blk-mq.c 68.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46

47 48 49 50
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
51
	ddir = rq_data_dir(rq);
52 53 54 55 56 57 58 59 60 61 62 63
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

64 65 66
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
67
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68
{
69 70 71
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
72 73
}

74 75 76 77 78 79
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
80 81
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 83 84 85 86
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
87
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 89
}

90
void blk_freeze_queue_start(struct request_queue *q)
91
{
92
	int freeze_depth;
93

94 95
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
96
		percpu_ref_kill(&q->q_usage_counter);
97
		blk_mq_run_hw_queues(q, false);
98
	}
99
}
100
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101

102
void blk_mq_freeze_queue_wait(struct request_queue *q)
103
{
104
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105
}
106
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107

108 109 110 111 112 113 114 115
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116

117 118 119 120
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
121
void blk_freeze_queue(struct request_queue *q)
122
{
123 124 125 126 127 128 129
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
130
	blk_freeze_queue_start(q);
131 132
	blk_mq_freeze_queue_wait(q);
}
133 134 135 136 137 138 139 140 141

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
142
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143

144
void blk_mq_unfreeze_queue(struct request_queue *q)
145
{
146
	int freeze_depth;
147

148 149 150
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
151
		percpu_ref_reinit(&q->q_usage_counter);
152
		wake_up_all(&q->mq_freeze_wq);
153
	}
154
}
155
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

171
	__blk_mq_stop_hw_queues(q, true);
172 173 174 175 176 177 178 179 180 181 182 183

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

184 185 186 187 188 189 190 191
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
192 193 194 195 196 197 198

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
199 200
}

201 202 203 204 205 206
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

207 208
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
		struct request *rq, unsigned int op)
209
{
210 211 212
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
213
	rq->mq_ctx = ctx;
214
	rq->cmd_flags = op;
215 216
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
217 218 219 220 221 222
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
223
	rq->start_time = jiffies;
224 225
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
226
	set_start_time_ns(rq);
227 228 229 230 231 232 233 234 235 236 237
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
238 239
	rq->timeout = 0;

240 241 242 243
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

244
	ctx->rq_dispatched[op_is_sync(op)]++;
245 246
}

247 248
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
249 250 251 252
{
	struct request *rq;
	unsigned int tag;

253
	tag = blk_mq_get_tag(data);
254
	if (tag != BLK_MQ_TAG_FAIL) {
255 256 257
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
258

259 260 261 262
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
263 264 265 266
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
267 268
			rq->tag = tag;
			rq->internal_tag = -1;
269
			data->hctx->tags->rqs[rq->tag] = rq;
270 271
		}

272
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
273 274 275 276 277
		return rq;
	}

	return NULL;
}
278
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
279

280 281
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
282
{
283
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
284
	struct request *rq;
285
	int ret;
286

287
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
288 289
	if (ret)
		return ERR_PTR(ret);
290

291
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
292

293 294 295 296
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
297
		return ERR_PTR(-EWOULDBLOCK);
298 299 300 301

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
302 303
	return rq;
}
304
EXPORT_SYMBOL(blk_mq_alloc_request);
305

M
Ming Lin 已提交
306 307 308
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
309
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
310
	struct request *rq;
311
	unsigned int cpu;
M
Ming Lin 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

330 331 332 333
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
334 335 336 337
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
338
	}
339 340
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
341

342
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
343 344

	blk_queue_exit(q);
345 346 347 348 349

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
350 351 352
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

353 354
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
355
{
356
	const int sched_tag = rq->internal_tag;
357 358
	struct request_queue *q = rq->q;

359
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
360
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
361 362

	wbt_done(q->rq_wb, &rq->issue_stat);
363
	rq->rq_flags = 0;
364

365
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
366
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
367 368 369
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
370
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
371
	blk_mq_sched_restart(hctx);
372
	blk_queue_exit(q);
373 374
}

375
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
376
				     struct request *rq)
377 378 379 380
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
381 382 383 384 385 386
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
387
}
O
Omar Sandoval 已提交
388
EXPORT_SYMBOL_GPL(blk_mq_finish_request);
389 390 391

void blk_mq_free_request(struct request *rq)
{
392
	blk_mq_sched_put_request(rq);
393
}
J
Jens Axboe 已提交
394
EXPORT_SYMBOL_GPL(blk_mq_free_request);
395

396
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
397
{
M
Ming Lei 已提交
398 399
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
400
	if (rq->end_io) {
J
Jens Axboe 已提交
401
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
402
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
403 404 405
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
406
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
407
	}
408
}
409
EXPORT_SYMBOL(__blk_mq_end_request);
410

411
void blk_mq_end_request(struct request *rq, blk_status_t error)
412 413 414
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
415
	__blk_mq_end_request(rq, error);
416
}
417
EXPORT_SYMBOL(blk_mq_end_request);
418

419
static void __blk_mq_complete_request_remote(void *data)
420
{
421
	struct request *rq = data;
422

423
	rq->q->softirq_done_fn(rq);
424 425
}

426
static void __blk_mq_complete_request(struct request *rq)
427 428
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
429
	bool shared = false;
430 431
	int cpu;

432 433 434 435 436 437 438
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
439
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
440 441 442
		rq->q->softirq_done_fn(rq);
		return;
	}
443 444

	cpu = get_cpu();
C
Christoph Hellwig 已提交
445 446 447 448
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
449
		rq->csd.func = __blk_mq_complete_request_remote;
450 451
		rq->csd.info = rq;
		rq->csd.flags = 0;
452
		smp_call_function_single_async(ctx->cpu, &rq->csd);
453
	} else {
454
		rq->q->softirq_done_fn(rq);
455
	}
456 457
	put_cpu();
}
458 459 460 461 462 463 464 465 466

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
467
void blk_mq_complete_request(struct request *rq)
468
{
469 470 471
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
472
		return;
473
	if (!blk_mark_rq_complete(rq))
474
		__blk_mq_complete_request(rq);
475 476
}
EXPORT_SYMBOL(blk_mq_complete_request);
477

478 479 480 481 482 483
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

484
void blk_mq_start_request(struct request *rq)
485 486 487
{
	struct request_queue *q = rq->q;

488 489
	blk_mq_sched_started_request(rq);

490 491
	trace_block_rq_issue(q, rq);

492
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
493
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
494
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
495
		wbt_issue(q->rq_wb, &rq->issue_stat);
496 497
	}

498
	blk_add_timer(rq);
499

500 501 502 503 504 505
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

506 507 508 509 510 511
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
512 513 514 515
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
516 517 518 519 520 521 522 523 524

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
525
}
526
EXPORT_SYMBOL(blk_mq_start_request);
527

528 529
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
530
 * flag isn't set yet, so there may be race with timeout handler,
531 532 533 534 535 536
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
537
static void __blk_mq_requeue_request(struct request *rq)
538 539 540 541
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
542
	wbt_requeue(q->rq_wb, &rq->issue_stat);
543
	blk_mq_sched_requeue_request(rq);
544

545 546 547 548
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
549 550
}

551
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
552 553 554 555
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
556
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
557 558 559
}
EXPORT_SYMBOL(blk_mq_requeue_request);

560 561 562
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
563
		container_of(work, struct request_queue, requeue_work.work);
564 565 566 567 568 569 570 571 572
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
573
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
574 575
			continue;

576
		rq->rq_flags &= ~RQF_SOFTBARRIER;
577
		list_del_init(&rq->queuelist);
578
		blk_mq_sched_insert_request(rq, true, false, false, true);
579 580 581 582 583
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
584
		blk_mq_sched_insert_request(rq, false, false, false, true);
585 586
	}

587
	blk_mq_run_hw_queues(q, false);
588 589
}

590 591
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
592 593 594 595 596 597 598 599
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
600
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
601 602 603

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
604
		rq->rq_flags |= RQF_SOFTBARRIER;
605 606 607 608 609
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
610 611 612

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
613 614 615 616 617
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
618
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
619 620 621
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

622 623 624 625 626 627 628 629
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

630 631
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
632 633
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
634
		return tags->rqs[tag];
635
	}
636 637

	return NULL;
638 639 640
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

641
struct blk_mq_timeout_data {
642 643
	unsigned long next;
	unsigned int next_set;
644 645
};

646
void blk_mq_rq_timed_out(struct request *req, bool reserved)
647
{
J
Jens Axboe 已提交
648
	const struct blk_mq_ops *ops = req->q->mq_ops;
649
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
650 651 652 653 654 655 656

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
657
	 * both flags will get cleared. So check here again, and ignore
658 659
	 * a timeout event with a request that isn't active.
	 */
660 661
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
662

663
	if (ops->timeout)
664
		ret = ops->timeout(req, reserved);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
680
}
681

682 683 684 685
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
686

687
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
688
		return;
689

690 691 692 693 694 695 696 697 698 699 700 701 702
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
703 704
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
705
			blk_mq_rq_timed_out(rq, reserved);
706 707 708 709
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
710 711
}

712
static void blk_mq_timeout_work(struct work_struct *work)
713
{
714 715
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
716 717 718 719 720
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
721

722 723 724 725 726 727 728 729 730
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
731
	 * blk_freeze_queue_start, and the moment the last request is
732 733 734 735
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
736 737
		return;

738
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739

740 741 742
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
743
	} else {
744 745
		struct blk_mq_hw_ctx *hctx;

746 747 748 749 750
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
751
	}
752
	blk_queue_exit(q);
753 754
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

773 774 775 776
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
777
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
778
{
779 780 781 782
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
783

784
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
785
}
786
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
787

788 789 790 791
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
792

793
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
794 795
}

796 797
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
798 799 800 801 802 803 804
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

805 806
	might_sleep_if(wait);

807 808
	if (rq->tag != -1)
		goto done;
809

810 811 812
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

813 814
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
815 816 817 818
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
819 820 821
		data.hctx->tags->rqs[rq->tag] = rq;
	}

822 823 824 825
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
826 827
}

828 829
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
830 831 832 833 834 835 836 837 838 839
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

922
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
923
{
924
	struct blk_mq_hw_ctx *hctx;
925
	struct request *rq;
926
	int errors, queued;
927

928 929 930
	if (list_empty(list))
		return false;

931 932 933
	/*
	 * Now process all the entries, sending them to the driver.
	 */
934
	errors = queued = 0;
935
	do {
936
		struct blk_mq_queue_data bd;
937
		blk_status_t ret;
938

939
		rq = list_first_entry(list, struct request, queuelist);
940 941 942
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
943 944

			/*
945 946
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
947
			 */
948 949 950 951 952 953 954 955 956
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
957
				break;
958
		}
959

960 961
		list_del_init(&rq->queuelist);

962
		bd.rq = rq;
963 964 965 966 967 968 969 970 971 972 973 974 975

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
976 977

		ret = q->mq_ops->queue_rq(hctx, &bd);
978
		if (ret == BLK_STS_RESOURCE) {
979
			blk_mq_put_driver_tag_hctx(hctx, rq);
980
			list_add(&rq->queuelist, list);
981
			__blk_mq_requeue_request(rq);
982
			break;
983 984 985
		}

		if (unlikely(ret != BLK_STS_OK)) {
986
			errors++;
987
			blk_mq_end_request(rq, BLK_STS_IOERR);
988
			continue;
989 990
		}

991
		queued++;
992
	} while (!list_empty(list));
993

994
	hctx->dispatched[queued_to_index(queued)]++;
995 996 997 998 999

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1000
	if (!list_empty(list)) {
1001
		/*
1002 1003
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1004 1005 1006 1007
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1008
		spin_lock(&hctx->lock);
1009
		list_splice_init(list, &hctx->dispatch);
1010
		spin_unlock(&hctx->lock);
1011

1012
		/*
1013 1014 1015
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1016
		 *
1017 1018 1019 1020
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1021
		 *
1022 1023 1024 1025 1026 1027 1028
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1029
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1030
		 *   and dm-rq.
1031
		 */
1032 1033
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1034
			blk_mq_run_hw_queue(hctx, true);
1035
	}
1036

1037
	return (queued + errors) != 0;
1038 1039
}

1040 1041 1042 1043 1044 1045 1046 1047 1048
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1049
		blk_mq_sched_dispatch_requests(hctx);
1050 1051
		rcu_read_unlock();
	} else {
1052 1053
		might_sleep();

1054
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1055
		blk_mq_sched_dispatch_requests(hctx);
1056 1057 1058 1059
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1060 1061 1062 1063 1064 1065 1066 1067
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1068 1069
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1070 1071

	if (--hctx->next_cpu_batch <= 0) {
1072
		int next_cpu;
1073 1074 1075 1076 1077 1078 1079 1080 1081

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1082
	return hctx->next_cpu;
1083 1084
}

1085 1086
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1087
{
1088 1089
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1090 1091
		return;

1092
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1093 1094
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1095
			__blk_mq_run_hw_queue(hctx);
1096
			put_cpu();
1097 1098
			return;
		}
1099

1100
		put_cpu();
1101
	}
1102

1103 1104 1105
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1117
}
O
Omar Sandoval 已提交
1118
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1119

1120
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1121 1122 1123 1124 1125
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1126
		if (!blk_mq_hctx_has_pending(hctx) ||
1127
		    blk_mq_hctx_stopped(hctx))
1128 1129
			continue;

1130
		blk_mq_run_hw_queue(hctx, async);
1131 1132
	}
}
1133
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1155
static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1156
{
1157 1158 1159 1160 1161
	if (sync)
		cancel_delayed_work_sync(&hctx->run_work);
	else
		cancel_delayed_work(&hctx->run_work);

1162 1163
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
1164 1165 1166 1167 1168

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	__blk_mq_stop_hw_queue(hctx, false);
}
1169 1170
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1171
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1172 1173 1174 1175 1176
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
1177 1178 1179 1180 1181 1182
		__blk_mq_stop_hw_queue(hctx, sync);
}

void blk_mq_stop_hw_queues(struct request_queue *q)
{
	__blk_mq_stop_hw_queues(q, false);
1183 1184 1185
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1186 1187 1188
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1189

1190
	blk_mq_run_hw_queue(hctx, false);
1191 1192 1193
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1214
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1215 1216 1217 1218
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1219 1220
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1221 1222 1223
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1224
static void blk_mq_run_work_fn(struct work_struct *work)
1225 1226 1227
{
	struct blk_mq_hw_ctx *hctx;

1228
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1229

1230 1231 1232 1233 1234 1235 1236 1237
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1238

1239 1240 1241
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1242 1243 1244 1245

	__blk_mq_run_hw_queue(hctx);
}

1246 1247 1248

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1249 1250
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1251

1252 1253 1254 1255 1256
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1257
	blk_mq_stop_hw_queue(hctx);
1258 1259 1260 1261
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1262 1263 1264
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1265 1266 1267
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1268
{
J
Jens Axboe 已提交
1269 1270
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1271 1272
	trace_block_rq_insert(hctx->queue, rq);

1273 1274 1275 1276
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1277
}
1278

1279 1280
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1281 1282 1283
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1284
	__blk_mq_insert_req_list(hctx, rq, at_head);
1285 1286 1287
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1288 1289
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1301
		BUG_ON(rq->mq_ctx != ctx);
1302
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1303
		__blk_mq_insert_req_list(hctx, rq, false);
1304
	}
1305
	blk_mq_hctx_mark_pending(hctx, ctx);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1342 1343 1344 1345
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1362 1363 1364
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1365 1366 1367 1368 1369
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1370
	blk_init_request_from_bio(rq, bio);
1371

1372
	blk_account_io_start(rq, true);
1373 1374
}

1375 1376 1377 1378 1379 1380
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1381 1382 1383 1384 1385 1386 1387
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1388
}
1389

1390 1391
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1392 1393 1394 1395
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1396 1397
}

M
Ming Lei 已提交
1398 1399 1400
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1401 1402 1403 1404
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1405
		.last = true,
1406
	};
1407
	blk_qc_t new_cookie;
1408
	blk_status_t ret;
M
Ming Lei 已提交
1409 1410 1411 1412 1413 1414
	bool run_queue = true;

	if (blk_mq_hctx_stopped(hctx)) {
		run_queue = false;
		goto insert;
	}
1415

1416
	if (q->elevator)
1417 1418
		goto insert;

M
Ming Lei 已提交
1419
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1420 1421 1422 1423
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1424 1425 1426 1427 1428 1429
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1430 1431
	switch (ret) {
	case BLK_STS_OK:
1432
		*cookie = new_cookie;
1433
		return;
1434 1435 1436 1437
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1438
		*cookie = BLK_QC_T_NONE;
1439
		blk_mq_end_request(rq, ret);
1440
		return;
1441
	}
1442

1443
insert:
M
Ming Lei 已提交
1444
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1445 1446
}

1447 1448 1449 1450 1451
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1452
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1453 1454
		rcu_read_unlock();
	} else {
1455 1456 1457 1458 1459
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
M
Ming Lei 已提交
1460
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1461 1462 1463 1464
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1465
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1466
{
1467
	const int is_sync = op_is_sync(bio->bi_opf);
1468
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1469
	struct blk_mq_alloc_data data = { .flags = 0 };
1470
	struct request *rq;
1471
	unsigned int request_count = 0;
1472
	struct blk_plug *plug;
1473
	struct request *same_queue_rq = NULL;
1474
	blk_qc_t cookie;
J
Jens Axboe 已提交
1475
	unsigned int wb_acct;
1476 1477 1478

	blk_queue_bounce(q, &bio);

1479 1480
	blk_queue_split(q, &bio, q->bio_split);

1481
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1482
		bio_io_error(bio);
1483
		return BLK_QC_T_NONE;
1484 1485
	}

1486 1487 1488
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1489

1490 1491 1492
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1493 1494
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1495 1496 1497
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1498 1499
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1500
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1501 1502 1503
	}

	wbt_track(&rq->issue_stat, wb_acct);
1504

1505
	cookie = request_to_qc_t(data.hctx, rq);
1506

1507
	plug = current->plug;
1508
	if (unlikely(is_flush_fua)) {
1509
		blk_mq_put_ctx(data.ctx);
1510
		blk_mq_bio_to_request(rq, bio);
1511 1512 1513
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1514
		} else {
1515 1516
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1517
		}
1518
	} else if (plug && q->nr_hw_queues == 1) {
1519 1520
		struct request *last = NULL;

1521
		blk_mq_put_ctx(data.ctx);
1522
		blk_mq_bio_to_request(rq, bio);
1523 1524 1525 1526 1527 1528 1529

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1530 1531 1532
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1533
		if (!request_count)
1534
			trace_block_plug(q);
1535 1536
		else
			last = list_entry_rq(plug->mq_list.prev);
1537

1538 1539
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1540 1541
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1542
		}
1543

1544
		list_add_tail(&rq->queuelist, &plug->mq_list);
1545
	} else if (plug && !blk_queue_nomerges(q)) {
1546
		blk_mq_bio_to_request(rq, bio);
1547 1548

		/*
1549
		 * We do limited plugging. If the bio can be merged, do that.
1550 1551
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1552 1553
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1554
		 */
1555 1556 1557 1558 1559 1560
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1561 1562
		blk_mq_put_ctx(data.ctx);

1563 1564 1565
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1566 1567
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1568
		}
1569
	} else if (q->nr_hw_queues > 1 && is_sync) {
1570
		blk_mq_put_ctx(data.ctx);
1571 1572
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1573
	} else if (q->elevator) {
1574
		blk_mq_put_ctx(data.ctx);
1575
		blk_mq_bio_to_request(rq, bio);
1576
		blk_mq_sched_insert_request(rq, false, true, true, true);
1577
	} else {
1578
		blk_mq_put_ctx(data.ctx);
1579 1580
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1581
		blk_mq_run_hw_queue(data.hctx, true);
1582
	}
1583

1584
	return cookie;
1585 1586
}

1587 1588
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1589
{
1590
	struct page *page;
1591

1592
	if (tags->rqs && set->ops->exit_request) {
1593
		int i;
1594

1595
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1596 1597 1598
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1599
				continue;
1600
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1601
			tags->static_rqs[i] = NULL;
1602
		}
1603 1604
	}

1605 1606
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1607
		list_del_init(&page->lru);
1608 1609 1610 1611 1612
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1613 1614
		__free_pages(page, page->private);
	}
1615
}
1616

1617 1618
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1619
	kfree(tags->rqs);
1620
	tags->rqs = NULL;
J
Jens Axboe 已提交
1621 1622
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1623

1624
	blk_mq_free_tags(tags);
1625 1626
}

1627 1628 1629 1630
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1631
{
1632
	struct blk_mq_tags *tags;
1633
	int node;
1634

1635 1636 1637 1638 1639
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1640
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1641 1642
	if (!tags)
		return NULL;
1643

1644
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1645
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1646
				 node);
1647 1648 1649 1650
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1651

J
Jens Axboe 已提交
1652 1653
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1654
				 node);
J
Jens Axboe 已提交
1655 1656 1657 1658 1659 1660
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1674 1675 1676 1677 1678
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1679 1680 1681

	INIT_LIST_HEAD(&tags->page_list);

1682 1683 1684 1685
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1686
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1687
				cache_line_size());
1688
	left = rq_size * depth;
1689

1690
	for (i = 0; i < depth; ) {
1691 1692 1693 1694 1695
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1696
		while (this_order && left < order_to_size(this_order - 1))
1697 1698 1699
			this_order--;

		do {
1700
			page = alloc_pages_node(node,
1701
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1702
				this_order);
1703 1704 1705 1706 1707 1708 1709 1710 1711
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1712
			goto fail;
1713 1714

		page->private = this_order;
1715
		list_add_tail(&page->lru, &tags->page_list);
1716 1717

		p = page_address(page);
1718 1719 1720 1721
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1722
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1723
		entries_per_page = order_to_size(this_order) / rq_size;
1724
		to_do = min(entries_per_page, depth - i);
1725 1726
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1727 1728 1729
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1730
			if (set->ops->init_request) {
1731
				if (set->ops->init_request(set, rq, hctx_idx,
1732
						node)) {
J
Jens Axboe 已提交
1733
					tags->static_rqs[i] = NULL;
1734
					goto fail;
1735
				}
1736 1737
			}

1738 1739 1740 1741
			p += rq_size;
			i++;
		}
	}
1742
	return 0;
1743

1744
fail:
1745 1746
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1747 1748
}

J
Jens Axboe 已提交
1749 1750 1751 1752 1753
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1754
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1755
{
1756
	struct blk_mq_hw_ctx *hctx;
1757 1758 1759
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1760
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1761
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1762 1763 1764 1765 1766 1767 1768 1769 1770

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1771
		return 0;
1772

J
Jens Axboe 已提交
1773 1774 1775
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1776 1777

	blk_mq_run_hw_queue(hctx, true);
1778
	return 0;
1779 1780
}

1781
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1782
{
1783 1784
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1785 1786
}

1787
/* hctx->ctxs will be freed in queue's release handler */
1788 1789 1790 1791
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1792 1793
	blk_mq_debugfs_unregister_hctx(hctx);

1794 1795
	blk_mq_tag_idle(hctx);

1796
	if (set->ops->exit_request)
1797
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1798

1799 1800
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1801 1802 1803
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1804 1805 1806
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1807
	blk_mq_remove_cpuhp(hctx);
1808
	blk_free_flush_queue(hctx->fq);
1809
	sbitmap_free(&hctx->ctx_map);
1810 1811
}

M
Ming Lei 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1821
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1822 1823 1824
	}
}

1825 1826 1827
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1828
{
1829 1830 1831 1832 1833 1834
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1835
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1836 1837 1838 1839
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1840
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1841

1842
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1843 1844

	hctx->tags = set->tags[hctx_idx];
1845 1846

	/*
1847 1848
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1849
	 */
1850 1851 1852 1853
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1854

1855 1856
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1857
		goto free_ctxs;
1858

1859
	hctx->nr_ctx = 0;
1860

1861 1862 1863
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1864

1865 1866 1867
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1868 1869
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1870
		goto sched_exit_hctx;
1871

1872
	if (set->ops->init_request &&
1873 1874
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1875
		goto free_fq;
1876

1877 1878 1879
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1880 1881
	blk_mq_debugfs_register_hctx(q, hctx);

1882
	return 0;
1883

1884 1885
 free_fq:
	kfree(hctx->fq);
1886 1887
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1888 1889 1890
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1891
 free_bitmap:
1892
	sbitmap_free(&hctx->ctx_map);
1893 1894 1895
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1896
	blk_mq_remove_cpuhp(hctx);
1897 1898
	return -1;
}
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1918
		hctx = blk_mq_map_queue(q, i);
1919

1920 1921 1922 1923 1924
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1925
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1926 1927 1928
	}
}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1951 1952 1953 1954 1955
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1956 1957
}

1958 1959
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1960
{
1961
	unsigned int i, hctx_idx;
1962 1963
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1964
	struct blk_mq_tag_set *set = q->tag_set;
1965

1966 1967 1968 1969 1970
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1971
	queue_for_each_hw_ctx(q, hctx, i) {
1972
		cpumask_clear(hctx->cpumask);
1973 1974 1975 1976 1977 1978
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1979
	for_each_possible_cpu(i) {
1980
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1981
		if (!cpumask_test_cpu(i, online_mask))
1982 1983
			continue;

1984 1985
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
1986 1987
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
1988 1989 1990 1991 1992 1993
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
1994
			q->mq_map[i] = 0;
1995 1996
		}

1997
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1998
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1999

2000
		cpumask_set_cpu(i, hctx->cpumask);
2001 2002 2003
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2004

2005 2006
	mutex_unlock(&q->sysfs_lock);

2007
	queue_for_each_hw_ctx(q, hctx, i) {
2008
		/*
2009 2010
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2011 2012
		 */
		if (!hctx->nr_ctx) {
2013 2014 2015 2016
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2017 2018 2019
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2020
			hctx->tags = NULL;
2021 2022 2023
			continue;
		}

M
Ming Lei 已提交
2024 2025 2026
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2027 2028 2029 2030 2031
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2032
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2033

2034 2035 2036
		/*
		 * Initialize batch roundrobin counts
		 */
2037 2038 2039
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2040 2041
}

2042
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2043 2044 2045 2046
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2058

2059 2060
	lockdep_assert_held(&set->tag_list_lock);

2061 2062
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2063
		queue_set_hctx_shared(q, shared);
2064 2065 2066 2067 2068 2069 2070 2071 2072
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2073 2074
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2075 2076 2077 2078 2079 2080
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2081
	mutex_unlock(&set->tag_list_lock);
2082 2083

	synchronize_rcu();
2084 2085 2086 2087 2088 2089 2090 2091
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2092 2093 2094 2095 2096 2097 2098 2099 2100

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2101
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2102

2103 2104 2105
	mutex_unlock(&set->tag_list_lock);
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2118 2119 2120
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2121
		kobject_put(&hctx->kobj);
2122
	}
2123

2124 2125
	q->mq_map = NULL;

2126 2127
	kfree(q->queue_hw_ctx);

2128 2129 2130 2131 2132 2133
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2134 2135 2136
	free_percpu(q->queue_ctx);
}

2137
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2153 2154
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2155
{
K
Keith Busch 已提交
2156 2157
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2158

K
Keith Busch 已提交
2159
	blk_mq_sysfs_unregister(q);
2160
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2161
		int node;
2162

K
Keith Busch 已提交
2163 2164 2165 2166
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2167 2168
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2169
		if (!hctxs[i])
K
Keith Busch 已提交
2170
			break;
2171

2172
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2173 2174 2175 2176 2177
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2178

2179
		atomic_set(&hctxs[i]->nr_active, 0);
2180
		hctxs[i]->numa_node = node;
2181
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2182 2183 2184 2185 2186 2187 2188 2189

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2190
	}
K
Keith Busch 已提交
2191 2192 2193 2194
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2195 2196
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2210 2211 2212
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2213
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2214 2215
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2216 2217 2218
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2219 2220
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2221
		goto err_exit;
K
Keith Busch 已提交
2222

2223 2224 2225
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2226 2227 2228 2229 2230
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2231
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2232 2233 2234 2235

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2236

2237
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2238
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2239 2240 2241

	q->nr_queues = nr_cpu_ids;

2242
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2243

2244 2245 2246
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2247 2248
	q->sg_reserved_size = INT_MAX;

2249
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2250 2251 2252
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2253
	blk_queue_make_request(q, blk_mq_make_request);
2254

2255 2256 2257 2258 2259
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2260 2261 2262 2263 2264
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2265 2266
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2267

2268
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2269

2270
	get_online_cpus();
2271
	mutex_lock(&all_q_mutex);
2272

2273
	list_add_tail(&q->all_q_node, &all_q_list);
2274
	blk_mq_add_queue_tag_set(set, q);
2275
	blk_mq_map_swqueue(q, cpu_online_mask);
2276

2277
	mutex_unlock(&all_q_mutex);
2278
	put_online_cpus();
2279

2280 2281 2282 2283 2284 2285 2286 2287
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2288
	return q;
2289

2290
err_hctxs:
K
Keith Busch 已提交
2291
	kfree(q->queue_hw_ctx);
2292
err_percpu:
K
Keith Busch 已提交
2293
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2294 2295
err_exit:
	q->mq_ops = NULL;
2296 2297
	return ERR_PTR(-ENOMEM);
}
2298
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2299 2300 2301

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2302
	struct blk_mq_tag_set	*set = q->tag_set;
2303

2304 2305 2306 2307
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2308 2309
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2310
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2311 2312 2313
}

/* Basically redo blk_mq_init_queue with queue frozen */
2314 2315
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2316
{
2317
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2318

2319
	blk_mq_debugfs_unregister_hctxs(q);
2320 2321
	blk_mq_sysfs_unregister(q);

2322 2323 2324 2325 2326 2327
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2328
	blk_mq_map_swqueue(q, online_mask);
2329

2330
	blk_mq_sysfs_register(q);
2331
	blk_mq_debugfs_register_hctxs(q);
2332 2333
}

2334 2335 2336 2337 2338 2339 2340 2341
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2342 2343 2344 2345
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2346 2347 2348 2349 2350 2351 2352 2353
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2354
		blk_freeze_queue_start(q);
2355
	list_for_each_entry(q, &all_q_list, all_q_node)
2356 2357
		blk_mq_freeze_queue_wait(q);

2358
	list_for_each_entry(q, &all_q_list, all_q_node)
2359
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2360 2361 2362 2363

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2364
	mutex_unlock(&all_q_mutex);
2365 2366 2367 2368
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2369
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2385 2386 2387 2388
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2389 2390 2391 2392 2393 2394 2395
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2396 2397
}

2398 2399 2400 2401
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2402 2403
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2404 2405 2406 2407 2408 2409
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2410
		blk_mq_free_rq_map(set->tags[i]);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2450 2451 2452 2453 2454 2455 2456 2457
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2458 2459 2460 2461 2462 2463
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2464 2465
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2466 2467
	int ret;

B
Bart Van Assche 已提交
2468 2469
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2470 2471
	if (!set->nr_hw_queues)
		return -EINVAL;
2472
	if (!set->queue_depth)
2473 2474 2475 2476
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2477
	if (!set->ops->queue_rq)
2478 2479
		return -EINVAL;

2480 2481 2482 2483 2484
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2485

2486 2487 2488 2489 2490 2491 2492 2493 2494
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2495 2496 2497 2498 2499
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2500

K
Keith Busch 已提交
2501
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2502 2503
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2504
		return -ENOMEM;
2505

2506 2507 2508
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2509 2510 2511
	if (!set->mq_map)
		goto out_free_tags;

2512
	ret = blk_mq_update_queue_map(set);
2513 2514 2515 2516 2517
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2518
		goto out_free_mq_map;
2519

2520 2521 2522
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2523
	return 0;
2524 2525 2526 2527 2528

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2529 2530
	kfree(set->tags);
	set->tags = NULL;
2531
	return ret;
2532 2533 2534 2535 2536 2537 2538
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2539 2540
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2541

2542 2543 2544
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2545
	kfree(set->tags);
2546
	set->tags = NULL;
2547 2548 2549
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2550 2551 2552 2553 2554 2555
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2556
	if (!set)
2557 2558
		return -EINVAL;

2559 2560
	blk_mq_freeze_queue(q);

2561 2562
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2563 2564
		if (!hctx->tags)
			continue;
2565 2566 2567 2568
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2569 2570 2571 2572 2573 2574 2575 2576
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2577 2578 2579 2580 2581 2582 2583
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2584 2585
	blk_mq_unfreeze_queue(q);

2586 2587 2588
	return ret;
}

2589 2590
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2591 2592 2593
{
	struct request_queue *q;

2594 2595
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2605
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2606 2607 2608 2609 2610 2611 2612 2613
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2614 2615 2616 2617 2618 2619 2620

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2621 2622
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2649
	int bucket;
2650

2651 2652 2653 2654
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2655 2656
}

2657 2658 2659 2660 2661
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2662
	int bucket;
2663 2664 2665 2666 2667

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2668
	if (!blk_poll_stats_enable(q))
2669 2670 2671 2672 2673 2674 2675 2676
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2677 2678
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2679
	 */
2680 2681 2682 2683 2684 2685
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2686 2687 2688 2689

	return ret;
}

2690
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2691
				     struct blk_mq_hw_ctx *hctx,
2692 2693 2694 2695
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2696
	unsigned int nsecs;
2697 2698
	ktime_t kt;

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2717 2718 2719 2720 2721 2722 2723 2724
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2725
	kt = nsecs;
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2748 2749 2750 2751 2752
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2753 2754 2755 2756 2757 2758 2759
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2760
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2761 2762
		return true;

J
Jens Axboe 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2806 2807
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2808
	else {
2809
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2810 2811 2812 2813 2814 2815 2816 2817 2818
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2819 2820 2821 2822 2823

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2834 2835
static int __init blk_mq_init(void)
{
2836 2837
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2838

2839 2840 2841
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2842 2843 2844
	return 0;
}
subsys_initcall(blk_mq_init);