blk-mq.c 55.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161 162
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
163
{
164 165 166
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

167 168 169
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
170
	rq->mq_ctx = ctx;
171
	rq->cmd_flags |= rw_flags;
172 173 174 175 176 177
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
178
	rq->start_time = jiffies;
179 180
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
181
	set_start_time_ns(rq);
182 183 184 185 186 187 188 189 190 191
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

192 193
	rq->cmd = rq->__cmd;

194 195 196 197 198 199
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
200 201
	rq->timeout = 0;

202 203 204 205
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

206 207 208
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

209
static struct request *
210
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 212 213 214
{
	struct request *rq;
	unsigned int tag;

215
	tag = blk_mq_get_tag(data);
216
	if (tag != BLK_MQ_TAG_FAIL) {
217
		rq = data->hctx->tags->rqs[tag];
218

219
		if (blk_mq_tag_busy(data->hctx)) {
220
			rq->cmd_flags = REQ_MQ_INFLIGHT;
221
			atomic_inc(&data->hctx->nr_active);
222 223 224
		}

		rq->tag = tag;
225
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 227 228 229 230 231
		return rq;
	}

	return NULL;
}

232 233
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
234
{
235 236
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
237
	struct request *rq;
238
	struct blk_mq_alloc_data alloc_data;
239
	int ret;
240

241
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 243
	if (ret)
		return ERR_PTR(ret);
244

245 246
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248

249
	rq = __blk_mq_alloc_request(&alloc_data, rw);
250
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 252 253 254 255
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
256
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 258
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
259 260
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
261
	if (!rq) {
262
		blk_queue_exit(q);
263
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
264
	}
265 266
	return rq;
}
267
EXPORT_SYMBOL(blk_mq_alloc_request);
268 269 270 271 272 273 274

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

275 276
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
277
	rq->cmd_flags = 0;
278

279
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281
	blk_queue_exit(q);
282 283
}

284
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 286 287 288 289
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
290 291 292 293 294 295 296 297 298 299 300

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
301
}
J
Jens Axboe 已提交
302
EXPORT_SYMBOL_GPL(blk_mq_free_request);
303

304
inline void __blk_mq_end_request(struct request *rq, int error)
305
{
M
Ming Lei 已提交
306 307
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
308
	if (rq->end_io) {
309
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
310 311 312
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
313
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
314
	}
315
}
316
EXPORT_SYMBOL(__blk_mq_end_request);
317

318
void blk_mq_end_request(struct request *rq, int error)
319 320 321
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
322
	__blk_mq_end_request(rq, error);
323
}
324
EXPORT_SYMBOL(blk_mq_end_request);
325

326
static void __blk_mq_complete_request_remote(void *data)
327
{
328
	struct request *rq = data;
329

330
	rq->q->softirq_done_fn(rq);
331 332
}

333
static void blk_mq_ipi_complete_request(struct request *rq)
334 335
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
336
	bool shared = false;
337 338
	int cpu;

C
Christoph Hellwig 已提交
339
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 341 342
		rq->q->softirq_done_fn(rq);
		return;
	}
343 344

	cpu = get_cpu();
C
Christoph Hellwig 已提交
345 346 347 348
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349
		rq->csd.func = __blk_mq_complete_request_remote;
350 351
		rq->csd.info = rq;
		rq->csd.flags = 0;
352
		smp_call_function_single_async(ctx->cpu, &rq->csd);
353
	} else {
354
		rq->q->softirq_done_fn(rq);
355
	}
356 357
	put_cpu();
}
358

359
static void __blk_mq_complete_request(struct request *rq)
360 361 362 363
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
364
		blk_mq_end_request(rq, rq->errors);
365 366 367 368
	else
		blk_mq_ipi_complete_request(rq);
}

369 370 371 372 373 374 375 376
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
377
void blk_mq_complete_request(struct request *rq, int error)
378
{
379 380 381
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
382
		return;
383 384
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
385
		__blk_mq_complete_request(rq);
386
	}
387 388
}
EXPORT_SYMBOL(blk_mq_complete_request);
389

390 391 392 393 394 395
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

396
void blk_mq_start_request(struct request *rq)
397 398 399 400 401
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
402
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
403 404
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
405

406
	blk_add_timer(rq);
407

408 409 410 411 412 413
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

414 415 416 417 418 419
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
420 421 422 423
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424 425 426 427 428 429 430 431 432

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
433
}
434
EXPORT_SYMBOL(blk_mq_start_request);
435

436
static void __blk_mq_requeue_request(struct request *rq)
437 438 439 440
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
441

442 443 444 445
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
446 447
}

448 449 450 451 452
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
453
	blk_mq_add_to_requeue_list(rq, true);
454 455 456
}
EXPORT_SYMBOL(blk_mq_requeue_request);

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

484 485 486 487 488
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

513 514 515 516 517 518
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

519 520 521 522 523 524
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

545 546
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
547
	return tags->rqs[tag];
548 549 550
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

551
struct blk_mq_timeout_data {
552 553
	unsigned long next;
	unsigned int next_set;
554 555
};

556
void blk_mq_rq_timed_out(struct request *req, bool reserved)
557
{
558 559
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
560 561 562 563 564 565 566 567 568 569

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
570 571
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
572

573
	if (ops->timeout)
574
		ret = ops->timeout(req, reserved);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
590
}
591

592 593 594 595
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
596

597 598 599 600 601
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
602 603
		if (unlikely(blk_queue_dying(rq->q)))
			blk_mq_complete_request(rq, -EIO);
604
		return;
605
	}
606 607
	if (rq->cmd_flags & REQ_NO_TIMEOUT)
		return;
608

609 610
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
611
			blk_mq_rq_timed_out(rq, reserved);
612 613 614 615
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
616 617
}

618
static void blk_mq_rq_timer(unsigned long priv)
619
{
620 621 622 623 624 625
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
626

627
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
628

629 630 631
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
632
	} else {
633 634
		struct blk_mq_hw_ctx *hctx;

635 636 637 638 639
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
640
	}
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

682 683 684 685 686 687 688 689 690
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

691
	for (i = 0; i < hctx->ctx_map.size; i++) {
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

716 717 718 719 720 721 722 723 724 725 726
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
727 728
	LIST_HEAD(driver_list);
	struct list_head *dptr;
729
	int queued;
730

731
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
732

733
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
734 735 736 737 738 739 740
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
741
	flush_busy_ctxs(hctx, &rq_list);
742 743 744 745 746 747 748 749 750 751 752 753

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

754 755 756 757 758 759
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

760 761 762
	/*
	 * Now process all the entries, sending them to the driver.
	 */
763
	queued = 0;
764
	while (!list_empty(&rq_list)) {
765
		struct blk_mq_queue_data bd;
766 767 768 769 770
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

771 772 773 774 775
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
776 777 778 779 780 781
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
782
			__blk_mq_requeue_request(rq);
783 784 785 786
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
787
			rq->errors = -EIO;
788
			blk_mq_end_request(rq, rq->errors);
789 790 791 792 793
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
794 795 796 797 798 799 800

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
816 817 818 819 820 821 822 823 824 825
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
826 827 828
	}
}

829 830 831 832 833 834 835 836
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
837 838
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
839 840

	if (--hctx->next_cpu_batch <= 0) {
841
		int cpu = hctx->next_cpu, next_cpu;
842 843 844 845 846 847 848

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
849 850

		return cpu;
851 852
	}

853
	return hctx->next_cpu;
854 855
}

856 857
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
858 859
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
860 861
		return;

862
	if (!async) {
863 864
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
865
			__blk_mq_run_hw_queue(hctx);
866
			put_cpu();
867 868
			return;
		}
869

870
		put_cpu();
871
	}
872

873 874
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
875 876
}

877
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
878 879 880 881 882 883 884
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
885
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
886 887
			continue;

888
		blk_mq_run_hw_queue(hctx, async);
889 890
	}
}
891
EXPORT_SYMBOL(blk_mq_run_hw_queues);
892 893 894

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
895 896
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
897 898 899 900
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

901 902 903 904 905 906 907 908 909 910
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

911 912 913
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
914

915
	blk_mq_run_hw_queue(hctx, false);
916 917 918
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

919 920 921 922 923 924 925 926 927 928
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

929
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
930 931 932 933 934 935 936 937 938
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
939
		blk_mq_run_hw_queue(hctx, async);
940 941 942 943
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

944
static void blk_mq_run_work_fn(struct work_struct *work)
945 946 947
{
	struct blk_mq_hw_ctx *hctx;

948
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
949

950 951 952
	__blk_mq_run_hw_queue(hctx);
}

953 954 955 956 957 958 959 960 961 962 963 964
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
965 966
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
967

968 969
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
970 971 972
}
EXPORT_SYMBOL(blk_mq_delay_queue);

973 974 975 976
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct blk_mq_ctx *ctx,
					    struct request *rq,
					    bool at_head)
977
{
978 979
	trace_block_rq_insert(hctx->queue, rq);

980 981 982 983
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
984
}
985

986 987 988 989 990 991
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
992 993 994
	blk_mq_hctx_mark_pending(hctx, ctx);
}

995 996
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
997
{
998
	struct request_queue *q = rq->q;
999
	struct blk_mq_hw_ctx *hctx;
1000 1001 1002 1003 1004
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1005 1006 1007

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1008 1009 1010
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1011 1012 1013

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1014 1015

	blk_mq_put_ctx(current_ctx);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1047
		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1048
	}
1049
	blk_mq_hctx_mark_pending(hctx, ctx);
1050 1051 1052
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1053
	blk_mq_put_ctx(current_ctx);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1116

1117
	if (blk_do_io_stat(rq))
1118
		blk_account_io_start(rq, 1);
1119 1120
}

1121 1122 1123 1124 1125 1126
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1127 1128 1129
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1130
{
1131
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1132 1133 1134 1135 1136 1137 1138
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1139 1140
		struct request_queue *q = hctx->queue;

1141 1142 1143 1144 1145
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1146

1147 1148 1149
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1150
	}
1151
}
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1166
	struct blk_mq_alloc_data alloc_data;
1167

1168
	blk_queue_enter_live(q);
1169 1170 1171
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1172
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1173
		rw |= REQ_SYNC;
1174

1175
	trace_block_getrq(q, bio, rw);
1176
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1177
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1178
	if (unlikely(!rq)) {
1179
		__blk_mq_run_hw_queue(hctx);
1180 1181
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1182 1183

		ctx = blk_mq_get_ctx(q);
1184
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1185
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1186 1187 1188
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1189 1190 1191
	}

	hctx->queued++;
1192 1193 1194 1195 1196
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1197
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1208
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1209 1210 1211 1212 1213 1214 1215

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1216 1217
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1218
		return 0;
1219
	}
1220

1221 1222 1223 1224 1225 1226 1227
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1228
	}
1229 1230

	return -1;
1231 1232
}

1233 1234 1235 1236 1237
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1238
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1239 1240 1241 1242 1243
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1244 1245
	unsigned int request_count = 0;
	struct blk_plug *plug;
1246
	struct request *same_queue_rq = NULL;
1247
	blk_qc_t cookie;
1248 1249 1250 1251

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1252
		bio_io_error(bio);
1253
		return BLK_QC_T_NONE;
1254 1255
	}

1256 1257
	blk_queue_split(q, &bio, q->bio_split);

1258 1259 1260
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count,
					   &same_queue_rq))
1261
			return BLK_QC_T_NONE;
1262 1263
	} else
		request_count = blk_plug_queued_count(q);
1264

1265 1266
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1267
		return BLK_QC_T_NONE;
1268

1269
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1270 1271 1272 1273 1274 1275 1276

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1277
	plug = current->plug;
1278 1279 1280 1281 1282
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1283 1284 1285
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1286 1287 1288 1289

		blk_mq_bio_to_request(rq, bio);

		/*
1290
		 * We do limited pluging. If the bio can be merged, do that.
1291 1292
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1293
		 */
1294
		if (plug) {
1295 1296
			/*
			 * The plug list might get flushed before this. If that
1297 1298 1299
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1300 1301
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1302
				list_del_init(&old_rq->queuelist);
1303
			}
1304 1305 1306 1307 1308
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1309 1310 1311
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1312
		blk_mq_insert_request(old_rq, false, true, true);
1313
		goto done;
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1327 1328
done:
	return cookie;
1329 1330 1331 1332 1333 1334
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1335
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1336 1337 1338
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1339 1340
	struct blk_plug *plug;
	unsigned int request_count = 0;
1341 1342
	struct blk_map_ctx data;
	struct request *rq;
1343
	blk_qc_t cookie;
1344 1345 1346 1347

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1348
		bio_io_error(bio);
1349
		return BLK_QC_T_NONE;
1350 1351
	}

1352 1353
	blk_queue_split(q, &bio, q->bio_split);

1354
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1355
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1356
		return BLK_QC_T_NONE;
1357 1358

	rq = blk_mq_map_request(q, bio, &data);
1359
	if (unlikely(!rq))
1360
		return BLK_QC_T_NONE;
1361

1362
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1375 1376 1377
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1378
		if (!request_count)
1379
			trace_block_plug(q);
1380 1381 1382 1383

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1384 1385
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1386
		}
1387

1388
		list_add_tail(&rq->queuelist, &plug->mq_list);
1389
		return cookie;
1390 1391
	}

1392 1393 1394 1395 1396 1397 1398 1399 1400
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1401 1402
	}

1403
	blk_mq_put_ctx(data.ctx);
1404
	return cookie;
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1416 1417
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1418
{
1419
	struct page *page;
1420

1421
	if (tags->rqs && set->ops->exit_request) {
1422
		int i;
1423

1424 1425
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1426
				continue;
1427 1428
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1429
			tags->rqs[i] = NULL;
1430
		}
1431 1432
	}

1433 1434
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1435
		list_del_init(&page->lru);
1436 1437 1438 1439 1440
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1441 1442 1443
		__free_pages(page, page->private);
	}

1444
	kfree(tags->rqs);
1445

1446
	blk_mq_free_tags(tags);
1447 1448 1449 1450
}

static size_t order_to_size(unsigned int order)
{
1451
	return (size_t)PAGE_SIZE << order;
1452 1453
}

1454 1455
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1456
{
1457
	struct blk_mq_tags *tags;
1458 1459 1460
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1461
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1462 1463
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1464 1465
	if (!tags)
		return NULL;
1466

1467 1468
	INIT_LIST_HEAD(&tags->page_list);

1469 1470 1471
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1472 1473 1474 1475
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1476 1477 1478 1479 1480

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1481
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1482
				cache_line_size());
1483
	left = rq_size * set->queue_depth;
1484

1485
	for (i = 0; i < set->queue_depth; ) {
1486 1487 1488 1489 1490 1491 1492 1493 1494
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1495
			page = alloc_pages_node(set->numa_node,
1496
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1497
				this_order);
1498 1499 1500 1501 1502 1503 1504 1505 1506
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1507
			goto fail;
1508 1509

		page->private = this_order;
1510
		list_add_tail(&page->lru, &tags->page_list);
1511 1512

		p = page_address(page);
1513 1514 1515 1516 1517
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1518
		entries_per_page = order_to_size(this_order) / rq_size;
1519
		to_do = min(entries_per_page, set->queue_depth - i);
1520 1521
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1522 1523 1524 1525
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1526 1527
						set->numa_node)) {
					tags->rqs[i] = NULL;
1528
					goto fail;
1529
				}
1530 1531
			}

1532 1533 1534 1535
			p += rq_size;
			i++;
		}
	}
1536
	return tags;
1537

1538 1539 1540
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1541 1542
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1618 1619 1620 1621 1622

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1623 1624 1625 1626

	return NOTIFY_OK;
}

1627
/* hctx->ctxs will be freed in queue's release handler */
1628 1629 1630 1631
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1632 1633
	unsigned flush_start_tag = set->queue_depth;

1634 1635
	blk_mq_tag_idle(hctx);

1636 1637 1638 1639 1640
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1641 1642 1643 1644
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1645
	blk_free_flush_queue(hctx->fq);
1646 1647 1648
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1658
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1668
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1669 1670 1671
		free_cpumask_var(hctx->cpumask);
}

1672 1673 1674
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1675
{
1676
	int node;
1677
	unsigned flush_start_tag = set->queue_depth;
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1689
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1690 1691 1692 1693 1694 1695

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1696 1697

	/*
1698 1699
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1700
	 */
1701 1702 1703 1704
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1705

1706 1707
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1708

1709
	hctx->nr_ctx = 0;
1710

1711 1712 1713
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1714

1715 1716 1717
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1718

1719 1720 1721 1722 1723
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1724

1725
	return 0;
1726

1727 1728 1729 1730 1731
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1732 1733 1734 1735 1736 1737
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1738

1739 1740
	return -1;
}
1741

1742 1743 1744 1745 1746
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1747

1748 1749 1750 1751 1752
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1753 1754 1755 1756 1757 1758 1759 1760 1761
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1762
	blk_mq_exit_hw_queues(q, set, i);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1786 1787
		hctx = q->mq_ops->map_queue(q, i);

1788 1789 1790 1791 1792 1793 1794 1795 1796
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

1797 1798
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1799 1800 1801 1802
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1803
	struct blk_mq_tag_set *set = q->tag_set;
1804

1805 1806 1807 1808 1809
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1810
	queue_for_each_hw_ctx(q, hctx, i) {
1811
		cpumask_clear(hctx->cpumask);
1812 1813 1814 1815 1816 1817 1818 1819
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1820
		if (!cpumask_test_cpu(i, online_mask))
1821 1822
			continue;

1823
		hctx = q->mq_ops->map_queue(q, i);
1824
		cpumask_set_cpu(i, hctx->cpumask);
1825 1826 1827
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1828

1829 1830
	mutex_unlock(&q->sysfs_lock);

1831
	queue_for_each_hw_ctx(q, hctx, i) {
1832 1833
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1834
		/*
1835 1836
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1837 1838 1839 1840 1841 1842
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1843
			hctx->tags = NULL;
1844 1845 1846
			continue;
		}

M
Ming Lei 已提交
1847 1848 1849 1850 1851 1852
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1853
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1854 1855 1856 1857 1858
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1859
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1860

1861 1862 1863
		/*
		 * Initialize batch roundrobin counts
		 */
1864 1865 1866
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1867 1868
}

1869
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1870 1871 1872 1873
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1885 1886 1887

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1888
		queue_set_hctx_shared(q, shared);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1899 1900 1901 1902 1903 1904
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1905 1906 1907 1908 1909 1910 1911 1912 1913
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1914 1915 1916 1917 1918 1919 1920 1921 1922

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1923
	list_add_tail(&q->tag_set_list, &set->tag_list);
1924

1925 1926 1927
	mutex_unlock(&set->tag_list_lock);
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1940 1941 1942 1943
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1944
		kfree(hctx);
1945
	}
1946

1947 1948 1949
	kfree(q->mq_map);
	q->mq_map = NULL;

1950 1951 1952 1953 1954 1955
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1956
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
1974 1975
{
	struct blk_mq_hw_ctx **hctxs;
1976
	struct blk_mq_ctx __percpu *ctx;
1977
	unsigned int *map;
1978 1979 1980 1981 1982 1983
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1984 1985
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1986 1987 1988 1989

	if (!hctxs)
		goto err_percpu;

1990 1991 1992 1993
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1994
	for (i = 0; i < set->nr_hw_queues; i++) {
1995 1996
		int node = blk_mq_hw_queue_to_node(map, i);

1997 1998
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1999 2000 2001
		if (!hctxs[i])
			goto err_hctxs;

2002 2003
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
2004 2005
			goto err_hctxs;

2006
		atomic_set(&hctxs[i]->nr_active, 0);
2007
		hctxs[i]->numa_node = node;
2008 2009 2010 2011
		hctxs[i]->queue_num = i;
	}

	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2012
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2013 2014

	q->nr_queues = nr_cpu_ids;
2015
	q->nr_hw_queues = set->nr_hw_queues;
2016
	q->mq_map = map;
2017 2018 2019 2020

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

2021
	q->mq_ops = set->ops;
2022
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2023

2024 2025 2026
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2027 2028
	q->sg_reserved_size = INT_MAX;

2029 2030 2031 2032
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2033 2034 2035 2036 2037
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2038 2039 2040 2041 2042
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2043 2044
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2045

2046
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2047

2048
	if (blk_mq_init_hw_queues(q, set))
2049
		goto err_hctxs;
2050

2051
	get_online_cpus();
2052 2053
	mutex_lock(&all_q_mutex);

2054
	list_add_tail(&q->all_q_node, &all_q_list);
2055
	blk_mq_add_queue_tag_set(set, q);
2056
	blk_mq_map_swqueue(q, cpu_online_mask);
2057

2058
	mutex_unlock(&all_q_mutex);
2059
	put_online_cpus();
2060

2061
	return q;
2062

2063
err_hctxs:
2064
	kfree(map);
2065
	for (i = 0; i < set->nr_hw_queues; i++) {
2066 2067
		if (!hctxs[i])
			break;
2068
		free_cpumask_var(hctxs[i]->cpumask);
2069
		kfree(hctxs[i]);
2070
	}
2071
err_map:
2072 2073 2074 2075 2076
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
2077
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2078 2079 2080

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2081
	struct blk_mq_tag_set	*set = q->tag_set;
2082

2083 2084 2085 2086
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2087 2088
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2089 2090
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2091 2092 2093
}

/* Basically redo blk_mq_init_queue with queue frozen */
2094 2095
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2096
{
2097
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2098

2099 2100
	blk_mq_sysfs_unregister(q);

2101
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2102 2103 2104 2105 2106 2107 2108

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2109
	blk_mq_map_swqueue(q, online_mask);
2110

2111
	blk_mq_sysfs_register(q);
2112 2113
}

2114 2115
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2116 2117
{
	struct request_queue *q;
2118 2119 2120 2121 2122 2123 2124
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2125 2126

	/*
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2142
	 */
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2153
		return NOTIFY_OK;
2154
	}
2155 2156

	mutex_lock(&all_q_mutex);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2167
	list_for_each_entry(q, &all_q_list, all_q_node) {
2168 2169
		blk_mq_freeze_queue_wait(q);

2170 2171 2172 2173 2174 2175 2176
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2177
	list_for_each_entry(q, &all_q_list, all_q_node)
2178
		blk_mq_queue_reinit(q, &online_new);
2179 2180 2181 2182

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2183 2184 2185 2186
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2241 2242 2243 2244 2245 2246
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2247 2248 2249 2250 2251 2252
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2253 2254
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2255 2256
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2257 2258
	if (!set->nr_hw_queues)
		return -EINVAL;
2259
	if (!set->queue_depth)
2260 2261 2262 2263
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2264
	if (!set->ops->queue_rq || !set->ops->map_queue)
2265 2266
		return -EINVAL;

2267 2268 2269 2270 2271
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2272

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2283 2284
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2285 2286
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2287
		return -ENOMEM;
2288

2289 2290
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2291

2292 2293 2294
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2295
	return 0;
2296
enomem:
2297 2298
	kfree(set->tags);
	set->tags = NULL;
2299 2300 2301 2302 2303 2304 2305 2306
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2307
	for (i = 0; i < set->nr_hw_queues; i++) {
2308
		if (set->tags[i])
2309 2310 2311
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2312
	kfree(set->tags);
2313
	set->tags = NULL;
2314 2315 2316
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2349 2350 2351 2352
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2353
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2354 2355 2356 2357

	return 0;
}
subsys_initcall(blk_mq_init);