blk-mq.c 45.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
					   unsigned int cpu)
{
	return per_cpu_ptr(q->queue_ctx, cpu);
}

/*
 * This assumes per-cpu software queueing queues. They could be per-node
 * as well, for instance. For now this is hardcoded as-is. Note that we don't
 * care about preemption, since we know the ctx's are persistent. This does
 * mean that we can't rely on ctx always matching the currently running CPU.
 */
static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
{
	return __blk_mq_get_ctx(q, get_cpu());
}

static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
{
	put_cpu();
}

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

59 60
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
61 62 63 64 65
			return true;

	return false;
}

66 67 68 69 70 71 72 73 74
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

75 76 77 78 79 80
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
81 82 83 84 85 86 87 88 89 90 91 92
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
93 94
}

95
static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
96
					      struct blk_mq_ctx *ctx,
97
					      gfp_t gfp, bool reserved)
98 99 100 101
{
	struct request *rq;
	unsigned int tag;

102
	tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
103
	if (tag != BLK_MQ_TAG_FAIL) {
104
		rq = hctx->tags->rqs[tag];
105 106 107 108 109 110 111

		rq->cmd_flags = 0;
		if (blk_mq_tag_busy(hctx)) {
			rq->cmd_flags = REQ_MQ_INFLIGHT;
			atomic_inc(&hctx->nr_active);
		}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
		rq->tag = tag;
		return rq;
	}

	return NULL;
}

static int blk_mq_queue_enter(struct request_queue *q)
{
	int ret;

	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
	smp_wmb();
	/* we have problems to freeze the queue if it's initializing */
	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
		return 0;

	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);

	spin_lock_irq(q->queue_lock);
	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
133 134
		!blk_queue_bypass(q) || blk_queue_dying(q),
		*q->queue_lock);
135
	/* inc usage with lock hold to avoid freeze_queue runs here */
136
	if (!ret && !blk_queue_dying(q))
137
		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
138 139
	else if (blk_queue_dying(q))
		ret = -ENODEV;
140 141 142 143 144 145 146 147 148 149
	spin_unlock_irq(q->queue_lock);

	return ret;
}

static void blk_mq_queue_exit(struct request_queue *q)
{
	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
static void __blk_mq_drain_queue(struct request_queue *q)
{
	while (true) {
		s64 count;

		spin_lock_irq(q->queue_lock);
		count = percpu_counter_sum(&q->mq_usage_counter);
		spin_unlock_irq(q->queue_lock);

		if (count == 0)
			break;
		blk_mq_run_queues(q, false);
		msleep(10);
	}
}

166 167 168 169 170 171 172 173 174 175 176 177 178
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
static void blk_mq_freeze_queue(struct request_queue *q)
{
	bool drain;

	spin_lock_irq(q->queue_lock);
	drain = !q->bypass_depth++;
	queue_flag_set(QUEUE_FLAG_BYPASS, q);
	spin_unlock_irq(q->queue_lock);

179 180 181
	if (drain)
		__blk_mq_drain_queue(q);
}
182

183 184 185
void blk_mq_drain_queue(struct request_queue *q)
{
	__blk_mq_drain_queue(q);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
}

static void blk_mq_unfreeze_queue(struct request_queue *q)
{
	bool wake = false;

	spin_lock_irq(q->queue_lock);
	if (!--q->bypass_depth) {
		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
		wake = true;
	}
	WARN_ON_ONCE(q->bypass_depth < 0);
	spin_unlock_irq(q->queue_lock);
	if (wake)
		wake_up_all(&q->mq_freeze_wq);
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

209 210
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
211
{
212 213 214
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

215 216 217
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
218
	rq->mq_ctx = ctx;
219
	rq->cmd_flags |= rw_flags;
220 221 222 223 224 225 226 227 228 229 230 231
	rq->cmd_type = 0;
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = NULL;
	rq->biotail = NULL;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
	rq->rq_disk = NULL;
	rq->part = NULL;
232
	rq->start_time = jiffies;
233 234
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
235
	set_start_time_ns(rq);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->ioprio = 0;
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	memset(rq->__cmd, 0, sizeof(rq->__cmd));
	rq->cmd = rq->__cmd;
	rq->cmd_len = BLK_MAX_CDB;

	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	rq->deadline = 0;
	INIT_LIST_HEAD(&rq->timeout_list);
	rq->timeout = 0;
	rq->retries = 0;
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

263 264 265 266 267 268 269 270 271 272 273 274 275
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
						   int rw, gfp_t gfp,
						   bool reserved)
{
	struct request *rq;

	do {
		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);

276 277
		rq = __blk_mq_alloc_request(hctx, ctx, gfp & ~__GFP_WAIT,
						reserved);
278
		if (rq) {
279
			blk_mq_rq_ctx_init(q, ctx, rq, rw);
280
			break;
281
		}
282

283 284 285 286 287
		if (gfp & __GFP_WAIT) {
			__blk_mq_run_hw_queue(hctx);
			blk_mq_put_ctx(ctx);
		} else {
			blk_mq_put_ctx(ctx);
288
			break;
289
		}
290

291
		blk_mq_wait_for_tags(hctx, reserved);
292 293 294 295 296
	} while (1);

	return rq;
}

297
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
298 299 300 301 302 303
{
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

304
	rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
305 306
	if (rq)
		blk_mq_put_ctx(rq->mq_ctx);
307 308
	return rq;
}
309
EXPORT_SYMBOL(blk_mq_alloc_request);
310 311 312 313 314 315 316 317 318 319

struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
					      gfp_t gfp)
{
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

	rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
320 321
	if (rq)
		blk_mq_put_ctx(rq->mq_ctx);
322 323 324 325 326 327 328 329 330 331
	return rq;
}
EXPORT_SYMBOL(blk_mq_alloc_reserved_request);

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

332 333 334
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);

335
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
336
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * Clone all relevant state from a request that has been put on hold in
 * the flush state machine into the preallocated flush request that hangs
 * off the request queue.
 *
 * For a driver the flush request should be invisible, that's why we are
 * impersonating the original request here.
 */
void blk_mq_clone_flush_request(struct request *flush_rq,
		struct request *orig_rq)
{
	struct blk_mq_hw_ctx *hctx =
		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);

	flush_rq->mq_ctx = orig_rq->mq_ctx;
	flush_rq->tag = orig_rq->tag;
	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
		hctx->cmd_size);
}

372
inline void __blk_mq_end_io(struct request *rq, int error)
373
{
M
Ming Lei 已提交
374 375
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
376
	if (rq->end_io) {
377
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
378 379 380
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
381
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
382
	}
383
}
384 385 386 387 388 389 390 391 392
EXPORT_SYMBOL(__blk_mq_end_io);

void blk_mq_end_io(struct request *rq, int error)
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
	__blk_mq_end_io(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_io);
393

394
static void __blk_mq_complete_request_remote(void *data)
395
{
396
	struct request *rq = data;
397

398
	rq->q->softirq_done_fn(rq);
399 400
}

401
void __blk_mq_complete_request(struct request *rq)
402 403
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
404
	bool shared = false;
405 406
	int cpu;

C
Christoph Hellwig 已提交
407
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
408 409 410
		rq->q->softirq_done_fn(rq);
		return;
	}
411 412

	cpu = get_cpu();
C
Christoph Hellwig 已提交
413 414 415 416
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
417
		rq->csd.func = __blk_mq_complete_request_remote;
418 419
		rq->csd.info = rq;
		rq->csd.flags = 0;
420
		smp_call_function_single_async(ctx->cpu, &rq->csd);
421
	} else {
422
		rq->q->softirq_done_fn(rq);
423
	}
424 425
	put_cpu();
}
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (unlikely(blk_should_fake_timeout(rq->q)))
		return;
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
}
EXPORT_SYMBOL(blk_mq_complete_request);
443

444
static void blk_mq_start_request(struct request *rq, bool last)
445 446 447 448 449
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
450
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
451 452
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
453

454 455 456
	/*
	 * Just mark start time and set the started bit. Due to memory
	 * ordering, we know we'll see the correct deadline as long as
457 458
	 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
	 * unless one has been set in the request.
459
	 */
460 461 462 463
	if (!rq->timeout)
		rq->deadline = jiffies + q->rq_timeout;
	else
		rq->deadline = jiffies + rq->timeout;
464 465 466 467 468 469 470

	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
471
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
472
	clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}

	/*
	 * Flag the last request in the series so that drivers know when IO
	 * should be kicked off, if they don't do it on a per-request basis.
	 *
	 * Note: the flag isn't the only condition drivers should do kick off.
	 * If drive is busy, the last request might not have the bit set.
	 */
	if (last)
		rq->cmd_flags |= REQ_END;
492 493
}

494
static void __blk_mq_requeue_request(struct request *rq)
495 496 497 498 499
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
500 501 502 503 504

	rq->cmd_flags &= ~REQ_END;

	if (q->dma_drain_size && blk_rq_bytes(rq))
		rq->nr_phys_segments--;
505 506
}

507 508 509 510 511 512 513 514 515 516
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);
	blk_clear_rq_complete(rq);

	BUG_ON(blk_queued_rq(rq));
	blk_mq_insert_request(rq, true, true, false);
}
EXPORT_SYMBOL(blk_mq_requeue_request);

517 518 519 520 521 522
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	return tags->rqs[tag];
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
struct blk_mq_timeout_data {
	struct blk_mq_hw_ctx *hctx;
	unsigned long *next;
	unsigned int *next_set;
};

static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
{
	struct blk_mq_timeout_data *data = __data;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	unsigned int tag;

	 /* It may not be in flight yet (this is where
	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
	 * statically allocated, so we know it's always safe to access the
	 * memory associated with a bit offset into ->rqs[].
	 */
	tag = 0;
	do {
		struct request *rq;

544 545
		tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
		if (tag >= hctx->tags->nr_tags)
546 547
			break;

548 549 550
		rq = blk_mq_tag_to_rq(hctx->tags, tag++);
		if (rq->q != hctx->queue)
			continue;
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
			continue;

		blk_rq_check_expired(rq, data->next, data->next_set);
	} while (1);
}

static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
					unsigned long *next,
					unsigned int *next_set)
{
	struct blk_mq_timeout_data data = {
		.hctx		= hctx,
		.next		= next,
		.next_set	= next_set,
	};

	/*
	 * Ask the tagging code to iterate busy requests, so we can
	 * check them for timeout.
	 */
	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
{
	struct request_queue *q = rq->q;

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return BLK_EH_NOT_HANDLED;

	if (!q->mq_ops->timeout)
		return BLK_EH_RESET_TIMER;

	return q->mq_ops->timeout(rq);
}

597 598 599 600 601 602 603
static void blk_mq_rq_timer(unsigned long data)
{
	struct request_queue *q = (struct request_queue *) data;
	struct blk_mq_hw_ctx *hctx;
	unsigned long next = 0;
	int i, next_set = 0;

604 605 606 607 608 609 610 611
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
		if (!hctx->nr_ctx || !hctx->tags)
			continue;

612
		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
613
	}
614

615 616 617 618 619 620 621
	if (next_set) {
		next = blk_rq_timeout(round_jiffies_up(next));
		mod_timer(&q->timeout, next);
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

697 698 699 700 701 702 703 704 705 706 707
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
708
	int queued;
709

710
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
711

712
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
713 714 715 716 717 718 719
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
720
	flush_busy_ctxs(hctx, &rq_list);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Now process all the entries, sending them to the driver.
	 */
736
	queued = 0;
737 738 739 740 741 742
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

743
		blk_mq_start_request(rq, list_empty(&rq_list));
744 745 746 747 748 749 750 751

		ret = q->mq_ops->queue_rq(hctx, rq);
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
752
			__blk_mq_requeue_request(rq);
753 754 755 756
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
757
			rq->errors = -EIO;
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
			blk_mq_end_io(rq, rq->errors);
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

806 807
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
808
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
809 810
		return;

811
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
812
		__blk_mq_run_hw_queue(hctx);
813
	else if (hctx->queue->nr_hw_queues == 1)
814
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
815 816 817
	else {
		unsigned int cpu;

818
		cpu = blk_mq_hctx_next_cpu(hctx);
819
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
820
	}
821 822 823 824 825 826 827 828 829 830
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
831
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
832 833
			continue;

834
		preempt_disable();
835
		blk_mq_run_hw_queue(hctx, async);
836
		preempt_enable();
837 838 839 840 841 842
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
843 844
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
845 846 847 848
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

849 850 851 852 853 854 855 856 857 858
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

859 860 861
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
862 863

	preempt_disable();
864
	__blk_mq_run_hw_queue(hctx);
865
	preempt_enable();
866 867 868
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

869 870 871 872 873 874 875 876 877 878 879
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


880
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
881 882 883 884 885 886 887 888 889
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
890
		preempt_disable();
891
		blk_mq_run_hw_queue(hctx, async);
892
		preempt_enable();
893 894 895 896
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

897
static void blk_mq_run_work_fn(struct work_struct *work)
898 899 900
{
	struct blk_mq_hw_ctx *hctx;

901
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
902

903 904 905
	__blk_mq_run_hw_queue(hctx);
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

925
		cpu = blk_mq_hctx_next_cpu(hctx);
926 927 928 929 930
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

931
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
932
				    struct request *rq, bool at_head)
933 934 935
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

936 937
	trace_block_rq_insert(hctx->queue, rq);

938 939 940 941
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
942

943 944 945 946 947
	blk_mq_hctx_mark_pending(hctx, ctx);

	/*
	 * We do this early, to ensure we are on the right CPU.
	 */
948
	blk_add_timer(rq);
949 950
}

951 952
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
953
{
954
	struct request_queue *q = rq->q;
955
	struct blk_mq_hw_ctx *hctx;
956 957 958 959 960
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
961 962 963

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

964 965
	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
966 967 968
		blk_insert_flush(rq);
	} else {
		spin_lock(&ctx->lock);
969
		__blk_mq_insert_request(hctx, rq, at_head);
970 971 972 973 974
		spin_unlock(&ctx->lock);
	}

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
975 976

	blk_mq_put_ctx(current_ctx);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1008
		__blk_mq_insert_request(hctx, rq, false);
1009 1010 1011 1012
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1013
	blk_mq_put_ctx(current_ctx);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
	blk_account_io_start(rq, 1);
}

1079 1080 1081
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1082
{
1083
	struct request_queue *q = hctx->queue;
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1098

1099 1100 1101
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1102
	}
1103
}
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1118

1119
	if (unlikely(blk_mq_queue_enter(q))) {
1120
		bio_endio(bio, -EIO);
1121
		return NULL;
1122 1123 1124 1125 1126
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1127
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1128
		rw |= REQ_SYNC;
1129

1130
	trace_block_getrq(q, bio, rw);
1131
	rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
1132
	if (likely(rq))
1133
		blk_mq_rq_ctx_init(q, ctx, rq, rw);
1134 1135 1136
	else {
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1137 1138
		rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
							false);
1139 1140 1141 1142 1143
		ctx = rq->mq_ctx;
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
	}

	hctx->queued++;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);
		blk_mq_start_request(rq, true);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
		ret = q->mq_ops->queue_rq(data.hctx, rq);
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
				blk_mq_end_io(rq, rq->errors);
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1264
			if (list_empty(&plug->mq_list))
1265 1266 1267 1268 1269 1270
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1271
			blk_mq_put_ctx(data.ctx);
1272 1273 1274 1275
			return;
		}
	}

1276 1277 1278 1279 1280 1281 1282 1283 1284
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1285 1286
	}

1287
	blk_mq_put_ctx(data.ctx);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1299
struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1300 1301
						   unsigned int hctx_index)
{
1302 1303
	return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL,
				set->numa_node);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
}
EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);

void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
				 unsigned int hctx_index)
{
	kfree(hctx);
}
EXPORT_SYMBOL(blk_mq_free_single_hw_queue);

1314 1315
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1316
{
1317
	struct page *page;
1318

1319
	if (tags->rqs && set->ops->exit_request) {
1320
		int i;
1321

1322 1323
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1324
				continue;
1325 1326
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1327
		}
1328 1329
	}

1330 1331
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1332
		list_del_init(&page->lru);
1333 1334 1335
		__free_pages(page, page->private);
	}

1336
	kfree(tags->rqs);
1337

1338
	blk_mq_free_tags(tags);
1339 1340 1341 1342
}

static size_t order_to_size(unsigned int order)
{
1343
	return (size_t)PAGE_SIZE << order;
1344 1345
}

1346 1347
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1348
{
1349
	struct blk_mq_tags *tags;
1350 1351 1352
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1353 1354 1355 1356
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1357

1358 1359 1360 1361 1362 1363 1364 1365
	INIT_LIST_HEAD(&tags->page_list);

	tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
					GFP_KERNEL, set->numa_node);
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1366 1367 1368 1369 1370

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1371
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1372
				cache_line_size());
1373
	left = rq_size * set->queue_depth;
1374

1375
	for (i = 0; i < set->queue_depth; ) {
1376 1377 1378 1379 1380 1381 1382 1383 1384
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1385 1386
			page = alloc_pages_node(set->numa_node, GFP_KERNEL,
						this_order);
1387 1388 1389 1390 1391 1392 1393 1394 1395
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1396
			goto fail;
1397 1398

		page->private = this_order;
1399
		list_add_tail(&page->lru, &tags->page_list);
1400 1401 1402

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1403
		to_do = min(entries_per_page, set->queue_depth - i);
1404 1405
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1406 1407 1408 1409 1410 1411
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
						set->numa_node))
					goto fail;
1412 1413
			}

1414 1415 1416 1417 1418
			p += rq_size;
			i++;
		}
	}

1419
	return tags;
1420

1421 1422 1423 1424
fail:
	pr_warn("%s: failed to allocate requests\n", __func__);
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1425 1426
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

1526
static int blk_mq_init_hw_queues(struct request_queue *q,
1527
		struct blk_mq_tag_set *set)
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i, j;

	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		int node;

		node = hctx->numa_node;
		if (node == NUMA_NO_NODE)
1540
			node = hctx->numa_node = set->numa_node;
1541

1542 1543
		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1544 1545 1546 1547
		spin_lock_init(&hctx->lock);
		INIT_LIST_HEAD(&hctx->dispatch);
		hctx->queue = q;
		hctx->queue_num = i;
1548 1549
		hctx->flags = set->flags;
		hctx->cmd_size = set->cmd_size;
1550 1551 1552 1553 1554

		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
						blk_mq_hctx_notify, hctx);
		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

1555
		hctx->tags = set->tags[i];
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

		/*
		 * Allocate space for all possible cpus to avoid allocation in
		 * runtime
		 */
		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
						GFP_KERNEL, node);
		if (!hctx->ctxs)
			break;

1566
		if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1567 1568 1569 1570
			break;

		hctx->nr_ctx = 0;

1571 1572
		if (set->ops->init_hctx &&
		    set->ops->init_hctx(hctx, set->driver_data, i))
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
	queue_for_each_hw_ctx(q, hctx, j) {
		if (i == j)
			break;

1586 1587
		if (set->ops->exit_hctx)
			set->ops->exit_hctx(hctx, j);
1588 1589 1590

		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		kfree(hctx->ctxs);
1591
		blk_mq_free_bitmap(&hctx->ctx_map);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	}

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1616 1617 1618 1619
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1636
		cpumask_clear(hctx->cpumask);
1637 1638 1639 1640 1641 1642 1643 1644
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1645 1646 1647
		if (!cpu_online(i))
			continue;

1648
		hctx = q->mq_ops->map_queue(q, i);
1649
		cpumask_set_cpu(i, hctx->cpumask);
1650 1651 1652
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1653 1654

	queue_for_each_hw_ctx(q, hctx, i) {
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		/*
		 * If not software queues are mapped to this hardware queue,
		 * disable it and free the request entries
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1673 1674 1675
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1676 1677
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	blk_mq_freeze_queue(q);

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);

	blk_mq_unfreeze_queue(q);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1728
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
{
	struct blk_mq_hw_ctx **hctxs;
	struct blk_mq_ctx *ctx;
	struct request_queue *q;
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1739 1740
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1741 1742 1743 1744

	if (!hctxs)
		goto err_percpu;

1745 1746
	for (i = 0; i < set->nr_hw_queues; i++) {
		hctxs[i] = set->ops->alloc_hctx(set, i);
1747 1748 1749
		if (!hctxs[i])
			goto err_hctxs;

1750 1751 1752
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1753
		atomic_set(&hctxs[i]->nr_active, 0);
1754 1755 1756 1757
		hctxs[i]->numa_node = NUMA_NO_NODE;
		hctxs[i]->queue_num = i;
	}

1758
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1759 1760 1761
	if (!q)
		goto err_hctxs;

1762
	q->mq_map = blk_mq_make_queue_map(set);
1763 1764 1765 1766 1767 1768 1769
	if (!q->mq_map)
		goto err_map;

	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1770
	q->nr_hw_queues = set->nr_hw_queues;
1771 1772 1773 1774

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1775
	q->mq_ops = set->ops;
1776
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1777

1778 1779
	q->sg_reserved_size = INT_MAX;

1780 1781 1782 1783 1784
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1785
	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1786 1787
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1788

1789 1790 1791 1792 1793
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1794 1795
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1796

1797
	blk_mq_init_flush(q);
1798
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1799

1800 1801 1802
	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
				set->cmd_size, cache_line_size()),
				GFP_KERNEL);
1803
	if (!q->flush_rq)
1804 1805
		goto err_hw;

1806
	if (blk_mq_init_hw_queues(q, set))
1807 1808
		goto err_flush_rq;

1809 1810 1811 1812
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1813 1814
	blk_mq_add_queue_tag_set(set, q);

1815 1816
	blk_mq_map_swqueue(q);

1817
	return q;
1818 1819 1820

err_flush_rq:
	kfree(q->flush_rq);
1821 1822 1823 1824 1825
err_hw:
	kfree(q->mq_map);
err_map:
	blk_cleanup_queue(q);
err_hctxs:
1826
	for (i = 0; i < set->nr_hw_queues; i++) {
1827 1828
		if (!hctxs[i])
			break;
1829
		free_cpumask_var(hctxs[i]->cpumask);
1830
		set->ops->free_hctx(hctxs[i], i);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	}
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1844 1845
	blk_mq_del_queue_tag_set(q);

1846
	queue_for_each_hw_ctx(q, hctx, i) {
1847
		blk_mq_tag_idle(hctx);
1848
		kfree(hctx->ctxs);
M
Ming Lei 已提交
1849
		blk_mq_free_bitmap(&hctx->ctx_map);
1850 1851 1852
		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		if (q->mq_ops->exit_hctx)
			q->mq_ops->exit_hctx(hctx, i);
1853
		free_cpumask_var(hctx->cpumask);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
		q->mq_ops->free_hctx(hctx, i);
	}

	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1871
static void blk_mq_queue_reinit(struct request_queue *q)
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
{
	blk_mq_freeze_queue(q);

	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

	blk_mq_unfreeze_queue(q);
}

1888 1889
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1890 1891 1892 1893
{
	struct request_queue *q;

	/*
1894 1895 1896 1897
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	int i;

	if (!set->nr_hw_queues)
		return -EINVAL;
	if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

	if (!set->nr_hw_queues ||
	    !set->ops->queue_rq || !set->ops->map_queue ||
	    !set->ops->alloc_hctx || !set->ops->free_hctx)
		return -EINVAL;


M
Ming Lei 已提交
1927 1928
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
		goto out;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

1939 1940 1941
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);
out:
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

1956 1957 1958 1959 1960
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
1961
	kfree(set->tags);
1962 1963 1964
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

	/* Must be called after percpu_counter_hotcpu_callback() */
	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);

	return 0;
}
subsys_initcall(blk_mq_init);