = op_is_sync(bio->bi_opf);
1565
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1566 1567
	struct blk_plug *plug;
	unsigned int request_count = 0;
1568
	struct blk_mq_alloc_data data = { .flags = 0 };
1569
	struct request *rq;
1570
	blk_qc_t cookie;
J
Jens Axboe 已提交
1571
	unsigned int wb_acct;
1572 1573 1574 1575

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1576
		bio_io_error(bio);
1577
		return BLK_QC_T_NONE;
1578 1579
	}

1580 1581
	blk_queue_split(q, &bio, q->bio_split);

1582 1583 1584 1585 1586
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1587

1588 1589 1590
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1591 1592
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1593 1594 1595
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1596 1597
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1598
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1599 1600 1601
	}

	wbt_track(&rq->issue_stat, wb_acct);
1602

1603
	cookie = request_to_qc_t(data.hctx, rq);
1604 1605

	if (unlikely(is_flush_fua)) {
1606 1607
		if (q->elevator)
			goto elv_insert;
1608 1609
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1610
		goto run_queue;
1611 1612 1613 1614 1615 1616 1617
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1618 1619
	plug = current->plug;
	if (plug) {
1620 1621
		struct request *last = NULL;

1622
		blk_mq_bio_to_request(rq, bio);
1623 1624 1625 1626 1627 1628 1629

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1630
		if (!request_count)
1631
			trace_block_plug(q);
1632 1633
		else
			last = list_entry_rq(plug->mq_list.prev);
1634 1635 1636

		blk_mq_put_ctx(data.ctx);

1637 1638
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1639 1640
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1641
		}
1642

1643
		list_add_tail(&rq->queuelist, &plug->mq_list);
1644
		return cookie;
1645 1646
	}

1647
	if (q->elevator) {
1648
elv_insert:
1649 1650
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1651
		blk_mq_sched_insert_request(rq, false, true,
1652
						!is_sync || is_flush_fua, true);
1653 1654
		goto done;
	}
1655 1656 1657 1658 1659 1660 1661
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1662
run_queue:
1663
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1664 1665
	}

1666
	blk_mq_put_ctx(data.ctx);
1667
done:
1668
	return cookie;
1669 1670
}

1671 1672
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1673
{
1674
	struct page *page;
1675

1676
	if (tags->rqs && set->ops->exit_request) {
1677
		int i;
1678

1679
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1680 1681 1682
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1683
				continue;
J
Jens Axboe 已提交
1684
			set->ops->exit_request(set->driver_data, rq,
1685
						hctx_idx, i);
J
Jens Axboe 已提交
1686
			tags->static_rqs[i] = NULL;
1687
		}
1688 1689
	}

1690 1691
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1692
		list_del_init(&page->lru);
1693 1694 1695 1696 1697
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1698 1699
		__free_pages(page, page->private);
	}
1700
}
1701

1702 1703
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1704
	kfree(tags->rqs);
1705
	tags->rqs = NULL;
J
Jens Axboe 已提交
1706 1707
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1708

1709
	blk_mq_free_tags(tags);
1710 1711
}

1712 1713 1714 1715
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1716
{
1717
	struct blk_mq_tags *tags;
1718
	int node;
1719

1720 1721 1722 1723 1724
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1725
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1726 1727
	if (!tags)
		return NULL;
1728

1729
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1730
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1731
				 node);
1732 1733 1734 1735
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1736

J
Jens Axboe 已提交
1737 1738
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1739
				 node);
J
Jens Axboe 已提交
1740 1741 1742 1743 1744 1745
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1759 1760 1761 1762 1763
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1764 1765 1766

	INIT_LIST_HEAD(&tags->page_list);

1767 1768 1769 1770
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1771
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1772
				cache_line_size());
1773
	left = rq_size * depth;
1774

1775
	for (i = 0; i < depth; ) {
1776 1777 1778 1779 1780
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1781
		while (this_order && left < order_to_size(this_order - 1))
1782 1783 1784
			this_order--;

		do {
1785
			page = alloc_pages_node(node,
1786
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1787
				this_order);
1788 1789 1790 1791 1792 1793 1794 1795 1796
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1797
			goto fail;
1798 1799

		page->private = this_order;
1800
		list_add_tail(&page->lru, &tags->page_list);
1801 1802

		p = page_address(page);
1803 1804 1805 1806
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1807
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1808
		entries_per_page = order_to_size(this_order) / rq_size;
1809
		to_do = min(entries_per_page, depth - i);
1810 1811
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1812 1813 1814
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1815 1816
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1817
						rq, hctx_idx, i,
1818
						node)) {
J
Jens Axboe 已提交
1819
					tags->static_rqs[i] = NULL;
1820
					goto fail;
1821
				}
1822 1823
			}

1824 1825 1826 1827
			p += rq_size;
			i++;
		}
	}
1828
	return 0;
1829

1830
fail:
1831 1832
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1833 1834
}

J
Jens Axboe 已提交
1835 1836 1837 1838 1839
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1840
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1841
{
1842
	struct blk_mq_hw_ctx *hctx;
1843 1844 1845
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1846
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1847
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1848 1849 1850 1851 1852 1853 1854 1855 1856

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1857
		return 0;
1858

J
Jens Axboe 已提交
1859 1860 1861
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1862 1863

	blk_mq_run_hw_queue(hctx, true);
1864
	return 0;
1865 1866
}

1867
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1868
{
1869 1870
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1871 1872
}

1873
/* hctx->ctxs will be freed in queue's release handler */
1874 1875 1876 1877
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1878 1879
	unsigned flush_start_tag = set->queue_depth;

1880 1881
	blk_mq_tag_idle(hctx);

1882 1883 1884 1885 1886
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1887 1888 1889
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1890 1891 1892
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1893
	blk_mq_remove_cpuhp(hctx);
1894
	blk_free_flush_queue(hctx->fq);
1895
	sbitmap_free(&hctx->ctx_map);
1896 1897
}

M
Ming Lei 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1907
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1917
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1918 1919 1920
		free_cpumask_var(hctx->cpumask);
}

1921 1922 1923
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1924
{
1925
	int node;
1926
	unsigned flush_start_tag = set->queue_depth;
1927 1928 1929 1930 1931

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1932
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1933 1934 1935 1936 1937
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1938
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1939

1940
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1941 1942

	hctx->tags = set->tags[hctx_idx];
1943 1944

	/*
1945 1946
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1947
	 */
1948 1949 1950 1951
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1952

1953 1954
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1955
		goto free_ctxs;
1956

1957
	hctx->nr_ctx = 0;
1958

1959 1960 1961
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1962

1963 1964 1965
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1966

1967 1968 1969 1970 1971
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1972

1973 1974 1975
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1976
	return 0;
1977

1978 1979 1980 1981 1982
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1983
 free_bitmap:
1984
	sbitmap_free(&hctx->ctx_map);
1985 1986 1987
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1988
	blk_mq_remove_cpuhp(hctx);
1989 1990
	return -1;
}
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
2006 2007
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2008 2009 2010 2011 2012

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
2013
		hctx = blk_mq_map_queue(q, i);
2014

2015 2016 2017 2018 2019
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2020
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2021 2022 2023
	}
}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2046 2047 2048 2049 2050
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2051 2052
}

2053 2054
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2055
{
2056
	unsigned int i, hctx_idx;
2057 2058
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2059
	struct blk_mq_tag_set *set = q->tag_set;
2060

2061 2062 2063 2064 2065
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2066
	queue_for_each_hw_ctx(q, hctx, i) {
2067
		cpumask_clear(hctx->cpumask);
2068 2069 2070 2071 2072 2073
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2074
	for_each_possible_cpu(i) {
2075
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2076
		if (!cpumask_test_cpu(i, online_mask))
2077 2078
			continue;

2079 2080
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2081 2082
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2083 2084 2085 2086 2087 2088
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2089
			q->mq_map[i] = 0;
2090 2091
		}

2092
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2093
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2094

2095
		cpumask_set_cpu(i, hctx->cpumask);
2096 2097 2098
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2099

2100 2101
	mutex_unlock(&q->sysfs_lock);

2102
	queue_for_each_hw_ctx(q, hctx, i) {
2103
		/*
2104 2105
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2106 2107
		 */
		if (!hctx->nr_ctx) {
2108 2109 2110 2111
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2112 2113 2114
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2115
			hctx->tags = NULL;
2116 2117 2118
			continue;
		}

M
Ming Lei 已提交
2119 2120 2121
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2122 2123 2124 2125 2126
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2127
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2128

2129 2130 2131
		/*
		 * Initialize batch roundrobin counts
		 */
2132 2133 2134
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2135 2136
}

2137
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2138 2139 2140 2141
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2153 2154 2155

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2156
		queue_set_hctx_shared(q, shared);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2167 2168 2169 2170 2171 2172
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2173 2174 2175 2176 2177 2178 2179 2180 2181
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2182 2183 2184 2185 2186 2187 2188 2189 2190

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2191
	list_add_tail(&q->tag_set_list, &set->tag_list);
2192

2193 2194 2195
	mutex_unlock(&set->tag_list_lock);
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2207 2208
	blk_mq_sched_teardown(q);

2209
	/* hctx kobj stays in hctx */
2210 2211 2212 2213
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2214
		kfree(hctx);
2215
	}
2216

2217 2218
	q->mq_map = NULL;

2219 2220 2221 2222 2223 2224
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2225
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2241 2242
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2243
{
K
Keith Busch 已提交
2244 2245
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2246

K
Keith Busch 已提交
2247
	blk_mq_sysfs_unregister(q);
2248
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2249
		int node;
2250

K
Keith Busch 已提交
2251 2252 2253 2254
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2255 2256
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2257
		if (!hctxs[i])
K
Keith Busch 已提交
2258
			break;
2259

2260
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2261 2262 2263 2264 2265
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2266

2267
		atomic_set(&hctxs[i]->nr_active, 0);
2268
		hctxs[i]->numa_node = node;
2269
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2270 2271 2272 2273 2274 2275 2276 2277

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2278
	}
K
Keith Busch 已提交
2279 2280 2281 2282
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2283 2284
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2301 2302 2303
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2304 2305
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2306
		goto err_exit;
K
Keith Busch 已提交
2307 2308 2309 2310 2311 2312

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2313
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2314 2315 2316 2317

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2318

2319
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2320
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2321 2322 2323

	q->nr_queues = nr_cpu_ids;

2324
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2325

2326 2327 2328
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2329 2330
	q->sg_reserved_size = INT_MAX;

2331
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2332 2333 2334
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2335 2336 2337 2338 2339
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2340 2341 2342 2343 2344
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2345 2346 2347 2348 2349
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2350 2351
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2352

2353
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2354

2355
	get_online_cpus();
2356 2357
	mutex_lock(&all_q_mutex);

2358
	list_add_tail(&q->all_q_node, &all_q_list);
2359
	blk_mq_add_queue_tag_set(set, q);
2360
	blk_mq_map_swqueue(q, cpu_online_mask);
2361

2362
	mutex_unlock(&all_q_mutex);
2363
	put_online_cpus();
2364

2365 2366 2367 2368 2369 2370 2371 2372
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2373
	return q;
2374

2375
err_hctxs:
K
Keith Busch 已提交
2376
	kfree(q->queue_hw_ctx);
2377
err_percpu:
K
Keith Busch 已提交
2378
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2379 2380
err_exit:
	q->mq_ops = NULL;
2381 2382
	return ERR_PTR(-ENOMEM);
}
2383
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2384 2385 2386

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2387
	struct blk_mq_tag_set	*set = q->tag_set;
2388

2389 2390 2391 2392
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2393 2394
	wbt_exit(q);

2395 2396
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2397 2398
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2399 2400 2401
}

/* Basically redo blk_mq_init_queue with queue frozen */
2402 2403
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2404
{
2405
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2406

2407 2408
	blk_mq_sysfs_unregister(q);

2409 2410 2411 2412 2413 2414
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2415
	blk_mq_map_swqueue(q, online_mask);
2416

2417
	blk_mq_sysfs_register(q);
2418 2419
}

2420 2421 2422 2423 2424 2425 2426 2427
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2428 2429 2430 2431
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2432 2433 2434 2435 2436 2437 2438 2439 2440
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2441
	list_for_each_entry(q, &all_q_list, all_q_node)
2442 2443
		blk_mq_freeze_queue_wait(q);

2444
	list_for_each_entry(q, &all_q_list, all_q_node)
2445
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2446 2447 2448 2449

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2450
	mutex_unlock(&all_q_mutex);
2451 2452 2453 2454
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2455
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2471 2472 2473 2474
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2475 2476 2477 2478 2479 2480 2481
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2482 2483
}

2484 2485 2486 2487
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2488 2489
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2490 2491 2492 2493 2494 2495
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2496
		blk_mq_free_rq_map(set->tags[i]);
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2536 2537 2538 2539 2540 2541
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2542 2543
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2544 2545
	int ret;

B
Bart Van Assche 已提交
2546 2547
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2548 2549
	if (!set->nr_hw_queues)
		return -EINVAL;
2550
	if (!set->queue_depth)
2551 2552 2553 2554
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2555
	if (!set->ops->queue_rq)
2556 2557
		return -EINVAL;

2558 2559 2560 2561 2562
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2563

2564 2565 2566 2567 2568 2569 2570 2571 2572
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2573 2574 2575 2576 2577
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2578

K
Keith Busch 已提交
2579
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2580 2581
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2582
		return -ENOMEM;
2583

2584 2585 2586
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2587 2588 2589
	if (!set->mq_map)
		goto out_free_tags;

2590 2591 2592 2593 2594 2595 2596 2597 2598
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2599
		goto out_free_mq_map;
2600

2601 2602 2603
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2604
	return 0;
2605 2606 2607 2608 2609

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2610 2611
	kfree(set->tags);
	set->tags = NULL;
2612
	return ret;
2613 2614 2615 2616 2617 2618 2619
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2620 2621
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2622

2623 2624 2625
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2626
	kfree(set->tags);
2627
	set->tags = NULL;
2628 2629 2630
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2631 2632 2633 2634 2635 2636
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2637
	if (!set)
2638 2639
		return -EINVAL;

2640 2641 2642
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2643 2644
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2645 2646
		if (!hctx->tags)
			continue;
2647 2648 2649 2650
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2651 2652 2653 2654 2655 2656 2657 2658
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2659 2660 2661 2662 2663 2664 2665
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2666 2667 2668
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2669 2670 2671
	return ret;
}

K
Keith Busch 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

2688 2689 2690 2691
		/*
		 * Manually set the make_request_fn as blk_queue_make_request
		 * resets a lot of the queue settings.
		 */
K
Keith Busch 已提交
2692
		if (q->nr_hw_queues > 1)
2693
			q->make_request_fn = blk_mq_make_request;
K
Keith Busch 已提交
2694
		else
2695
			q->make_request_fn = blk_sq_make_request;
K
Keith Busch 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2742
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2743
				     struct blk_mq_hw_ctx *hctx,
2744 2745 2746 2747
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2748
	unsigned int nsecs;
2749 2750
	ktime_t kt;

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2769 2770 2771 2772 2773 2774 2775 2776
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2777
	kt = nsecs;
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2800 2801 2802 2803 2804
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2805 2806 2807 2808 2809 2810 2811
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2812
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2813 2814
		return true;

J
Jens Axboe 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2858 2859 2860 2861
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2862 2863 2864 2865 2866

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2877 2878
static int __init blk_mq_init(void)
{
2879 2880
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2881

2882 2883 2884
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2885 2886 2887
	return 0;
}
subsys_initcall(blk_mq_init);