blk-mq.c 56.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
42
	return sbitmap_any_bit_set(&hctx->ctx_map);
43 44
}

45 46 47 48 49 50
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
51 52
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 54 55 56 57
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
58
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 60
}

61
void blk_mq_freeze_queue_start(struct request_queue *q)
62
{
63
	int freeze_depth;
64

65 66
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
67
		percpu_ref_kill(&q->q_usage_counter);
68
		blk_mq_run_hw_queues(q, false);
69
	}
70
}
71
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72 73 74

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
75
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 77
}

78 79 80 81
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
82
void blk_freeze_queue(struct request_queue *q)
83
{
84 85 86 87 88 89 90
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
91 92 93
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
94 95 96 97 98 99 100 101 102

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
103
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104

105
void blk_mq_unfreeze_queue(struct request_queue *q)
106
{
107
	int freeze_depth;
108

109 110 111
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
112
		percpu_ref_reinit(&q->q_usage_counter);
113
		wake_up_all(&q->mq_freeze_wq);
114
	}
115
}
116
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117

118 119 120 121 122 123 124 125
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
126 127 128 129 130 131 132

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
133 134
}

135 136 137 138 139 140
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

141
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142
			       struct request *rq, unsigned int op)
143
{
144 145 146
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
147
	rq->mq_ctx = ctx;
148
	rq->cmd_flags = op;
149 150
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
151 152 153 154 155 156
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
157
	rq->start_time = jiffies;
158 159
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
160
	set_start_time_ns(rq);
161 162 163 164 165 166 167 168 169 170
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

171 172
	rq->cmd = rq->__cmd;

173 174 175 176 177 178
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
179 180
	rq->timeout = 0;

181 182 183 184
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

185
	ctx->rq_dispatched[op_is_sync(op)]++;
186 187
}

188
static struct request *
189
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
190 191 192 193
{
	struct request *rq;
	unsigned int tag;

194
	tag = blk_mq_get_tag(data);
195
	if (tag != BLK_MQ_TAG_FAIL) {
196
		rq = data->hctx->tags->rqs[tag];
197

198
		if (blk_mq_tag_busy(data->hctx)) {
199
			rq->rq_flags = RQF_MQ_INFLIGHT;
200
			atomic_inc(&data->hctx->nr_active);
201 202 203
		}

		rq->tag = tag;
204
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
205 206 207 208 209 210
		return rq;
	}

	return NULL;
}

211 212
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
213
{
214 215
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
216
	struct request *rq;
217
	struct blk_mq_alloc_data alloc_data;
218
	int ret;
219

220
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
221 222
	if (ret)
		return ERR_PTR(ret);
223

224
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
225
	hctx = blk_mq_map_queue(q, ctx->cpu);
226
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
227
	rq = __blk_mq_alloc_request(&alloc_data, rw);
228
	blk_mq_put_ctx(ctx);
229

K
Keith Busch 已提交
230
	if (!rq) {
231
		blk_queue_exit(q);
232
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
233
	}
234 235 236 237

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
238 239
	return rq;
}
240
EXPORT_SYMBOL(blk_mq_alloc_request);
241

M
Ming Lin 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

267 268 269 270
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
271
	hctx = q->queue_hw_ctx[hctx_idx];
272 273 274 275
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
276 277 278
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
279
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
280
	if (!rq) {
281 282
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
283 284 285
	}

	return rq;
286 287 288 289

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
290 291 292
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

293 294 295 296 297 298
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

299
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
300
		atomic_dec(&hctx->nr_active);
301
	rq->rq_flags = 0;
302

303
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
304
	blk_mq_put_tag(hctx, ctx, tag);
305
	blk_queue_exit(q);
306 307
}

308
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
309 310 311 312 313
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
314 315 316 317 318 319

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
C
Christoph Hellwig 已提交
320
	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
321
}
J
Jens Axboe 已提交
322
EXPORT_SYMBOL_GPL(blk_mq_free_request);
323

324
inline void __blk_mq_end_request(struct request *rq, int error)
325
{
M
Ming Lei 已提交
326 327
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
328
	if (rq->end_io) {
329
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
330 331 332
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
333
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
334
	}
335
}
336
EXPORT_SYMBOL(__blk_mq_end_request);
337

338
void blk_mq_end_request(struct request *rq, int error)
339 340 341
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
342
	__blk_mq_end_request(rq, error);
343
}
344
EXPORT_SYMBOL(blk_mq_end_request);
345

346
static void __blk_mq_complete_request_remote(void *data)
347
{
348
	struct request *rq = data;
349

350
	rq->q->softirq_done_fn(rq);
351 352
}

353
static void blk_mq_ipi_complete_request(struct request *rq)
354 355
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
356
	bool shared = false;
357 358
	int cpu;

C
Christoph Hellwig 已提交
359
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
360 361 362
		rq->q->softirq_done_fn(rq);
		return;
	}
363 364

	cpu = get_cpu();
C
Christoph Hellwig 已提交
365 366 367 368
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
369
		rq->csd.func = __blk_mq_complete_request_remote;
370 371
		rq->csd.info = rq;
		rq->csd.flags = 0;
372
		smp_call_function_single_async(ctx->cpu, &rq->csd);
373
	} else {
374
		rq->q->softirq_done_fn(rq);
375
	}
376 377
	put_cpu();
}
378

379
static void __blk_mq_complete_request(struct request *rq)
380 381 382 383
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
384
		blk_mq_end_request(rq, rq->errors);
385 386 387 388
	else
		blk_mq_ipi_complete_request(rq);
}

389 390 391 392 393 394 395 396
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
397
void blk_mq_complete_request(struct request *rq, int error)
398
{
399 400 401
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
402
		return;
403 404
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
405
		__blk_mq_complete_request(rq);
406
	}
407 408
}
EXPORT_SYMBOL(blk_mq_complete_request);
409

410 411 412 413 414 415
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

416
void blk_mq_start_request(struct request *rq)
417 418 419 420 421
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
422
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
423 424
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
425

426
	blk_add_timer(rq);
427

428 429 430 431 432 433
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

434 435 436 437 438 439
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
440 441 442 443
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444 445 446 447 448 449 450 451 452

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
453
}
454
EXPORT_SYMBOL(blk_mq_start_request);
455

456
static void __blk_mq_requeue_request(struct request *rq)
457 458 459 460
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
461

462 463 464 465
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
466 467
}

468 469 470 471 472
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
473
	blk_mq_add_to_requeue_list(rq, true);
474 475 476
}
EXPORT_SYMBOL(blk_mq_requeue_request);

477 478 479
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
480
		container_of(work, struct request_queue, requeue_work.work);
481 482 483 484 485 486 487 488 489
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
490
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
491 492
			continue;

493
		rq->rq_flags &= ~RQF_SOFTBARRIER;
494 495 496 497 498 499 500 501 502 503
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

504 505 506 507 508
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
509 510 511 512 513 514 515 516 517 518 519
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
520
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
521 522 523

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
524
		rq->rq_flags |= RQF_SOFTBARRIER;
525 526 527 528 529 530 531 532
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

533 534
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
535
	cancel_delayed_work_sync(&q->requeue_work);
536 537 538
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

539 540
void blk_mq_kick_requeue_list(struct request_queue *q)
{
541
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
542 543 544
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

545 546 547 548 549 550 551 552
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

573 574
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
575 576
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
577
		return tags->rqs[tag];
578
	}
579 580

	return NULL;
581 582 583
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

584
struct blk_mq_timeout_data {
585 586
	unsigned long next;
	unsigned int next_set;
587 588
};

589
void blk_mq_rq_timed_out(struct request *req, bool reserved)
590
{
591 592
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
593 594 595 596 597 598 599 600 601 602

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
603 604
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
605

606
	if (ops->timeout)
607
		ret = ops->timeout(req, reserved);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
623
}
624

625 626 627 628
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
629

630 631 632 633 634
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
635 636 637 638
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
639
		return;
640
	}
641

642 643
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
644
			blk_mq_rq_timed_out(rq, reserved);
645 646 647 648
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
649 650
}

651
static void blk_mq_timeout_work(struct work_struct *work)
652
{
653 654
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
655 656 657 658 659
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
675 676
		return;

677
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
678

679 680 681
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
682
	} else {
683 684
		struct blk_mq_hw_ctx *hctx;

685 686 687 688 689
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
690
	}
691
	blk_queue_exit(q);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

751 752 753 754 755 756
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
757 758 759 760
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
761

762
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
763 764
}

765 766 767 768
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
769

770
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
771 772
}

773 774 775 776 777 778 779 780 781 782 783
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
784 785
	LIST_HEAD(driver_list);
	struct list_head *dptr;
786
	int queued;
787

788
	if (unlikely(blk_mq_hctx_stopped(hctx)))
789 790
		return;

791 792 793
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

794 795 796 797 798
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
799
	flush_busy_ctxs(hctx, &rq_list);
800 801 802 803 804 805 806 807 808 809 810 811

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

812 813 814 815 816 817
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

818 819 820
	/*
	 * Now process all the entries, sending them to the driver.
	 */
821
	queued = 0;
822
	while (!list_empty(&rq_list)) {
823
		struct blk_mq_queue_data bd;
824 825 826 827 828
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

829 830 831 832 833
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
834 835 836
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
837
			break;
838 839
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
840
			__blk_mq_requeue_request(rq);
841 842 843 844
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
845
			rq->errors = -EIO;
846
			blk_mq_end_request(rq, rq->errors);
847 848 849 850 851
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
852 853 854 855 856 857 858

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
859 860
	}

861
	hctx->dispatched[queued_to_index(queued)]++;
862 863 864 865 866 867 868 869 870

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
871 872 873 874 875 876 877 878 879 880
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
881 882 883
	}
}

884 885 886 887 888 889 890 891
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
892 893
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
894 895

	if (--hctx->next_cpu_batch <= 0) {
896
		int cpu = hctx->next_cpu, next_cpu;
897 898 899 900 901 902 903

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
904 905

		return cpu;
906 907
	}

908
	return hctx->next_cpu;
909 910
}

911 912
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
913 914
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
915 916
		return;

917
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
918 919
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
920
			__blk_mq_run_hw_queue(hctx);
921
			put_cpu();
922 923
			return;
		}
924

925
		put_cpu();
926
	}
927

928
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
929 930
}

931
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
932 933 934 935 936 937 938
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
939
		    blk_mq_hctx_stopped(hctx))
940 941
			continue;

942
		blk_mq_run_hw_queue(hctx, async);
943 944
	}
}
945
EXPORT_SYMBOL(blk_mq_run_hw_queues);
946 947 948

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
949
	cancel_work(&hctx->run_work);
950
	cancel_delayed_work(&hctx->delay_work);
951 952 953 954
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

955 956 957 958 959 960 961 962 963 964
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

965 966 967
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
968

969
	blk_mq_run_hw_queue(hctx, false);
970 971 972
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

973 974 975 976 977 978 979 980 981 982
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

983
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
984 985 986 987 988
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
989
		if (!blk_mq_hctx_stopped(hctx))
990 991 992
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
993
		blk_mq_run_hw_queue(hctx, async);
994 995 996 997
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

998
static void blk_mq_run_work_fn(struct work_struct *work)
999 1000 1001
{
	struct blk_mq_hw_ctx *hctx;

1002
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1003

1004 1005 1006
	__blk_mq_run_hw_queue(hctx);
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1019 1020
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1021

1022 1023
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1024 1025 1026
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1027 1028 1029
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1030
{
J
Jens Axboe 已提交
1031 1032
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1033 1034
	trace_block_rq_insert(hctx->queue, rq);

1035 1036 1037 1038
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1039
}
1040

1041 1042 1043 1044 1045
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1046
	__blk_mq_insert_req_list(hctx, rq, at_head);
1047 1048 1049
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1050
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1051
			   bool async)
1052
{
J
Jens Axboe 已提交
1053
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1054
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1055
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1056

1057 1058 1059
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
C
Christoph Hellwig 已提交
1072
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	trace_block_unplug(q, depth, !from_schedule);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1085
		BUG_ON(rq->mq_ctx != ctx);
1086
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1087
		__blk_mq_insert_req_list(hctx, rq, false);
1088
	}
1089
	blk_mq_hctx_mark_pending(hctx, ctx);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1155

1156
	blk_account_io_start(rq, 1);
1157 1158
}

1159 1160 1161 1162 1163 1164
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1165 1166 1167
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1168
{
1169
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1170 1171 1172 1173 1174 1175 1176
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1177 1178
		struct request_queue *q = hctx->queue;

1179 1180 1181 1182 1183
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1184

1185 1186 1187
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1188
	}
1189
}
1190

1191 1192
static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
1193
					  struct blk_mq_alloc_data *data)
1194 1195 1196 1197
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1198

1199
	blk_queue_enter_live(q);
1200
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1201
	hctx = blk_mq_map_queue(q, ctx->cpu);
1202

1203
	trace_block_getrq(q, bio, bio->bi_opf);
1204
	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1205
	rq = __blk_mq_alloc_request(data, bio->bi_opf);
1206

1207
	data->hctx->queued++;
1208 1209 1210
	return rq;
}

1211
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1212 1213 1214
{
	int ret;
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1215
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1216 1217 1218 1219 1220
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1221
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1222 1223 1224 1225 1226 1227 1228

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1229 1230
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1231
		return 0;
1232
	}
1233

1234 1235 1236 1237 1238 1239 1240
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1241
	}
1242 1243

	return -1;
1244 1245
}

1246 1247 1248 1249 1250
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1251
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1252
{
1253
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1254
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1255
	struct blk_mq_alloc_data data;
1256
	struct request *rq;
1257 1258
	unsigned int request_count = 0;
	struct blk_plug *plug;
1259
	struct request *same_queue_rq = NULL;
1260
	blk_qc_t cookie;
1261 1262 1263 1264

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1265
		bio_io_error(bio);
1266
		return BLK_QC_T_NONE;
1267 1268
	}

1269 1270
	blk_queue_split(q, &bio, q->bio_split);

1271 1272 1273
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1274

1275 1276
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1277
		return BLK_QC_T_NONE;
1278

1279
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1280 1281 1282 1283 1284 1285 1286

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1287
	plug = current->plug;
1288 1289 1290 1291 1292
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1293 1294 1295
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1296 1297 1298 1299

		blk_mq_bio_to_request(rq, bio);

		/*
1300
		 * We do limited pluging. If the bio can be merged, do that.
1301 1302
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1303
		 */
1304
		if (plug) {
1305 1306
			/*
			 * The plug list might get flushed before this. If that
1307 1308 1309
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1310 1311
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1312
				list_del_init(&old_rq->queuelist);
1313
			}
1314 1315 1316 1317 1318
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1319
			goto done;
1320
		if (blk_mq_hctx_stopped(data.hctx) ||
1321 1322
		    blk_mq_direct_issue_request(old_rq, &cookie) != 0)
			blk_mq_insert_request(old_rq, false, true, true);
1323
		goto done;
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1337 1338
done:
	return cookie;
1339 1340 1341 1342 1343 1344
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1345
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1346
{
1347
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1348
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1349 1350
	struct blk_plug *plug;
	unsigned int request_count = 0;
1351
	struct blk_mq_alloc_data data;
1352
	struct request *rq;
1353
	blk_qc_t cookie;
1354 1355 1356 1357

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1358
		bio_io_error(bio);
1359
		return BLK_QC_T_NONE;
1360 1361
	}

1362 1363
	blk_queue_split(q, &bio, q->bio_split);

1364 1365 1366 1367 1368
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1369 1370

	rq = blk_mq_map_request(q, bio, &data);
1371
	if (unlikely(!rq))
1372
		return BLK_QC_T_NONE;
1373

1374
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1387 1388 1389
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1390
		if (!request_count)
1391
			trace_block_plug(q);
1392 1393 1394 1395

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1396 1397
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1398
		}
1399

1400
		list_add_tail(&rq->queuelist, &plug->mq_list);
1401
		return cookie;
1402 1403
	}

1404 1405 1406 1407 1408 1409 1410 1411 1412
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1413 1414
	}

1415
	blk_mq_put_ctx(data.ctx);
1416
	return cookie;
1417 1418
}

1419 1420
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1421
{
1422
	struct page *page;
1423

1424
	if (tags->rqs && set->ops->exit_request) {
1425
		int i;
1426

1427 1428
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1429
				continue;
1430 1431
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1432
			tags->rqs[i] = NULL;
1433
		}
1434 1435
	}

1436 1437
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1438
		list_del_init(&page->lru);
1439 1440 1441 1442 1443
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1444 1445 1446
		__free_pages(page, page->private);
	}

1447
	kfree(tags->rqs);
1448

1449
	blk_mq_free_tags(tags);
1450 1451 1452 1453
}

static size_t order_to_size(unsigned int order)
{
1454
	return (size_t)PAGE_SIZE << order;
1455 1456
}

1457 1458
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1459
{
1460
	struct blk_mq_tags *tags;
1461 1462 1463
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1464
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1465 1466
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1467 1468
	if (!tags)
		return NULL;
1469

1470 1471
	INIT_LIST_HEAD(&tags->page_list);

1472 1473 1474
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1475 1476 1477 1478
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1479 1480 1481 1482 1483

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1484
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1485
				cache_line_size());
1486
	left = rq_size * set->queue_depth;
1487

1488
	for (i = 0; i < set->queue_depth; ) {
1489 1490 1491 1492 1493
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1494
		while (this_order && left < order_to_size(this_order - 1))
1495 1496 1497
			this_order--;

		do {
1498
			page = alloc_pages_node(set->numa_node,
1499
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1500
				this_order);
1501 1502 1503 1504 1505 1506 1507 1508 1509
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1510
			goto fail;
1511 1512

		page->private = this_order;
1513
		list_add_tail(&page->lru, &tags->page_list);
1514 1515

		p = page_address(page);
1516 1517 1518 1519 1520
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1521
		entries_per_page = order_to_size(this_order) / rq_size;
1522
		to_do = min(entries_per_page, set->queue_depth - i);
1523 1524
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1525 1526 1527 1528
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1529 1530
						set->numa_node)) {
					tags->rqs[i] = NULL;
1531
					goto fail;
1532
				}
1533 1534
			}

1535 1536 1537 1538
			p += rq_size;
			i++;
		}
	}
1539
	return tags;
1540

1541 1542 1543
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1544 1545
}

J
Jens Axboe 已提交
1546 1547 1548 1549 1550
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1551
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1552
{
1553
	struct blk_mq_hw_ctx *hctx;
1554 1555 1556
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1557
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1558
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1559 1560 1561 1562 1563 1564 1565 1566 1567

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1568
		return 0;
1569

J
Jens Axboe 已提交
1570 1571 1572
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1573 1574

	blk_mq_run_hw_queue(hctx, true);
1575
	return 0;
1576 1577
}

1578
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1579
{
1580 1581
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1582 1583
}

1584
/* hctx->ctxs will be freed in queue's release handler */
1585 1586 1587 1588
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1589 1590
	unsigned flush_start_tag = set->queue_depth;

1591 1592
	blk_mq_tag_idle(hctx);

1593 1594 1595 1596 1597
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1598 1599 1600
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1601
	blk_mq_remove_cpuhp(hctx);
1602
	blk_free_flush_queue(hctx->fq);
1603
	sbitmap_free(&hctx->ctx_map);
1604 1605
}

M
Ming Lei 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1615
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1625
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1626 1627 1628
		free_cpumask_var(hctx->cpumask);
}

1629 1630 1631
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1632
{
1633
	int node;
1634
	unsigned flush_start_tag = set->queue_depth;
1635 1636 1637 1638 1639

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1640
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1641 1642 1643 1644 1645
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1646
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1647

1648
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1649 1650

	hctx->tags = set->tags[hctx_idx];
1651 1652

	/*
1653 1654
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1655
	 */
1656 1657 1658 1659
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1660

1661 1662
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1663
		goto free_ctxs;
1664

1665
	hctx->nr_ctx = 0;
1666

1667 1668 1669
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1670

1671 1672 1673
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1674

1675 1676 1677 1678 1679
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1680

1681
	return 0;
1682

1683 1684 1685 1686 1687
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1688
 free_bitmap:
1689
	sbitmap_free(&hctx->ctx_map);
1690 1691 1692
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1693
	blk_mq_remove_cpuhp(hctx);
1694 1695
	return -1;
}
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1716
		hctx = blk_mq_map_queue(q, i);
1717

1718 1719 1720 1721 1722
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1723
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1724 1725 1726
	}
}

1727 1728
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1729 1730 1731 1732
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1733
	struct blk_mq_tag_set *set = q->tag_set;
1734

1735 1736 1737 1738 1739
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1740
	queue_for_each_hw_ctx(q, hctx, i) {
1741
		cpumask_clear(hctx->cpumask);
1742 1743 1744 1745 1746 1747
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1748
	for_each_possible_cpu(i) {
1749
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1750
		if (!cpumask_test_cpu(i, online_mask))
1751 1752
			continue;

1753
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1754
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1755

1756
		cpumask_set_cpu(i, hctx->cpumask);
1757 1758 1759
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1760

1761 1762
	mutex_unlock(&q->sysfs_lock);

1763
	queue_for_each_hw_ctx(q, hctx, i) {
1764
		/*
1765 1766
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1767 1768 1769 1770 1771 1772
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1773
			hctx->tags = NULL;
1774 1775 1776
			continue;
		}

M
Ming Lei 已提交
1777 1778 1779 1780 1781 1782
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1783 1784 1785 1786 1787
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1788
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1789

1790 1791 1792
		/*
		 * Initialize batch roundrobin counts
		 */
1793 1794 1795
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1796 1797
}

1798
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1799 1800 1801 1802
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1814 1815 1816

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1817
		queue_set_hctx_shared(q, shared);
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1828 1829 1830 1831 1832 1833
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1834 1835 1836 1837 1838 1839 1840 1841 1842
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1843 1844 1845 1846 1847 1848 1849 1850 1851

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1852
	list_add_tail(&q->tag_set_list, &set->tag_list);
1853

1854 1855 1856
	mutex_unlock(&set->tag_list_lock);
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1869 1870 1871 1872
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1873
		kfree(hctx);
1874
	}
1875

1876 1877
	q->mq_map = NULL;

1878 1879 1880 1881 1882 1883
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1884
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1900 1901
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1902
{
K
Keith Busch 已提交
1903 1904
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1905

K
Keith Busch 已提交
1906
	blk_mq_sysfs_unregister(q);
1907
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1908
		int node;
1909

K
Keith Busch 已提交
1910 1911 1912 1913
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1914 1915
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1916
		if (!hctxs[i])
K
Keith Busch 已提交
1917
			break;
1918

1919
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
1920 1921 1922 1923 1924
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
1925

1926
		atomic_set(&hctxs[i]->nr_active, 0);
1927
		hctxs[i]->numa_node = node;
1928
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
1929 1930 1931 1932 1933 1934 1935 1936

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
1937
	}
K
Keith Busch 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
1962 1963 1964
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
1965 1966
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
1967
		goto err_exit;
K
Keith Busch 已提交
1968 1969 1970 1971 1972 1973

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

1974
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
1975 1976 1977 1978

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
1979

1980
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1981
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1982 1983 1984

	q->nr_queues = nr_cpu_ids;

1985
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1986

1987 1988 1989
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1990 1991
	q->sg_reserved_size = INT_MAX;

1992
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
1993 1994 1995
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1996 1997 1998 1999 2000
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2001 2002 2003 2004 2005
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2006 2007
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2008

2009
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2010

2011
	get_online_cpus();
2012 2013
	mutex_lock(&all_q_mutex);

2014
	list_add_tail(&q->all_q_node, &all_q_list);
2015
	blk_mq_add_queue_tag_set(set, q);
2016
	blk_mq_map_swqueue(q, cpu_online_mask);
2017

2018
	mutex_unlock(&all_q_mutex);
2019
	put_online_cpus();
2020

2021
	return q;
2022

2023
err_hctxs:
K
Keith Busch 已提交
2024
	kfree(q->queue_hw_ctx);
2025
err_percpu:
K
Keith Busch 已提交
2026
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2027 2028
err_exit:
	q->mq_ops = NULL;
2029 2030
	return ERR_PTR(-ENOMEM);
}
2031
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2032 2033 2034

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2035
	struct blk_mq_tag_set	*set = q->tag_set;
2036

2037 2038 2039 2040
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2041 2042
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2043 2044
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2045 2046 2047
}

/* Basically redo blk_mq_init_queue with queue frozen */
2048 2049
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2050
{
2051
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2052

2053 2054
	blk_mq_sysfs_unregister(q);

2055 2056 2057 2058 2059 2060
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2061
	blk_mq_map_swqueue(q, online_mask);
2062

2063
	blk_mq_sysfs_register(q);
2064 2065
}

2066 2067 2068 2069 2070 2071 2072 2073
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2074 2075 2076 2077
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2078 2079 2080 2081 2082 2083 2084 2085 2086
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2087
	list_for_each_entry(q, &all_q_list, all_q_node) {
2088 2089
		blk_mq_freeze_queue_wait(q);

2090 2091 2092 2093 2094 2095 2096
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2097
	list_for_each_entry(q, &all_q_list, all_q_node)
2098
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2099 2100 2101 2102

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2103
	mutex_unlock(&all_q_mutex);
2104 2105 2106 2107
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2108
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
 * is ignored.
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2135 2136
}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2191 2192 2193 2194 2195 2196
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2197 2198
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2199 2200
	int ret;

B
Bart Van Assche 已提交
2201 2202
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2203 2204
	if (!set->nr_hw_queues)
		return -EINVAL;
2205
	if (!set->queue_depth)
2206 2207 2208 2209
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2210
	if (!set->ops->queue_rq)
2211 2212
		return -EINVAL;

2213 2214 2215 2216 2217
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2218

2219 2220 2221 2222 2223 2224 2225 2226 2227
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2228 2229 2230 2231 2232
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2233

K
Keith Busch 已提交
2234
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2235 2236
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2237
		return -ENOMEM;
2238

2239 2240 2241
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2242 2243 2244
	if (!set->mq_map)
		goto out_free_tags;

2245 2246 2247 2248 2249 2250 2251 2252 2253
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2254
		goto out_free_mq_map;
2255

2256 2257 2258
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2259
	return 0;
2260 2261 2262 2263 2264

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2265 2266
	kfree(set->tags);
	set->tags = NULL;
2267
	return ret;
2268 2269 2270 2271 2272 2273 2274
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2275
	for (i = 0; i < nr_cpu_ids; i++) {
2276
		if (set->tags[i])
2277 2278 2279
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

2280 2281 2282
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2283
	kfree(set->tags);
2284
	set->tags = NULL;
2285 2286 2287
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2299 2300
		if (!hctx->tags)
			continue;
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2351 2352
static int __init blk_mq_init(void)
{
2353 2354
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2355

2356 2357 2358
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2359 2360 2361
	return 0;
}
subsys_initcall(blk_mq_init);