blk-mq.c 72.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67 68
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129
		blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	blk_mq_freeze_queue_wait(q);
}
165 166 167 168 169 170 171 172 173

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
174
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175

176
void blk_mq_unfreeze_queue(struct request_queue *q)
177
{
178
	int freeze_depth;
179

180 181 182
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
183
		percpu_ref_reinit(&q->q_usage_counter);
184
		wake_up_all(&q->mq_freeze_wq);
185
	}
186
}
187
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

203
/**
204
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 206 207
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
208 209 210
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
211 212 213 214 215 216 217
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

218
	blk_mq_quiesce_queue_nowait(q);
219

220 221
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
222
			synchronize_srcu(hctx->queue_rq_srcu);
223 224 225 226 227 228 229 230
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

231 232 233 234 235 236 237 238 239
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
240 241 242
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
243
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244
	spin_unlock_irqrestore(q->queue_lock, flags);
245

246 247
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
248 249 250
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

251 252 253 254 255 256 257 258
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
259 260 261 262 263 264 265

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
266 267
}

268 269 270 271 272 273
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

274 275
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
276
{
277 278 279
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

280 281
	rq->rq_flags = 0;

282 283 284 285 286 287 288 289 290 291 292 293 294
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

295 296
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
297 298
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
299
	rq->cmd_flags = op;
300
	if (blk_queue_io_stat(data->q))
301
		rq->rq_flags |= RQF_IO_STAT;
302 303 304 305 306 307
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
308
	rq->start_time = jiffies;
309 310
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
311
	set_start_time_ns(rq);
312 313 314 315 316 317 318 319 320 321 322
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
323 324
	rq->timeout = 0;

325 326 327 328
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

329 330
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
331 332
}

333 334 335 336 337 338
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
339
	unsigned int tag;
340
	struct blk_mq_ctx *local_ctx = NULL;
341 342 343 344

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
345
		data->ctx = local_ctx = blk_mq_get_ctx(q);
346 347
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 349
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
350 351 352 353 354 355 356 357

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
358 359
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
360 361
	}

362 363
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
364 365 366 367
		if (local_ctx) {
			blk_mq_put_ctx(local_ctx);
			data->ctx = NULL;
		}
368 369
		blk_queue_exit(q);
		return NULL;
370 371
	}

372
	rq = blk_mq_rq_ctx_init(data, tag, op);
373 374
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
375
		if (e && e->type->ops.mq.prepare_request) {
376 377 378
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

379 380
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
381
		}
382 383 384
	}
	data->hctx->queued++;
	return rq;
385 386
}

387
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388
		unsigned int flags)
389
{
390
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
391
	struct request *rq;
392
	int ret;
393

394
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
395 396
	if (ret)
		return ERR_PTR(ret);
397

398
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399
	blk_queue_exit(q);
400

401
	if (!rq)
402
		return ERR_PTR(-EWOULDBLOCK);
403

404 405
	blk_mq_put_ctx(alloc_data.ctx);

406 407 408
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
409 410
	return rq;
}
411
EXPORT_SYMBOL(blk_mq_alloc_request);
412

413 414
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
415
{
416
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
417
	struct request *rq;
418
	unsigned int cpu;
M
Ming Lin 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

437 438 439 440
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
441 442 443 444
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
445
	}
446 447
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
448

449
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450
	blk_queue_exit(q);
451

452 453 454 455
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
456 457 458
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

459
void blk_mq_free_request(struct request *rq)
460 461
{
	struct request_queue *q = rq->q;
462 463 464 465 466
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

467
	if (rq->rq_flags & RQF_ELVPRIV) {
468 469 470 471 472 473 474
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
475

476
	ctx->rq_completed[rq_is_sync(rq)]++;
477
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
478
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
479

480 481 482
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
483
	wbt_done(q->rq_wb, &rq->issue_stat);
484

S
Shaohua Li 已提交
485 486 487
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

488
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
489
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
490 491 492
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
493
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494
	blk_mq_sched_restart(hctx);
495
	blk_queue_exit(q);
496
}
J
Jens Axboe 已提交
497
EXPORT_SYMBOL_GPL(blk_mq_free_request);
498

499
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
500
{
M
Ming Lei 已提交
501 502
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
503
	if (rq->end_io) {
J
Jens Axboe 已提交
504
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
505
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
506 507 508
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
509
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
510
	}
511
}
512
EXPORT_SYMBOL(__blk_mq_end_request);
513

514
void blk_mq_end_request(struct request *rq, blk_status_t error)
515 516 517
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
518
	__blk_mq_end_request(rq, error);
519
}
520
EXPORT_SYMBOL(blk_mq_end_request);
521

522
static void __blk_mq_complete_request_remote(void *data)
523
{
524
	struct request *rq = data;
525

526
	rq->q->softirq_done_fn(rq);
527 528
}

529
static void __blk_mq_complete_request(struct request *rq)
530 531
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
532
	bool shared = false;
533 534
	int cpu;

535 536 537 538 539 540 541
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
542
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 544 545
		rq->q->softirq_done_fn(rq);
		return;
	}
546 547

	cpu = get_cpu();
C
Christoph Hellwig 已提交
548 549 550 551
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552
		rq->csd.func = __blk_mq_complete_request_remote;
553 554
		rq->csd.info = rq;
		rq->csd.flags = 0;
555
		smp_call_function_single_async(ctx->cpu, &rq->csd);
556
	} else {
557
		rq->q->softirq_done_fn(rq);
558
	}
559 560
	put_cpu();
}
561 562 563 564 565 566 567 568 569

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
570
void blk_mq_complete_request(struct request *rq)
571
{
572 573 574
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
575
		return;
576
	if (!blk_mark_rq_complete(rq))
577
		__blk_mq_complete_request(rq);
578 579
}
EXPORT_SYMBOL(blk_mq_complete_request);
580

581 582 583 584 585 586
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

587
void blk_mq_start_request(struct request *rq)
588 589 590
{
	struct request_queue *q = rq->q;

591 592
	blk_mq_sched_started_request(rq);

593 594
	trace_block_rq_issue(q, rq);

595
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
596
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
597
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
598
		wbt_issue(q->rq_wb, &rq->issue_stat);
599 600
	}

601
	blk_add_timer(rq);
602

603
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
604

605 606 607 608 609
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
610 611 612 613
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
614
	 */
615 616 617 618 619 620 621 622 623 624 625 626
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
627
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
628
	}
629 630 631 632 633 634 635 636 637

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
638
}
639
EXPORT_SYMBOL(blk_mq_start_request);
640

641 642
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
643
 * flag isn't set yet, so there may be race with timeout handler,
644 645 646 647 648 649
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
650
static void __blk_mq_requeue_request(struct request *rq)
651 652 653 654
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
655
	wbt_requeue(q->rq_wb, &rq->issue_stat);
656
	blk_mq_sched_requeue_request(rq);
657

658 659 660 661
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
662 663
}

664
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
665 666 667 668
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
669
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
670 671 672
}
EXPORT_SYMBOL(blk_mq_requeue_request);

673 674 675
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
676
		container_of(work, struct request_queue, requeue_work.work);
677 678 679
	LIST_HEAD(rq_list);
	struct request *rq, *next;

680
	spin_lock_irq(&q->requeue_lock);
681
	list_splice_init(&q->requeue_list, &rq_list);
682
	spin_unlock_irq(&q->requeue_lock);
683 684

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
685
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
686 687
			continue;

688
		rq->rq_flags &= ~RQF_SOFTBARRIER;
689
		list_del_init(&rq->queuelist);
690
		blk_mq_sched_insert_request(rq, true, false, false, true);
691 692 693 694 695
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
696
		blk_mq_sched_insert_request(rq, false, false, false, true);
697 698
	}

699
	blk_mq_run_hw_queues(q, false);
700 701
}

702 703
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
704 705 706 707 708 709 710 711
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
712
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
713 714 715

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
716
		rq->rq_flags |= RQF_SOFTBARRIER;
717 718 719 720 721
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
722 723 724

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
725 726 727 728 729
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
730
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
731 732 733
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

734 735 736
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
737 738
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
739 740 741
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

742 743
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
744 745
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
746
		return tags->rqs[tag];
747
	}
748 749

	return NULL;
750 751 752
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

753
struct blk_mq_timeout_data {
754 755
	unsigned long next;
	unsigned int next_set;
756 757
};

758
void blk_mq_rq_timed_out(struct request *req, bool reserved)
759
{
J
Jens Axboe 已提交
760
	const struct blk_mq_ops *ops = req->q->mq_ops;
761
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
762 763 764 765 766 767 768

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
769
	 * both flags will get cleared. So check here again, and ignore
770 771
	 * a timeout event with a request that isn't active.
	 */
772 773
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
774

775
	if (ops->timeout)
776
		ret = ops->timeout(req, reserved);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
792
}
793

794 795 796 797
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
798
	unsigned long deadline;
799

800
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
801
		return;
802

803 804 805 806 807 808 809 810
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

811 812 813 814 815 816 817 818 819 820 821 822 823
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
824 825 826 827 828 829 830 831 832 833
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
834
			blk_mq_rq_timed_out(rq, reserved);
835 836 837
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
838 839
		data->next_set = 1;
	}
840 841
}

842
static void blk_mq_timeout_work(struct work_struct *work)
843
{
844 845
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
846 847 848 849 850
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
851

852 853 854 855 856 857 858 859 860
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
861
	 * blk_freeze_queue_start, and the moment the last request is
862 863 864 865
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
866 867
		return;

868
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
869

870 871 872
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
873
	} else {
874 875
		struct blk_mq_hw_ctx *hctx;

876 877 878 879 880
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
881
	}
882
	blk_queue_exit(q);
883 884
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

903 904 905 906
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
907
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
908
{
909 910 911 912
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
913

914
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
915
}
916
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

957 958 959 960
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
961

962
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
963 964
}

965 966
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
967 968 969 970 971 972 973
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

974 975
	might_sleep_if(wait);

976 977
	if (rq->tag != -1)
		goto done;
978

979 980 981
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

982 983
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
984 985 986 987
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
988 989 990
		data.hctx->tags->rqs[rq->tag] = rq;
	}

991 992 993 994
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
995 996
}

997 998
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

1053
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1054 1055 1056 1057 1058 1059
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1060
	list_del(&wait->entry);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1091 1092
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
		bool got_budget)
1093
{
1094
	struct blk_mq_hw_ctx *hctx;
1095
	struct request *rq;
1096
	int errors, queued;
1097

1098 1099 1100
	if (list_empty(list))
		return false;

1101 1102
	WARN_ON(!list_is_singular(list) && got_budget);

1103 1104 1105
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1106
	errors = queued = 0;
1107
	do {
1108
		struct blk_mq_queue_data bd;
1109
		blk_status_t ret;
1110

1111
		rq = list_first_entry(list, struct request, queuelist);
1112 1113 1114
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1115 1116

			/*
1117 1118
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1119
			 */
1120 1121 1122
			if (!blk_mq_dispatch_wait_add(hctx)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1123
				break;
1124
			}
1125 1126 1127 1128 1129 1130

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
				break;
			}
		}

		if (!got_budget) {
			ret = blk_mq_get_dispatch_budget(hctx);
			if (ret == BLK_STS_RESOURCE)
1141
				break;
1142 1143
			if (ret != BLK_STS_OK)
				goto fail_rq;
1144
		}
1145

1146 1147
		list_del_init(&rq->queuelist);

1148
		bd.rq = rq;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1162 1163

		ret = q->mq_ops->queue_rq(hctx, &bd);
1164
		if (ret == BLK_STS_RESOURCE) {
1165
			blk_mq_put_driver_tag_hctx(hctx, rq);
1166
			list_add(&rq->queuelist, list);
1167
			__blk_mq_requeue_request(rq);
1168
			break;
1169 1170
		}

1171
 fail_rq:
1172
		if (unlikely(ret != BLK_STS_OK)) {
1173
			errors++;
1174
			blk_mq_end_request(rq, BLK_STS_IOERR);
1175
			continue;
1176 1177
		}

1178
		queued++;
1179
	} while (!list_empty(list));
1180

1181
	hctx->dispatched[queued_to_index(queued)]++;
1182 1183 1184 1185 1186

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1187
	if (!list_empty(list)) {
1188
		/*
1189 1190
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1191 1192 1193 1194
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1195
		spin_lock(&hctx->lock);
1196
		list_splice_init(list, &hctx->dispatch);
1197
		spin_unlock(&hctx->lock);
1198

1199
		/*
1200 1201 1202
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1203
		 *
1204 1205 1206 1207
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1208
		 *
1209 1210 1211 1212 1213 1214 1215
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1216
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1217
		 *   and dm-rq.
1218
		 */
1219 1220
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1221
			blk_mq_run_hw_queue(hctx, true);
1222
	}
1223

1224
	return (queued + errors) != 0;
1225 1226
}

1227 1228 1229 1230
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1231 1232 1233 1234
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1235 1236 1237
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1238 1239 1240 1241 1242 1243
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1244 1245
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1246
		blk_mq_sched_dispatch_requests(hctx);
1247 1248
		rcu_read_unlock();
	} else {
1249 1250
		might_sleep();

1251
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1252
		blk_mq_sched_dispatch_requests(hctx);
1253
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1254 1255 1256
	}
}

1257 1258 1259 1260 1261 1262 1263 1264
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1265 1266
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1267 1268

	if (--hctx->next_cpu_batch <= 0) {
1269
		int next_cpu;
1270 1271 1272 1273 1274 1275 1276 1277 1278

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1279
	return hctx->next_cpu;
1280 1281
}

1282 1283
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1284
{
1285 1286 1287 1288
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1289 1290
		return;

1291
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1292 1293
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1294
			__blk_mq_run_hw_queue(hctx);
1295
			put_cpu();
1296 1297
			return;
		}
1298

1299
		put_cpu();
1300
	}
1301

1302 1303 1304
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1316
}
O
Omar Sandoval 已提交
1317
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1318

1319
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1320 1321 1322 1323 1324
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1325
		if (!blk_mq_hctx_has_pending(hctx) ||
1326
		    blk_mq_hctx_stopped(hctx))
1327 1328
			continue;

1329
		blk_mq_run_hw_queue(hctx, async);
1330 1331
	}
}
1332
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1354 1355 1356
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1357
 * BLK_STS_RESOURCE is usually returned.
1358 1359 1360 1361 1362
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1363 1364
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1365
	cancel_delayed_work(&hctx->run_work);
1366

1367
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1368
}
1369
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1370

1371 1372 1373
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1374
 * BLK_STS_RESOURCE is usually returned.
1375 1376 1377 1378 1379
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1380 1381
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1382 1383 1384 1385 1386
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1387 1388 1389
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1390 1391 1392
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1393

1394
	blk_mq_run_hw_queue(hctx, false);
1395 1396 1397
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1418
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1419 1420 1421 1422
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1423 1424
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1425 1426 1427
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1428
static void blk_mq_run_work_fn(struct work_struct *work)
1429 1430 1431
{
	struct blk_mq_hw_ctx *hctx;

1432
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1433

1434 1435 1436 1437 1438 1439 1440 1441
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1442

1443 1444 1445
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1446 1447 1448 1449

	__blk_mq_run_hw_queue(hctx);
}

1450 1451 1452

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1453
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1454
		return;
1455

1456 1457 1458 1459 1460
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1461
	blk_mq_stop_hw_queue(hctx);
1462 1463 1464 1465
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1466 1467 1468
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1469 1470 1471
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1472
{
J
Jens Axboe 已提交
1473 1474
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1475 1476
	lockdep_assert_held(&ctx->lock);

1477 1478
	trace_block_rq_insert(hctx->queue, rq);

1479 1480 1481 1482
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1483
}
1484

1485 1486
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1487 1488 1489
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1490 1491
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1492
	__blk_mq_insert_req_list(hctx, rq, at_head);
1493 1494 1495
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
void blk_mq_request_bypass_insert(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, false);
}

1512 1513
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1525
		BUG_ON(rq->mq_ctx != ctx);
1526
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1527
		__blk_mq_insert_req_list(hctx, rq, false);
1528
	}
1529
	blk_mq_hctx_mark_pending(hctx, ctx);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1566 1567 1568 1569
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1586 1587 1588
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1589 1590 1591 1592 1593
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1594
	blk_init_request_from_bio(rq, bio);
1595

S
Shaohua Li 已提交
1596 1597
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1598
	blk_account_io_start(rq, true);
1599 1600
}

1601 1602 1603 1604 1605 1606 1607
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1608
}
1609

1610 1611
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1612 1613 1614 1615
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1616 1617
}

M
Ming Lei 已提交
1618 1619 1620
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1621 1622 1623 1624
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1625
		.last = true,
1626
	};
1627
	blk_qc_t new_cookie;
1628
	blk_status_t ret;
M
Ming Lei 已提交
1629 1630
	bool run_queue = true;

1631 1632
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1633 1634 1635
		run_queue = false;
		goto insert;
	}
1636

1637
	if (q->elevator)
1638 1639
		goto insert;

M
Ming Lei 已提交
1640
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1641 1642
		goto insert;

1643 1644 1645 1646 1647 1648 1649
	ret = blk_mq_get_dispatch_budget(hctx);
	if (ret == BLK_STS_RESOURCE) {
		blk_mq_put_driver_tag(rq);
		goto insert;
	} else if (ret != BLK_STS_OK)
		goto fail_rq;

1650 1651
	new_cookie = request_to_qc_t(hctx, rq);

1652 1653 1654 1655 1656 1657
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1658 1659
	switch (ret) {
	case BLK_STS_OK:
1660
		*cookie = new_cookie;
1661
		return;
1662 1663 1664 1665
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1666
 fail_rq:
1667
		*cookie = BLK_QC_T_NONE;
1668
		blk_mq_end_request(rq, ret);
1669
		return;
1670
	}
1671

1672
insert:
M
Ming Lei 已提交
1673
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1674 1675
}

1676 1677 1678 1679 1680
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1681
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1682 1683
		rcu_read_unlock();
	} else {
1684 1685 1686 1687
		unsigned int srcu_idx;

		might_sleep();

1688
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1689
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1690
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1691 1692 1693
	}
}

1694
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1695
{
1696
	const int is_sync = op_is_sync(bio->bi_opf);
1697
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1698
	struct blk_mq_alloc_data data = { .flags = 0 };
1699
	struct request *rq;
1700
	unsigned int request_count = 0;
1701
	struct blk_plug *plug;
1702
	struct request *same_queue_rq = NULL;
1703
	blk_qc_t cookie;
J
Jens Axboe 已提交
1704
	unsigned int wb_acct;
1705 1706 1707

	blk_queue_bounce(q, &bio);

1708
	blk_queue_split(q, &bio);
1709

1710
	if (!bio_integrity_prep(bio))
1711
		return BLK_QC_T_NONE;
1712

1713 1714 1715
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1716

1717 1718 1719
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1720 1721
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1722 1723
	trace_block_getrq(q, bio, bio->bi_opf);

1724
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1725 1726
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1727 1728
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1729
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1730 1731 1732
	}

	wbt_track(&rq->issue_stat, wb_acct);
1733

1734
	cookie = request_to_qc_t(data.hctx, rq);
1735

1736
	plug = current->plug;
1737
	if (unlikely(is_flush_fua)) {
1738
		blk_mq_put_ctx(data.ctx);
1739
		blk_mq_bio_to_request(rq, bio);
1740 1741 1742
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1743
		} else {
1744 1745
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1746
		}
1747
	} else if (plug && q->nr_hw_queues == 1) {
1748 1749
		struct request *last = NULL;

1750
		blk_mq_put_ctx(data.ctx);
1751
		blk_mq_bio_to_request(rq, bio);
1752 1753 1754 1755 1756 1757 1758

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1759 1760 1761
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1762
		if (!request_count)
1763
			trace_block_plug(q);
1764 1765
		else
			last = list_entry_rq(plug->mq_list.prev);
1766

1767 1768
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1769 1770
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1771
		}
1772

1773
		list_add_tail(&rq->queuelist, &plug->mq_list);
1774
	} else if (plug && !blk_queue_nomerges(q)) {
1775
		blk_mq_bio_to_request(rq, bio);
1776 1777

		/*
1778
		 * We do limited plugging. If the bio can be merged, do that.
1779 1780
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1781 1782
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1783
		 */
1784 1785 1786 1787 1788 1789
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1790 1791
		blk_mq_put_ctx(data.ctx);

1792 1793 1794
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1795 1796
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1797
		}
1798
	} else if (q->nr_hw_queues > 1 && is_sync) {
1799
		blk_mq_put_ctx(data.ctx);
1800 1801
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1802
	} else if (q->elevator) {
1803
		blk_mq_put_ctx(data.ctx);
1804
		blk_mq_bio_to_request(rq, bio);
1805
		blk_mq_sched_insert_request(rq, false, true, true, true);
1806
	} else {
1807
		blk_mq_put_ctx(data.ctx);
1808 1809
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1810
		blk_mq_run_hw_queue(data.hctx, true);
1811
	}
1812

1813
	return cookie;
1814 1815
}

1816 1817
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1818
{
1819
	struct page *page;
1820

1821
	if (tags->rqs && set->ops->exit_request) {
1822
		int i;
1823

1824
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1825 1826 1827
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1828
				continue;
1829
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1830
			tags->static_rqs[i] = NULL;
1831
		}
1832 1833
	}

1834 1835
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1836
		list_del_init(&page->lru);
1837 1838 1839 1840 1841
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1842 1843
		__free_pages(page, page->private);
	}
1844
}
1845

1846 1847
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1848
	kfree(tags->rqs);
1849
	tags->rqs = NULL;
J
Jens Axboe 已提交
1850 1851
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1852

1853
	blk_mq_free_tags(tags);
1854 1855
}

1856 1857 1858 1859
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1860
{
1861
	struct blk_mq_tags *tags;
1862
	int node;
1863

1864 1865 1866 1867 1868
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1869
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1870 1871
	if (!tags)
		return NULL;
1872

1873
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1874
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1875
				 node);
1876 1877 1878 1879
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1880

J
Jens Axboe 已提交
1881 1882
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1883
				 node);
J
Jens Axboe 已提交
1884 1885 1886 1887 1888 1889
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1903 1904 1905 1906 1907
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1908 1909 1910

	INIT_LIST_HEAD(&tags->page_list);

1911 1912 1913 1914
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1915
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1916
				cache_line_size());
1917
	left = rq_size * depth;
1918

1919
	for (i = 0; i < depth; ) {
1920 1921 1922 1923 1924
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1925
		while (this_order && left < order_to_size(this_order - 1))
1926 1927 1928
			this_order--;

		do {
1929
			page = alloc_pages_node(node,
1930
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1931
				this_order);
1932 1933 1934 1935 1936 1937 1938 1939 1940
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1941
			goto fail;
1942 1943

		page->private = this_order;
1944
		list_add_tail(&page->lru, &tags->page_list);
1945 1946

		p = page_address(page);
1947 1948 1949 1950
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1951
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1952
		entries_per_page = order_to_size(this_order) / rq_size;
1953
		to_do = min(entries_per_page, depth - i);
1954 1955
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1956 1957 1958
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1959
			if (set->ops->init_request) {
1960
				if (set->ops->init_request(set, rq, hctx_idx,
1961
						node)) {
J
Jens Axboe 已提交
1962
					tags->static_rqs[i] = NULL;
1963
					goto fail;
1964
				}
1965 1966
			}

1967 1968 1969 1970
			p += rq_size;
			i++;
		}
	}
1971
	return 0;
1972

1973
fail:
1974 1975
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1976 1977
}

J
Jens Axboe 已提交
1978 1979 1980 1981 1982
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1983
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1984
{
1985
	struct blk_mq_hw_ctx *hctx;
1986 1987 1988
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1989
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1990
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1991 1992 1993 1994 1995 1996 1997 1998 1999

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2000
		return 0;
2001

J
Jens Axboe 已提交
2002 2003 2004
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2005 2006

	blk_mq_run_hw_queue(hctx, true);
2007
	return 0;
2008 2009
}

2010
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2011
{
2012 2013
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2014 2015
}

2016
/* hctx->ctxs will be freed in queue's release handler */
2017 2018 2019 2020
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2021 2022
	blk_mq_debugfs_unregister_hctx(hctx);

2023 2024
	blk_mq_tag_idle(hctx);

2025
	if (set->ops->exit_request)
2026
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2027

2028 2029
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2030 2031 2032
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2033
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2034
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2035

2036
	blk_mq_remove_cpuhp(hctx);
2037
	blk_free_flush_queue(hctx->fq);
2038
	sbitmap_free(&hctx->ctx_map);
2039 2040
}

M
Ming Lei 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2050
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2051 2052 2053
	}
}

2054 2055 2056
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2057
{
2058 2059 2060 2061 2062 2063
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2064
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2065 2066 2067
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2068
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2069

2070
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2071 2072

	hctx->tags = set->tags[hctx_idx];
2073 2074

	/*
2075 2076
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2077
	 */
2078 2079 2080 2081
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2082

2083 2084
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2085
		goto free_ctxs;
2086

2087
	hctx->nr_ctx = 0;
2088

2089 2090 2091
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2092

2093 2094 2095
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2096 2097
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2098
		goto sched_exit_hctx;
2099

2100
	if (set->ops->init_request &&
2101 2102
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2103
		goto free_fq;
2104

2105
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2106
		init_srcu_struct(hctx->queue_rq_srcu);
2107

2108 2109
	blk_mq_debugfs_register_hctx(q, hctx);

2110
	return 0;
2111

2112 2113
 free_fq:
	kfree(hctx->fq);
2114 2115
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2116 2117 2118
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2119
 free_bitmap:
2120
	sbitmap_free(&hctx->ctx_map);
2121 2122 2123
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2124
	blk_mq_remove_cpuhp(hctx);
2125 2126
	return -1;
}
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2142 2143
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2144 2145
			continue;

C
Christoph Hellwig 已提交
2146
		hctx = blk_mq_map_queue(q, i);
2147

2148 2149 2150 2151 2152
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2153
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2154 2155 2156
	}
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2179 2180 2181 2182 2183
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2184 2185
}

2186
static void blk_mq_map_swqueue(struct request_queue *q)
2187
{
2188
	unsigned int i, hctx_idx;
2189 2190
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2191
	struct blk_mq_tag_set *set = q->tag_set;
2192

2193 2194 2195 2196 2197
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2198
	queue_for_each_hw_ctx(q, hctx, i) {
2199
		cpumask_clear(hctx->cpumask);
2200 2201 2202 2203
		hctx->nr_ctx = 0;
	}

	/*
2204 2205 2206
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2207
	 */
2208
	for_each_present_cpu(i) {
2209 2210
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2211 2212
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2213 2214 2215 2216 2217 2218
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2219
			q->mq_map[i] = 0;
2220 2221
		}

2222
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2223
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2224

2225
		cpumask_set_cpu(i, hctx->cpumask);
2226 2227 2228
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2229

2230 2231
	mutex_unlock(&q->sysfs_lock);

2232
	queue_for_each_hw_ctx(q, hctx, i) {
2233
		/*
2234 2235
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2236 2237
		 */
		if (!hctx->nr_ctx) {
2238 2239 2240 2241
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2242 2243 2244
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2245
			hctx->tags = NULL;
2246 2247 2248
			continue;
		}

M
Ming Lei 已提交
2249 2250 2251
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2252 2253 2254 2255 2256
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2257
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2258

2259 2260 2261
		/*
		 * Initialize batch roundrobin counts
		 */
2262 2263 2264
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2265 2266
}

2267 2268 2269 2270
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2271
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2272 2273 2274 2275
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2276
	queue_for_each_hw_ctx(q, hctx, i) {
2277 2278 2279
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2280
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2281 2282 2283
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2284
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2285
		}
2286 2287 2288
	}
}

2289 2290
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2291 2292
{
	struct request_queue *q;
2293

2294 2295
	lockdep_assert_held(&set->tag_list_lock);

2296 2297
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2298
		queue_set_hctx_shared(q, shared);
2299 2300 2301 2302 2303 2304 2305 2306 2307
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2308 2309
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2310 2311 2312 2313 2314 2315
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2316
	mutex_unlock(&set->tag_list_lock);
2317 2318

	synchronize_rcu();
2319 2320 2321 2322 2323 2324 2325 2326
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2327 2328 2329 2330 2331 2332 2333 2334 2335

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2336
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2337

2338 2339 2340
	mutex_unlock(&set->tag_list_lock);
}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2353 2354 2355
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2356
		kobject_put(&hctx->kobj);
2357
	}
2358

2359 2360
	q->mq_map = NULL;

2361 2362
	kfree(q->queue_hw_ctx);

2363 2364 2365 2366 2367 2368
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2369 2370 2371
	free_percpu(q->queue_ctx);
}

2372
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2402 2403
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2404
{
K
Keith Busch 已提交
2405 2406
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2407

K
Keith Busch 已提交
2408
	blk_mq_sysfs_unregister(q);
2409
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2410
		int node;
2411

K
Keith Busch 已提交
2412 2413 2414 2415
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2416
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2417
					GFP_KERNEL, node);
2418
		if (!hctxs[i])
K
Keith Busch 已提交
2419
			break;
2420

2421
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2422 2423 2424 2425 2426
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2427

2428
		atomic_set(&hctxs[i]->nr_active, 0);
2429
		hctxs[i]->numa_node = node;
2430
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2431 2432 2433 2434 2435 2436 2437 2438

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2439
	}
K
Keith Busch 已提交
2440 2441 2442 2443
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2444 2445
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2459 2460 2461
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2462
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2463 2464
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2465 2466 2467
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2468 2469
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2470
		goto err_exit;
K
Keith Busch 已提交
2471

2472 2473 2474
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2475 2476 2477 2478 2479
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2480
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2481 2482 2483 2484

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2485

2486
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2487
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2488 2489 2490

	q->nr_queues = nr_cpu_ids;

2491
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2492

2493 2494 2495
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2496 2497
	q->sg_reserved_size = INT_MAX;

2498
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2499 2500 2501
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2502
	blk_queue_make_request(q, blk_mq_make_request);
2503 2504
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2505

2506 2507 2508 2509 2510
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2511 2512 2513 2514 2515
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2516 2517
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2518

2519
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2520
	blk_mq_add_queue_tag_set(set, q);
2521
	blk_mq_map_swqueue(q);
2522

2523 2524 2525 2526 2527 2528 2529 2530
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2531
	return q;
2532

2533
err_hctxs:
K
Keith Busch 已提交
2534
	kfree(q->queue_hw_ctx);
2535
err_percpu:
K
Keith Busch 已提交
2536
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2537 2538
err_exit:
	q->mq_ops = NULL;
2539 2540
	return ERR_PTR(-ENOMEM);
}
2541
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2542 2543 2544

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2545
	struct blk_mq_tag_set	*set = q->tag_set;
2546

2547
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2548
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2549 2550 2551
}

/* Basically redo blk_mq_init_queue with queue frozen */
2552
static void blk_mq_queue_reinit(struct request_queue *q)
2553
{
2554
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2555

2556
	blk_mq_debugfs_unregister_hctxs(q);
2557 2558
	blk_mq_sysfs_unregister(q);

2559 2560 2561 2562 2563 2564
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2565
	blk_mq_map_swqueue(q);
2566

2567
	blk_mq_sysfs_register(q);
2568
	blk_mq_debugfs_register_hctxs(q);
2569 2570
}

2571 2572 2573 2574
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2575 2576
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2577 2578 2579 2580 2581 2582
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2583
		blk_mq_free_rq_map(set->tags[i]);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2623 2624 2625 2626 2627 2628 2629 2630
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2631 2632 2633 2634 2635 2636
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2637 2638
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2639 2640
	int ret;

B
Bart Van Assche 已提交
2641 2642
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2643 2644
	if (!set->nr_hw_queues)
		return -EINVAL;
2645
	if (!set->queue_depth)
2646 2647 2648 2649
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2650
	if (!set->ops->queue_rq)
2651 2652
		return -EINVAL;

2653 2654 2655
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2656 2657 2658 2659 2660
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2661

2662 2663 2664 2665 2666 2667 2668 2669 2670
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2671 2672 2673 2674 2675
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2676

K
Keith Busch 已提交
2677
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2678 2679
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2680
		return -ENOMEM;
2681

2682 2683 2684
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2685 2686 2687
	if (!set->mq_map)
		goto out_free_tags;

2688
	ret = blk_mq_update_queue_map(set);
2689 2690 2691 2692 2693
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2694
		goto out_free_mq_map;
2695

2696 2697 2698
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2699
	return 0;
2700 2701 2702 2703 2704

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2705 2706
	kfree(set->tags);
	set->tags = NULL;
2707
	return ret;
2708 2709 2710 2711 2712 2713 2714
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2715 2716
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2717

2718 2719 2720
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2721
	kfree(set->tags);
2722
	set->tags = NULL;
2723 2724 2725
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2726 2727 2728 2729 2730 2731
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2732
	if (!set)
2733 2734
		return -EINVAL;

2735 2736
	blk_mq_freeze_queue(q);

2737 2738
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2739 2740
		if (!hctx->tags)
			continue;
2741 2742 2743 2744
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2745
		if (!hctx->sched_tags) {
2746
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2747 2748 2749 2750 2751
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2752 2753 2754 2755 2756 2757 2758
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2759 2760
	blk_mq_unfreeze_queue(q);

2761 2762 2763
	return ret;
}

2764 2765
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2766 2767 2768
{
	struct request_queue *q;

2769 2770
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2780
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2781 2782
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2783
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2784 2785 2786 2787 2788
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2789 2790 2791 2792 2793 2794 2795

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2796 2797
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2824
	int bucket;
2825

2826 2827 2828 2829
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2830 2831
}

2832 2833 2834 2835 2836
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2837
	int bucket;
2838 2839 2840 2841 2842

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2843
	if (!blk_poll_stats_enable(q))
2844 2845 2846 2847 2848 2849 2850 2851
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2852 2853
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2854
	 */
2855 2856 2857 2858 2859 2860
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2861 2862 2863 2864

	return ret;
}

2865
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2866
				     struct blk_mq_hw_ctx *hctx,
2867 2868 2869 2870
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2871
	unsigned int nsecs;
2872 2873
	ktime_t kt;

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2892 2893 2894 2895 2896 2897 2898 2899
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2900
	kt = nsecs;
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2923 2924 2925 2926 2927
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2928 2929 2930 2931 2932 2933 2934
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2935
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2936 2937
		return true;

J
Jens Axboe 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2966
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
2967 2968 2969 2970
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2971
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
2972 2973 2974
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2975 2976
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2977
	else {
2978
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2979 2980 2981 2982 2983 2984 2985 2986 2987
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2988 2989 2990 2991

	return __blk_mq_poll(hctx, rq);
}

2992 2993
static int __init blk_mq_init(void)
{
2994 2995 2996 2997 2998 2999
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

3000 3001
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3002 3003 3004
	return 0;
}
subsys_initcall(blk_mq_init);