blk-mq.c 74.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98 99 100 101 102 103 104 105 106
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
107 108 109 110 111 112 113
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

114
	inflight[0] = inflight[1] = 0;
115 116 117
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139
	int freeze_depth;
140

141 142
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
143
		percpu_ref_kill(&q->q_usage_counter);
144 145
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
146
	}
147
}
148
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149

150
void blk_mq_freeze_queue_wait(struct request_queue *q)
151
{
152
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155

156 157 158 159 160 161 162 163
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164

165 166 167 168
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
169
void blk_freeze_queue(struct request_queue *q)
170
{
171 172 173 174 175 176 177
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
178
	blk_freeze_queue_start(q);
179 180
	if (!q->mq_ops)
		blk_drain_queue(q);
181 182
	blk_mq_freeze_queue_wait(q);
}
183 184 185 186 187 188 189 190 191

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193

194
void blk_mq_unfreeze_queue(struct request_queue *q)
195
{
196
	int freeze_depth;
197

198 199 200
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
201
		percpu_ref_reinit(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
}
205
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206

207 208 209 210 211 212
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
213
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 215 216
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

217
/**
218
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 220 221
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
222 223 224
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
225 226 227 228 229 230 231
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

232
	blk_mq_quiesce_queue_nowait(q);
233

234 235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
236
			synchronize_srcu(hctx->srcu);
237 238 239 240 241 242 243 244
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

245 246 247 248 249 250 251 252 253
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
254
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255

256 257
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
258 259 260
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

261 262 263 264 265 266 267 268 269 270
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

271 272 273 274 275 276
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

277 278
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282
	req_flags_t rq_flags = 0;
283

284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
289
			rq_flags = RQF_MQ_INFLIGHT;
290 291 292 293 294 295 296
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

297
	/* csd/requeue_work/fifo_time is initialized before use */
298 299
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
300
	rq->rq_flags = rq_flags;
301
	rq->cpu = -1;
302
	rq->cmd_flags = op;
303 304
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
305
	if (blk_queue_io_stat(data->q))
306
		rq->rq_flags |= RQF_IO_STAT;
307
	INIT_LIST_HEAD(&rq->queuelist);
308 309 310 311
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
312
	rq->start_time_ns = ktime_get_ns();
313
	rq->io_start_time_ns = 0;
314 315 316 317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
321
	rq->__deadline = 0;
322 323

	INIT_LIST_HEAD(&rq->timeout_list);
324 325
	rq->timeout = 0;

326 327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

330 331 332 333
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

334
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
335
	refcount_set(&rq->ref, 1);
336
	return rq;
337 338
}

339 340 341 342 343 344
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
345
	unsigned int tag;
346
	bool put_ctx_on_error = false;
347 348 349

	blk_queue_enter_live(q);
	data->q = q;
350 351 352 353
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
354 355
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 357
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
358 359 360 361 362 363

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
364 365
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
366
		 */
367 368
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
369
			e->type->ops.mq.limit_depth(op, data);
370 371
	}

372 373
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
374 375
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
376 377
			data->ctx = NULL;
		}
378 379
		blk_queue_exit(q);
		return NULL;
380 381
	}

382
	rq = blk_mq_rq_ctx_init(data, tag, op);
383 384
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
385
		if (e && e->type->ops.mq.prepare_request) {
386 387 388
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

389 390
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
391
		}
392 393 394
	}
	data->hctx->queued++;
	return rq;
395 396
}

397
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398
		blk_mq_req_flags_t flags)
399
{
400
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
401
	struct request *rq;
402
	int ret;
403

404
	ret = blk_queue_enter(q, flags);
405 406
	if (ret)
		return ERR_PTR(ret);
407

408
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409
	blk_queue_exit(q);
410

411
	if (!rq)
412
		return ERR_PTR(-EWOULDBLOCK);
413

414 415
	blk_mq_put_ctx(alloc_data.ctx);

416 417 418
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
419 420
	return rq;
}
421
EXPORT_SYMBOL(blk_mq_alloc_request);
422

423
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
425
{
426
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
427
	struct request *rq;
428
	unsigned int cpu;
M
Ming Lin 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

443
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
444 445 446
	if (ret)
		return ERR_PTR(ret);

447 448 449 450
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
451 452 453 454
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
455
	}
456
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
458

459
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460
	blk_queue_exit(q);
461

462 463 464 465
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
466 467 468
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

484
void blk_mq_free_request(struct request *rq)
485 486
{
	struct request_queue *q = rq->q;
487 488 489 490
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

491
	if (rq->rq_flags & RQF_ELVPRIV) {
492 493 494 495 496 497 498
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
499

500
	ctx->rq_completed[rq_is_sync(rq)]++;
501
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
502
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
503

504 505 506
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

507
	wbt_done(q->rq_wb, rq);
508

S
Shaohua Li 已提交
509 510 511
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

K
Keith Busch 已提交
512 513 514
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
515
}
J
Jens Axboe 已提交
516
EXPORT_SYMBOL_GPL(blk_mq_free_request);
517

518
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519
{
520 521
	u64 now = ktime_get_ns();

522 523
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
524
		blk_stat_add(rq, now);
525 526
	}

527
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
528

C
Christoph Hellwig 已提交
529
	if (rq->end_io) {
530
		wbt_done(rq->q->rq_wb, rq);
531
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
532 533 534
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
535
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
536
	}
537
}
538
EXPORT_SYMBOL(__blk_mq_end_request);
539

540
void blk_mq_end_request(struct request *rq, blk_status_t error)
541 542 543
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
544
	__blk_mq_end_request(rq, error);
545
}
546
EXPORT_SYMBOL(blk_mq_end_request);
547

548
static void __blk_mq_complete_request_remote(void *data)
549
{
550
	struct request *rq = data;
551

552
	rq->q->softirq_done_fn(rq);
553 554
}

555
static void __blk_mq_complete_request(struct request *rq)
556 557
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
558
	bool shared = false;
559 560
	int cpu;

K
Keith Busch 已提交
561 562 563
	if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) !=
			MQ_RQ_IN_FLIGHT)
		return;
564

565 566 567
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
568
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 570 571
		rq->q->softirq_done_fn(rq);
		return;
	}
572 573

	cpu = get_cpu();
C
Christoph Hellwig 已提交
574 575 576 577
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578
		rq->csd.func = __blk_mq_complete_request_remote;
579 580
		rq->csd.info = rq;
		rq->csd.flags = 0;
581
		smp_call_function_single_async(ctx->cpu, &rq->csd);
582
	} else {
583
		rq->q->softirq_done_fn(rq);
584
	}
585 586
	put_cpu();
}
587

588
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589
	__releases(hctx->srcu)
590 591 592 593
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
594
		srcu_read_unlock(hctx->srcu, srcu_idx);
595 596 597
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598
	__acquires(hctx->srcu)
599
{
600 601 602
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
603
		rcu_read_lock();
604
	} else
605
		*srcu_idx = srcu_read_lock(hctx->srcu);
606 607
}

608 609 610 611 612 613 614 615
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
616
void blk_mq_complete_request(struct request *rq)
617
{
K
Keith Busch 已提交
618
	if (unlikely(blk_should_fake_timeout(rq->q)))
619
		return;
K
Keith Busch 已提交
620
	__blk_mq_complete_request(rq);
621 622
}
EXPORT_SYMBOL(blk_mq_complete_request);
623

624 625
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
626
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 628 629
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

630
void blk_mq_start_request(struct request *rq)
631 632 633
{
	struct request_queue *q = rq->q;

634 635
	blk_mq_sched_started_request(rq);

636 637
	trace_block_rq_issue(q, rq);

638
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 640 641 642
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
643
		rq->rq_flags |= RQF_STATS;
644
		wbt_issue(q->rq_wb, rq);
645 646
	}

647
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648

649
	blk_add_timer(rq);
K
Keith Busch 已提交
650
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 652 653 654 655 656 657 658 659

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
660
}
661
EXPORT_SYMBOL(blk_mq_start_request);
662

663
static void __blk_mq_requeue_request(struct request *rq)
664 665 666
{
	struct request_queue *q = rq->q;

667 668
	blk_mq_put_driver_tag(rq);

669
	trace_block_rq_requeue(q, rq);
670
	wbt_requeue(q->rq_wb, rq);
671

K
Keith Busch 已提交
672 673
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674
		rq->rq_flags &= ~RQF_TIMED_OUT;
675 676 677
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
678 679
}

680
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 682 683
{
	__blk_mq_requeue_request(rq);

684 685 686
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

687
	BUG_ON(blk_queued_rq(rq));
688
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 690 691
}
EXPORT_SYMBOL(blk_mq_requeue_request);

692 693 694
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
695
		container_of(work, struct request_queue, requeue_work.work);
696 697 698
	LIST_HEAD(rq_list);
	struct request *rq, *next;

699
	spin_lock_irq(&q->requeue_lock);
700
	list_splice_init(&q->requeue_list, &rq_list);
701
	spin_unlock_irq(&q->requeue_lock);
702 703

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
705 706
			continue;

707
		rq->rq_flags &= ~RQF_SOFTBARRIER;
708
		list_del_init(&rq->queuelist);
709
		blk_mq_sched_insert_request(rq, true, false, false);
710 711 712 713 714
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
715
		blk_mq_sched_insert_request(rq, false, false, false);
716 717
	}

718
	blk_mq_run_hw_queues(q, false);
719 720
}

721 722
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
723 724 725 726 727 728
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
729
	 * request head insertion from the workqueue.
730
	 */
731
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
732 733 734

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
735
		rq->rq_flags |= RQF_SOFTBARRIER;
736 737 738 739 740
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
741 742 743

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
744 745 746 747 748
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
749
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
750 751 752
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

753 754 755
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
756 757
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
758 759 760
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

761 762
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
763 764
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
765
		return tags->rqs[tag];
766
	}
767 768

	return NULL;
769 770 771
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

772
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
773
{
774
	req->rq_flags |= RQF_TIMED_OUT;
775 776 777 778 779 780 781
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
782
	}
783 784

	blk_add_timer(req);
785
}
786

K
Keith Busch 已提交
787
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
788
{
K
Keith Busch 已提交
789
	unsigned long deadline;
790

K
Keith Busch 已提交
791 792
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
793 794
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
795

K
Keith Busch 已提交
796 797 798
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
799

K
Keith Busch 已提交
800 801 802 803 804
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
805 806
}

K
Keith Busch 已提交
807
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808 809
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

831
	/*
K
Keith Busch 已提交
832 833 834 835
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
836
	 */
K
Keith Busch 已提交
837
	if (blk_mq_req_expired(rq, next))
838
		blk_mq_rq_timed_out(rq, reserved);
K
Keith Busch 已提交
839 840
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
841 842
}

843
static void blk_mq_timeout_work(struct work_struct *work)
844
{
845 846
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
847
	unsigned long next = 0;
848
	struct blk_mq_hw_ctx *hctx;
849
	int i;
850

851 852 853 854 855 856 857 858 859
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
860
	 * blk_freeze_queue_start, and the moment the last request is
861 862 863 864
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
865 866
		return;

K
Keith Busch 已提交
867
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
868

K
Keith Busch 已提交
869 870
	if (next != 0) {
		mod_timer(&q->timeout, next);
871
	} else {
872 873 874 875 876 877
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
878 879 880 881 882
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
883
	}
884
	blk_queue_exit(q);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
900
	sbitmap_clear_bit(sb, bitnr);
901 902 903 904
	spin_unlock(&ctx->lock);
	return true;
}

905 906 907 908
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
909
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910
{
911 912 913 914
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
915

916
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917
}
918
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919

920 921 922 923 924 925 926 927 928 929 930 931 932
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
933
	if (!list_empty(&ctx->rq_list)) {
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

959 960 961 962
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
963

964
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 966
}

967
bool blk_mq_get_driver_tag(struct request *rq)
968 969 970 971
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
972
		.flags = BLK_MQ_REQ_NOWAIT,
973 974
	};

975 976
	if (rq->tag != -1)
		goto done;
977

978 979 980
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

981 982
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
983 984 985 986
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
987 988 989
		data.hctx->tags->rqs[rq->tag] = rq;
	}

990 991
done:
	return rq->tag != -1;
992 993
}

994 995
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
996 997 998 999 1000
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1001
	spin_lock(&hctx->dispatch_wait_lock);
1002
	list_del_init(&wait->entry);
1003 1004
	spin_unlock(&hctx->dispatch_wait_lock);

1005 1006 1007 1008
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1009 1010
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1011 1012
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1013 1014
 * marking us as waiting.
 */
1015
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1016
				 struct request *rq)
1017
{
1018
	struct wait_queue_head *wq;
1019 1020
	wait_queue_entry_t *wait;
	bool ret;
1021

1022 1023 1024
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1025

1026 1027 1028 1029 1030 1031 1032 1033
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1034
		return blk_mq_get_driver_tag(rq);
1035 1036
	}

1037
	wait = &hctx->dispatch_wait;
1038 1039 1040
	if (!list_empty_careful(&wait->entry))
		return false;

1041 1042 1043 1044
	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1045
	if (!list_empty(&wait->entry)) {
1046 1047
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1048
		return false;
1049 1050
	}

1051 1052
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1053

1054
	/*
1055 1056 1057
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1058
	 */
1059
	ret = blk_mq_get_driver_tag(rq);
1060
	if (!ret) {
1061 1062
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1063
		return false;
1064
	}
1065 1066 1067 1068 1069 1070

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1071 1072
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1073 1074

	return true;
1075 1076
}

1077 1078
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1079 1080 1081
/*
 * Returns true if we did some work AND can potentially do more.
 */
1082
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1083
			     bool got_budget)
1084
{
1085
	struct blk_mq_hw_ctx *hctx;
1086
	struct request *rq, *nxt;
1087
	bool no_tag = false;
1088
	int errors, queued;
1089
	blk_status_t ret = BLK_STS_OK;
1090

1091 1092 1093
	if (list_empty(list))
		return false;

1094 1095
	WARN_ON(!list_is_singular(list) && got_budget);

1096 1097 1098
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1099
	errors = queued = 0;
1100
	do {
1101
		struct blk_mq_queue_data bd;
1102

1103
		rq = list_first_entry(list, struct request, queuelist);
1104 1105 1106 1107 1108

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

1109
		if (!blk_mq_get_driver_tag(rq)) {
1110
			/*
1111
			 * The initial allocation attempt failed, so we need to
1112 1113 1114 1115
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1116
			 */
1117
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1118
				blk_mq_put_dispatch_budget(hctx);
1119 1120 1121 1122 1123 1124
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1125 1126 1127 1128
				break;
			}
		}

1129 1130
		list_del_init(&rq->queuelist);

1131
		bd.rq = rq;
1132 1133 1134 1135 1136 1137 1138 1139 1140

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1141
			bd.last = !blk_mq_get_driver_tag(nxt);
1142
		}
1143 1144

		ret = q->mq_ops->queue_rq(hctx, &bd);
1145
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1146 1147
			/*
			 * If an I/O scheduler has been configured and we got a
1148 1149
			 * driver tag for the next request already, free it
			 * again.
1150 1151 1152 1153 1154
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1155
			list_add(&rq->queuelist, list);
1156
			__blk_mq_requeue_request(rq);
1157
			break;
1158 1159 1160
		}

		if (unlikely(ret != BLK_STS_OK)) {
1161
			errors++;
1162
			blk_mq_end_request(rq, BLK_STS_IOERR);
1163
			continue;
1164 1165
		}

1166
		queued++;
1167
	} while (!list_empty(list));
1168

1169
	hctx->dispatched[queued_to_index(queued)]++;
1170 1171 1172 1173 1174

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1175
	if (!list_empty(list)) {
1176 1177
		bool needs_restart;

1178
		spin_lock(&hctx->lock);
1179
		list_splice_init(list, &hctx->dispatch);
1180
		spin_unlock(&hctx->lock);
1181

1182
		/*
1183 1184 1185
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1186
		 *
1187 1188 1189 1190
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1191
		 *
1192 1193 1194 1195 1196 1197 1198
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1199
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1200
		 *   and dm-rq.
1201 1202 1203 1204
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1205
		 */
1206 1207
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1208
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1209
			blk_mq_run_hw_queue(hctx, true);
1210 1211
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1212 1213

		return false;
1214
	}
1215

1216 1217 1218 1219 1220 1221 1222
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1223
	return (queued + errors) != 0;
1224 1225
}

1226 1227 1228 1229
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1230 1231 1232
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1246
	 */
1247 1248 1249 1250 1251 1252 1253
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1254

1255 1256 1257 1258 1259 1260
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1261
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1262

1263 1264 1265
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1266 1267
}

1268 1269 1270 1271 1272 1273 1274 1275 1276
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1277 1278 1279 1280 1281 1282 1283 1284
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1285
	bool tried = false;
1286
	int next_cpu = hctx->next_cpu;
1287

1288 1289
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1290 1291

	if (--hctx->next_cpu_batch <= 0) {
1292
select_cpu:
1293
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1294
				cpu_online_mask);
1295
		if (next_cpu >= nr_cpu_ids)
1296
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1297 1298 1299
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1300 1301 1302 1303
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1304
	if (!cpu_online(next_cpu)) {
1305 1306 1307 1308 1309 1310 1311 1312 1313
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1314
		hctx->next_cpu = next_cpu;
1315 1316 1317
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1318 1319 1320

	hctx->next_cpu = next_cpu;
	return next_cpu;
1321 1322
}

1323 1324
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1325
{
1326
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1327 1328
		return;

1329
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1330 1331
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1332
			__blk_mq_run_hw_queue(hctx);
1333
			put_cpu();
1334 1335
			return;
		}
1336

1337
		put_cpu();
1338
	}
1339

1340 1341
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1342 1343 1344 1345 1346 1347 1348 1349
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1350
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1351
{
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1363 1364 1365 1366
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1367 1368

	if (need_run) {
1369 1370 1371 1372 1373
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1374
}
O
Omar Sandoval 已提交
1375
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1376

1377
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1378 1379 1380 1381 1382
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1383
		if (blk_mq_hctx_stopped(hctx))
1384 1385
			continue;

1386
		blk_mq_run_hw_queue(hctx, async);
1387 1388
	}
}
1389
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1411 1412 1413
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1414
 * BLK_STS_RESOURCE is usually returned.
1415 1416 1417 1418 1419
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1420 1421
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1422
	cancel_delayed_work(&hctx->run_work);
1423

1424
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1425
}
1426
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1427

1428 1429 1430
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1431
 * BLK_STS_RESOURCE is usually returned.
1432 1433 1434 1435 1436
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1437 1438
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1439 1440 1441 1442 1443
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1444 1445 1446
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1447 1448 1449
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1450

1451
	blk_mq_run_hw_queue(hctx, false);
1452 1453 1454
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1475
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1476 1477 1478 1479
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1480 1481
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1482 1483 1484
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1485
static void blk_mq_run_work_fn(struct work_struct *work)
1486 1487 1488
{
	struct blk_mq_hw_ctx *hctx;

1489
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1490

1491
	/*
M
Ming Lei 已提交
1492
	 * If we are stopped, don't run the queue.
1493
	 */
M
Ming Lei 已提交
1494
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1495
		return;
1496 1497 1498 1499

	__blk_mq_run_hw_queue(hctx);
}

1500 1501 1502
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1503
{
J
Jens Axboe 已提交
1504 1505
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1506 1507
	lockdep_assert_held(&ctx->lock);

1508 1509
	trace_block_rq_insert(hctx->queue, rq);

1510 1511 1512 1513
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1514
}
1515

1516 1517
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1518 1519 1520
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1521 1522
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1523
	__blk_mq_insert_req_list(hctx, rq, at_head);
1524 1525 1526
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1527 1528 1529 1530
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1531
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1532 1533 1534 1535 1536 1537 1538 1539
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1540 1541
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1542 1543
}

1544 1545
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1557
		BUG_ON(rq->mq_ctx != ctx);
1558
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1559
		__blk_mq_insert_req_list(hctx, rq, false);
1560
	}
1561
	blk_mq_hctx_mark_pending(hctx, ctx);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1598 1599 1600 1601
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1618 1619 1620
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1621 1622 1623 1624 1625
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1626
	blk_init_request_from_bio(rq, bio);
1627

S
Shaohua Li 已提交
1628 1629
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1630
	blk_account_io_start(rq, true);
1631 1632
}

1633 1634
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1635 1636 1637 1638
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1639 1640
}

1641 1642 1643
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1644 1645 1646 1647
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1648
		.last = true,
1649
	};
1650
	blk_qc_t new_cookie;
1651
	blk_status_t ret;
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1666
	case BLK_STS_DEV_RESOURCE:
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1679 1680
						blk_qc_t *cookie,
						bool bypass_insert)
1681 1682
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1683 1684
	bool run_queue = true;

1685 1686 1687 1688
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1689
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1690 1691
	 * and avoid driver to try to dispatch again.
	 */
1692
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1693
		run_queue = false;
1694
		bypass_insert = false;
M
Ming Lei 已提交
1695 1696
		goto insert;
	}
1697

1698
	if (q->elevator && !bypass_insert)
1699 1700
		goto insert;

1701
	if (!blk_mq_get_dispatch_budget(hctx))
1702 1703
		goto insert;

1704
	if (!blk_mq_get_driver_tag(rq)) {
1705
		blk_mq_put_dispatch_budget(hctx);
1706
		goto insert;
1707
	}
1708

1709
	return __blk_mq_issue_directly(hctx, rq, cookie);
1710
insert:
1711 1712
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1713

1714
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1715
	return BLK_STS_OK;
1716 1717
}

1718 1719 1720
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1721
	blk_status_t ret;
1722
	int srcu_idx;
1723

1724
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1725

1726
	hctx_lock(hctx, &srcu_idx);
1727

1728
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1729
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1730
		blk_mq_sched_insert_request(rq, false, true, false);
1731 1732 1733
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1734
	hctx_unlock(hctx, srcu_idx);
1735 1736
}

1737
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1750 1751
}

1752
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1753
{
1754
	const int is_sync = op_is_sync(bio->bi_opf);
1755
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1756
	struct blk_mq_alloc_data data = { .flags = 0 };
1757
	struct request *rq;
1758
	unsigned int request_count = 0;
1759
	struct blk_plug *plug;
1760
	struct request *same_queue_rq = NULL;
1761
	blk_qc_t cookie;
J
Jens Axboe 已提交
1762
	unsigned int wb_acct;
1763 1764 1765

	blk_queue_bounce(q, &bio);

1766
	blk_queue_split(q, &bio);
1767

1768
	if (!bio_integrity_prep(bio))
1769
		return BLK_QC_T_NONE;
1770

1771 1772 1773
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1774

1775 1776 1777
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1778 1779
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1780 1781
	trace_block_getrq(q, bio, bio->bi_opf);

1782
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1783 1784
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1785 1786
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1787
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1788 1789
	}

1790
	wbt_track(rq, wb_acct);
1791

1792
	cookie = request_to_qc_t(data.hctx, rq);
1793

1794
	plug = current->plug;
1795
	if (unlikely(is_flush_fua)) {
1796
		blk_mq_put_ctx(data.ctx);
1797
		blk_mq_bio_to_request(rq, bio);
1798 1799 1800 1801

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1802
	} else if (plug && q->nr_hw_queues == 1) {
1803 1804
		struct request *last = NULL;

1805
		blk_mq_put_ctx(data.ctx);
1806
		blk_mq_bio_to_request(rq, bio);
1807 1808 1809 1810 1811 1812 1813

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1814 1815 1816
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1817
		if (!request_count)
1818
			trace_block_plug(q);
1819 1820
		else
			last = list_entry_rq(plug->mq_list.prev);
1821

1822 1823
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1824 1825
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1826
		}
1827

1828
		list_add_tail(&rq->queuelist, &plug->mq_list);
1829
	} else if (plug && !blk_queue_nomerges(q)) {
1830
		blk_mq_bio_to_request(rq, bio);
1831 1832

		/*
1833
		 * We do limited plugging. If the bio can be merged, do that.
1834 1835
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1836 1837
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1838
		 */
1839 1840 1841 1842 1843 1844
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1845 1846
		blk_mq_put_ctx(data.ctx);

1847 1848 1849
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1850 1851
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1852
		}
1853
	} else if (q->nr_hw_queues > 1 && is_sync) {
1854
		blk_mq_put_ctx(data.ctx);
1855 1856
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1857
	} else {
1858
		blk_mq_put_ctx(data.ctx);
1859
		blk_mq_bio_to_request(rq, bio);
1860
		blk_mq_sched_insert_request(rq, false, true, true);
1861
	}
1862

1863
	return cookie;
1864 1865
}

1866 1867
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1868
{
1869
	struct page *page;
1870

1871
	if (tags->rqs && set->ops->exit_request) {
1872
		int i;
1873

1874
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1875 1876 1877
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1878
				continue;
1879
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1880
			tags->static_rqs[i] = NULL;
1881
		}
1882 1883
	}

1884 1885
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1886
		list_del_init(&page->lru);
1887 1888 1889 1890 1891
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1892 1893
		__free_pages(page, page->private);
	}
1894
}
1895

1896 1897
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1898
	kfree(tags->rqs);
1899
	tags->rqs = NULL;
J
Jens Axboe 已提交
1900 1901
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1902

1903
	blk_mq_free_tags(tags);
1904 1905
}

1906 1907 1908 1909
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1910
{
1911
	struct blk_mq_tags *tags;
1912
	int node;
1913

1914 1915 1916 1917 1918
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1919
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1920 1921
	if (!tags)
		return NULL;
1922

1923
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1924
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1925
				 node);
1926 1927 1928 1929
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1930

1931 1932 1933
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
1934 1935 1936 1937 1938 1939
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1940 1941 1942 1943 1944 1945 1946 1947
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
1959
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1960 1961 1962
	return 0;
}

1963 1964 1965 1966 1967
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1968 1969 1970 1971 1972
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1973 1974 1975

	INIT_LIST_HEAD(&tags->page_list);

1976 1977 1978 1979
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1980
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1981
				cache_line_size());
1982
	left = rq_size * depth;
1983

1984
	for (i = 0; i < depth; ) {
1985 1986 1987 1988 1989
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1990
		while (this_order && left < order_to_size(this_order - 1))
1991 1992 1993
			this_order--;

		do {
1994
			page = alloc_pages_node(node,
1995
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1996
				this_order);
1997 1998 1999 2000 2001 2002 2003 2004 2005
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2006
			goto fail;
2007 2008

		page->private = this_order;
2009
		list_add_tail(&page->lru, &tags->page_list);
2010 2011

		p = page_address(page);
2012 2013 2014 2015
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2016
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2017
		entries_per_page = order_to_size(this_order) / rq_size;
2018
		to_do = min(entries_per_page, depth - i);
2019 2020
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2021 2022 2023
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2024 2025 2026
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2027 2028
			}

2029 2030 2031 2032
			p += rq_size;
			i++;
		}
	}
2033
	return 0;
2034

2035
fail:
2036 2037
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2038 2039
}

J
Jens Axboe 已提交
2040 2041 2042 2043 2044
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2045
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2046
{
2047
	struct blk_mq_hw_ctx *hctx;
2048 2049 2050
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2051
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2052
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2053 2054 2055 2056 2057 2058 2059 2060 2061

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2062
		return 0;
2063

J
Jens Axboe 已提交
2064 2065 2066
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2067 2068

	blk_mq_run_hw_queue(hctx, true);
2069
	return 0;
2070 2071
}

2072
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2073
{
2074 2075
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2076 2077
}

2078
/* hctx->ctxs will be freed in queue's release handler */
2079 2080 2081 2082
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2083 2084
	blk_mq_debugfs_unregister_hctx(hctx);

2085 2086
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2087

2088
	if (set->ops->exit_request)
2089
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2090

2091 2092
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2093 2094 2095
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2096
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2097
		cleanup_srcu_struct(hctx->srcu);
2098

2099
	blk_mq_remove_cpuhp(hctx);
2100
	blk_free_flush_queue(hctx->fq);
2101
	sbitmap_free(&hctx->ctx_map);
2102 2103
}

M
Ming Lei 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2113
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2114 2115 2116
	}
}

2117 2118 2119
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2120
{
2121 2122 2123 2124 2125 2126
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2127
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2128 2129 2130
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2131
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2132

2133
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2134 2135

	hctx->tags = set->tags[hctx_idx];
2136 2137

	/*
2138 2139
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2140
	 */
2141
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2142 2143 2144
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2145

2146 2147
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2148
		goto free_ctxs;
2149

2150
	hctx->nr_ctx = 0;
2151

2152
	spin_lock_init(&hctx->dispatch_wait_lock);
2153 2154 2155
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2156 2157 2158
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2159

2160 2161 2162
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2163 2164
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2165
		goto sched_exit_hctx;
2166

2167
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2168
		goto free_fq;
2169

2170
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2171
		init_srcu_struct(hctx->srcu);
2172

2173 2174
	blk_mq_debugfs_register_hctx(q, hctx);

2175
	return 0;
2176

2177 2178
 free_fq:
	kfree(hctx->fq);
2179 2180
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2181 2182 2183
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2184
 free_bitmap:
2185
	sbitmap_free(&hctx->ctx_map);
2186 2187 2188
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2189
	blk_mq_remove_cpuhp(hctx);
2190 2191
	return -1;
}
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2211
		hctx = blk_mq_map_queue(q, i);
2212
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2213
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2214 2215 2216
	}
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2239 2240 2241 2242 2243
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2244 2245
}

2246
static void blk_mq_map_swqueue(struct request_queue *q)
2247
{
2248
	unsigned int i, hctx_idx;
2249 2250
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2251
	struct blk_mq_tag_set *set = q->tag_set;
2252

2253 2254 2255 2256 2257
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2258
	queue_for_each_hw_ctx(q, hctx, i) {
2259
		cpumask_clear(hctx->cpumask);
2260
		hctx->nr_ctx = 0;
2261
		hctx->dispatch_from = NULL;
2262 2263 2264
	}

	/*
2265
	 * Map software to hardware queues.
2266 2267
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2268
	 */
2269
	for_each_possible_cpu(i) {
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2283
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2284
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2285

2286
		cpumask_set_cpu(i, hctx->cpumask);
2287 2288 2289
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2290

2291 2292
	mutex_unlock(&q->sysfs_lock);

2293
	queue_for_each_hw_ctx(q, hctx, i) {
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2309

M
Ming Lei 已提交
2310 2311 2312
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2313 2314 2315 2316 2317
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2318
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2319

2320 2321 2322
		/*
		 * Initialize batch roundrobin counts
		 */
2323
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2324 2325
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2326 2327
}

2328 2329 2330 2331
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2332
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2333 2334 2335 2336
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2337
	queue_for_each_hw_ctx(q, hctx, i) {
2338
		if (shared)
2339
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2340
		else
2341 2342 2343 2344
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2345 2346
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2347 2348
{
	struct request_queue *q;
2349

2350 2351
	lockdep_assert_held(&set->tag_list_lock);

2352 2353
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2354
		queue_set_hctx_shared(q, shared);
2355 2356 2357 2358 2359 2360 2361 2362 2363
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2364
	list_del_rcu(&q->tag_set_list);
2365 2366 2367 2368 2369 2370
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2371
	mutex_unlock(&set->tag_list_lock);
2372
	INIT_LIST_HEAD(&q->tag_set_list);
2373 2374 2375 2376 2377 2378 2379 2380
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2381

2382 2383 2384 2385 2386
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2387 2388 2389 2390 2391 2392
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2393
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2394

2395 2396 2397
	mutex_unlock(&set->tag_list_lock);
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2410 2411 2412
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2413
		kobject_put(&hctx->kobj);
2414
	}
2415

2416 2417
	q->mq_map = NULL;

2418 2419
	kfree(q->queue_hw_ctx);

2420 2421 2422 2423 2424 2425
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2426 2427 2428
	free_percpu(q->queue_ctx);
}

2429
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2430 2431 2432
{
	struct request_queue *uninit_q, *q;

2433
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2445 2446 2447 2448
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2449
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2450 2451 2452 2453 2454 2455 2456 2457 2458
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2459 2460
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2461
{
K
Keith Busch 已提交
2462 2463
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2464

K
Keith Busch 已提交
2465
	blk_mq_sysfs_unregister(q);
2466 2467 2468

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2469
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2470
		int node;
2471

K
Keith Busch 已提交
2472 2473 2474 2475
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2476
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2477
					GFP_KERNEL, node);
2478
		if (!hctxs[i])
K
Keith Busch 已提交
2479
			break;
2480

2481
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2482 2483 2484 2485 2486
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2487

2488
		atomic_set(&hctxs[i]->nr_active, 0);
2489
		hctxs[i]->numa_node = node;
2490
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2491 2492 2493 2494 2495 2496 2497 2498

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2499
	}
K
Keith Busch 已提交
2500 2501 2502 2503
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2504 2505
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2506 2507 2508 2509 2510 2511 2512
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2513
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2514 2515 2516 2517 2518 2519
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2520 2521 2522
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2523
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2524 2525
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2526 2527 2528
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2529 2530
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2531
		goto err_exit;
K
Keith Busch 已提交
2532

2533 2534 2535
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2536
	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
K
Keith Busch 已提交
2537 2538 2539 2540
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2541
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2542 2543 2544 2545

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2546

2547
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2548
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2549 2550 2551

	q->nr_queues = nr_cpu_ids;

2552
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2553

2554
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2555
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2556

2557 2558
	q->sg_reserved_size = INT_MAX;

2559
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2560 2561 2562
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2563
	blk_queue_make_request(q, blk_mq_make_request);
2564 2565
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2566

2567 2568 2569 2570 2571
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2572 2573 2574 2575 2576
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2577 2578
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2579

2580
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2581
	blk_mq_add_queue_tag_set(set, q);
2582
	blk_mq_map_swqueue(q);
2583

2584 2585 2586
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2587
		ret = elevator_init_mq(q);
2588 2589 2590 2591
		if (ret)
			return ERR_PTR(ret);
	}

2592
	return q;
2593

2594
err_hctxs:
K
Keith Busch 已提交
2595
	kfree(q->queue_hw_ctx);
2596
err_percpu:
K
Keith Busch 已提交
2597
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2598 2599
err_exit:
	q->mq_ops = NULL;
2600 2601
	return ERR_PTR(-ENOMEM);
}
2602
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2603 2604 2605

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2606
	struct blk_mq_tag_set	*set = q->tag_set;
2607

2608
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2609
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2610 2611 2612
}

/* Basically redo blk_mq_init_queue with queue frozen */
2613
static void blk_mq_queue_reinit(struct request_queue *q)
2614
{
2615
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2616

2617
	blk_mq_debugfs_unregister_hctxs(q);
2618 2619
	blk_mq_sysfs_unregister(q);

2620 2621
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2622 2623
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2624
	 */
2625
	blk_mq_map_swqueue(q);
2626

2627
	blk_mq_sysfs_register(q);
2628
	blk_mq_debugfs_register_hctxs(q);
2629 2630
}

2631 2632 2633 2634
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2635 2636
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2637 2638 2639 2640 2641 2642
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2643
		blk_mq_free_rq_map(set->tags[i]);
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2683 2684
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	if (set->ops->map_queues) {
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
2700
		blk_mq_clear_mq_map(set);
2701

2702
		return set->ops->map_queues(set);
2703
	} else
2704 2705 2706
		return blk_mq_map_queues(set);
}

2707 2708 2709
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
2710
 * requested depth down, if it's too large. In that case, the set
2711 2712
 * value will be stored in set->queue_depth.
 */
2713 2714
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2715 2716
	int ret;

B
Bart Van Assche 已提交
2717 2718
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2719 2720
	if (!set->nr_hw_queues)
		return -EINVAL;
2721
	if (!set->queue_depth)
2722 2723 2724 2725
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2726
	if (!set->ops->queue_rq)
2727 2728
		return -EINVAL;

2729 2730 2731
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2732 2733 2734 2735 2736
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2747 2748 2749 2750 2751
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2752

2753
	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2754 2755
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2756
		return -ENOMEM;
2757

2758
	ret = -ENOMEM;
2759 2760
	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
				   GFP_KERNEL, set->numa_node);
2761 2762 2763
	if (!set->mq_map)
		goto out_free_tags;

2764
	ret = blk_mq_update_queue_map(set);
2765 2766 2767 2768 2769
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2770
		goto out_free_mq_map;
2771

2772 2773 2774
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2775
	return 0;
2776 2777 2778 2779 2780

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2781 2782
	kfree(set->tags);
	set->tags = NULL;
2783
	return ret;
2784 2785 2786 2787 2788 2789 2790
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2791 2792
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2793

2794 2795 2796
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2797
	kfree(set->tags);
2798
	set->tags = NULL;
2799 2800 2801
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2802 2803 2804 2805 2806 2807
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2808
	if (!set)
2809 2810
		return -EINVAL;

2811
	blk_mq_freeze_queue(q);
2812
	blk_mq_quiesce_queue(q);
2813

2814 2815
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2816 2817
		if (!hctx->tags)
			continue;
2818 2819 2820 2821
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2822
		if (!hctx->sched_tags) {
2823
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2824 2825 2826 2827 2828
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2829 2830 2831 2832 2833 2834 2835
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2836
	blk_mq_unquiesce_queue(q);
2837 2838
	blk_mq_unfreeze_queue(q);

2839 2840 2841
	return ret;
}

2842 2843
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2844 2845 2846
{
	struct request_queue *q;

2847 2848
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2858
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2859 2860
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2861
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2862 2863 2864 2865 2866
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2867 2868 2869 2870 2871 2872 2873

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2874 2875
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2876 2877 2878 2879
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2880
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2902
	int bucket;
2903

2904 2905 2906 2907
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2908 2909
}

2910 2911 2912 2913 2914
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2915
	int bucket;
2916 2917 2918 2919 2920

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2921
	if (!blk_poll_stats_enable(q))
2922 2923 2924 2925 2926 2927 2928 2929
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2930 2931
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2932
	 */
2933 2934 2935 2936 2937 2938
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2939 2940 2941 2942

	return ret;
}

2943
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2944
				     struct blk_mq_hw_ctx *hctx,
2945 2946 2947 2948
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2949
	unsigned int nsecs;
2950 2951
	ktime_t kt;

J
Jens Axboe 已提交
2952
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2970 2971
		return false;

J
Jens Axboe 已提交
2972
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2973 2974 2975 2976 2977

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2978
	kt = nsecs;
2979 2980 2981 2982 2983 2984 2985

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
2986
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3001 3002 3003 3004 3005
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3006 3007 3008 3009 3010 3011 3012
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3013
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3014 3015
		return true;

J
Jens Axboe 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3041
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3042 3043 3044
	return false;
}

3045
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3046 3047 3048 3049
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3050
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3051 3052 3053
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3054 3055
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3056
	else {
3057
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3058 3059 3060 3061 3062 3063 3064 3065 3066
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3067 3068 3069 3070

	return __blk_mq_poll(hctx, rq);
}

3071 3072
static int __init blk_mq_init(void)
{
3073 3074
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3075 3076 3077
	return 0;
}
subsys_initcall(blk_mq_init);