blk-mq.c 70.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128
		blk_mq_run_hw_queues(q, false);
129
	}
130
}
131
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132

133
void blk_mq_freeze_queue_wait(struct request_queue *q)
134
{
135
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138

139 140 141 142 143 144 145 146
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147

148 149 150 151
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
152
void blk_freeze_queue(struct request_queue *q)
153
{
154 155 156 157 158 159 160
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
161
	blk_freeze_queue_start(q);
162 163
	blk_mq_freeze_queue_wait(q);
}
164 165 166 167 168 169 170 171 172

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
173
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174

175
void blk_mq_unfreeze_queue(struct request_queue *q)
176
{
177
	int freeze_depth;
178

179 180 181
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
182
		percpu_ref_reinit(&q->q_usage_counter);
183
		wake_up_all(&q->mq_freeze_wq);
184
	}
185
}
186
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

202
/**
203
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 205 206
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
207 208 209
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
210 211 212 213 214 215 216
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

217
	blk_mq_quiesce_queue_nowait(q);
218

219 220
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
221
			synchronize_srcu(hctx->queue_rq_srcu);
222 223 224 225 226 227 228 229
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

230 231 232 233 234 235 236 237 238
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
239 240 241
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
242
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243
	spin_unlock_irqrestore(q->queue_lock, flags);
244

245 246
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
247 248 249
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

250 251 252 253 254 255 256 257
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
258 259 260 261 262 263 264

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
265 266
}

267 268 269 270 271 272
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

273 274
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
275
{
276 277 278
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

279 280
	rq->rq_flags = 0;

281 282 283 284 285 286 287 288 289 290 291 292 293
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

294 295
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
296 297
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
298
	rq->cmd_flags = op;
299
	if (blk_queue_io_stat(data->q))
300
		rq->rq_flags |= RQF_IO_STAT;
301 302 303 304 305 306
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
307
	rq->start_time = jiffies;
308 309
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
310
	set_start_time_ns(rq);
311 312 313 314 315 316 317 318 319 320 321
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
322 323
	rq->timeout = 0;

324 325 326 327
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

328 329
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
330 331
}

332 333 334 335 336 337
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
338
	unsigned int tag;
339
	struct blk_mq_ctx *local_ctx = NULL;
340 341 342 343

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
344
		data->ctx = local_ctx = blk_mq_get_ctx(q);
345 346
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 348
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
349 350 351 352 353 354 355 356

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
357 358
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
359 360
	}

361 362
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
363 364 365 366
		if (local_ctx) {
			blk_mq_put_ctx(local_ctx);
			data->ctx = NULL;
		}
367 368
		blk_queue_exit(q);
		return NULL;
369 370
	}

371
	rq = blk_mq_rq_ctx_init(data, tag, op);
372 373
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
374
		if (e && e->type->ops.mq.prepare_request) {
375 376 377
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

378 379
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
380
		}
381 382 383
	}
	data->hctx->queued++;
	return rq;
384 385
}

386
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387
		unsigned int flags)
388
{
389
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
390
	struct request *rq;
391
	int ret;
392

393
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 395
	if (ret)
		return ERR_PTR(ret);
396

397
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398
	blk_queue_exit(q);
399

400
	if (!rq)
401
		return ERR_PTR(-EWOULDBLOCK);
402

403 404
	blk_mq_put_ctx(alloc_data.ctx);

405 406 407
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
408 409
	return rq;
}
410
EXPORT_SYMBOL(blk_mq_alloc_request);
411

412 413
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
414
{
415
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
416
	struct request *rq;
417
	unsigned int cpu;
M
Ming Lin 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

436 437 438 439
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
440 441 442 443
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
444
	}
445 446
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
447

448
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449
	blk_queue_exit(q);
450

451 452 453 454
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
455 456 457
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

458
void blk_mq_free_request(struct request *rq)
459 460
{
	struct request_queue *q = rq->q;
461 462 463 464 465
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

466
	if (rq->rq_flags & RQF_ELVPRIV) {
467 468 469 470 471 472 473
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
474

475
	ctx->rq_completed[rq_is_sync(rq)]++;
476
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
477
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
478 479

	wbt_done(q->rq_wb, &rq->issue_stat);
480

481
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
483 484 485
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
486
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
487
	blk_mq_sched_restart(hctx);
488
	blk_queue_exit(q);
489
}
J
Jens Axboe 已提交
490
EXPORT_SYMBOL_GPL(blk_mq_free_request);
491

492
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
493
{
M
Ming Lei 已提交
494 495
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
496
	if (rq->end_io) {
J
Jens Axboe 已提交
497
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
498
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
499 500 501
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
502
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
503
	}
504
}
505
EXPORT_SYMBOL(__blk_mq_end_request);
506

507
void blk_mq_end_request(struct request *rq, blk_status_t error)
508 509 510
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
511
	__blk_mq_end_request(rq, error);
512
}
513
EXPORT_SYMBOL(blk_mq_end_request);
514

515
static void __blk_mq_complete_request_remote(void *data)
516
{
517
	struct request *rq = data;
518

519
	rq->q->softirq_done_fn(rq);
520 521
}

522
static void __blk_mq_complete_request(struct request *rq)
523 524
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
525
	bool shared = false;
526 527
	int cpu;

528 529 530 531 532 533 534
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
535
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
536 537 538
		rq->q->softirq_done_fn(rq);
		return;
	}
539 540

	cpu = get_cpu();
C
Christoph Hellwig 已提交
541 542 543 544
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
545
		rq->csd.func = __blk_mq_complete_request_remote;
546 547
		rq->csd.info = rq;
		rq->csd.flags = 0;
548
		smp_call_function_single_async(ctx->cpu, &rq->csd);
549
	} else {
550
		rq->q->softirq_done_fn(rq);
551
	}
552 553
	put_cpu();
}
554 555 556 557 558 559 560 561 562

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
563
void blk_mq_complete_request(struct request *rq)
564
{
565 566 567
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
568
		return;
569
	if (!blk_mark_rq_complete(rq))
570
		__blk_mq_complete_request(rq);
571 572
}
EXPORT_SYMBOL(blk_mq_complete_request);
573

574 575 576 577 578 579
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

580
void blk_mq_start_request(struct request *rq)
581 582 583
{
	struct request_queue *q = rq->q;

584 585
	blk_mq_sched_started_request(rq);

586 587
	trace_block_rq_issue(q, rq);

588
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
589
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
590
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
591
		wbt_issue(q->rq_wb, &rq->issue_stat);
592 593
	}

594
	blk_add_timer(rq);
595

596 597 598 599 600 601
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

602 603 604 605 606 607
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
608 609 610 611
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
612 613 614 615 616 617 618 619 620

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
621
}
622
EXPORT_SYMBOL(blk_mq_start_request);
623

624 625
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
626
 * flag isn't set yet, so there may be race with timeout handler,
627 628 629 630 631 632
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
633
static void __blk_mq_requeue_request(struct request *rq)
634 635 636 637
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
638
	wbt_requeue(q->rq_wb, &rq->issue_stat);
639
	blk_mq_sched_requeue_request(rq);
640

641 642 643 644
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
645 646
}

647
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
648 649 650 651
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
652
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
653 654 655
}
EXPORT_SYMBOL(blk_mq_requeue_request);

656 657 658
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
659
		container_of(work, struct request_queue, requeue_work.work);
660 661 662
	LIST_HEAD(rq_list);
	struct request *rq, *next;

663
	spin_lock_irq(&q->requeue_lock);
664
	list_splice_init(&q->requeue_list, &rq_list);
665
	spin_unlock_irq(&q->requeue_lock);
666 667

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
668
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
669 670
			continue;

671
		rq->rq_flags &= ~RQF_SOFTBARRIER;
672
		list_del_init(&rq->queuelist);
673
		blk_mq_sched_insert_request(rq, true, false, false, true);
674 675 676 677 678
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
679
		blk_mq_sched_insert_request(rq, false, false, false, true);
680 681
	}

682
	blk_mq_run_hw_queues(q, false);
683 684
}

685 686
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
687 688 689 690 691 692 693 694
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
695
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
696 697 698

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
699
		rq->rq_flags |= RQF_SOFTBARRIER;
700 701 702 703 704
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
705 706 707

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
708 709 710 711 712
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
713
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
714 715 716
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

717 718 719
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
720 721
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
722 723 724
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

725 726
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
727 728
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
729
		return tags->rqs[tag];
730
	}
731 732

	return NULL;
733 734 735
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

736
struct blk_mq_timeout_data {
737 738
	unsigned long next;
	unsigned int next_set;
739 740
};

741
void blk_mq_rq_timed_out(struct request *req, bool reserved)
742
{
J
Jens Axboe 已提交
743
	const struct blk_mq_ops *ops = req->q->mq_ops;
744
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
745 746 747 748 749 750 751

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
752
	 * both flags will get cleared. So check here again, and ignore
753 754
	 * a timeout event with a request that isn't active.
	 */
755 756
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
757

758
	if (ops->timeout)
759
		ret = ops->timeout(req, reserved);
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
775
}
776

777 778 779 780
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
781

782
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
783
		return;
784

785 786 787 788 789 790 791 792 793 794 795 796 797
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
798 799
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
800
			blk_mq_rq_timed_out(rq, reserved);
801 802 803 804
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
805 806
}

807
static void blk_mq_timeout_work(struct work_struct *work)
808
{
809 810
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
811 812 813 814 815
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
816

817 818 819 820 821 822 823 824 825
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
826
	 * blk_freeze_queue_start, and the moment the last request is
827 828 829 830
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
831 832
		return;

833
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
834

835 836 837
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
838
	} else {
839 840
		struct blk_mq_hw_ctx *hctx;

841 842 843 844 845
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
846
	}
847
	blk_queue_exit(q);
848 849
}

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

868 869 870 871
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
872
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
873
{
874 875 876 877
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
878

879
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
880
}
881
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
882

883 884 885 886
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
887

888
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
889 890
}

891 892
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
893 894 895 896 897 898 899
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

900 901
	might_sleep_if(wait);

902 903
	if (rq->tag != -1)
		goto done;
904

905 906 907
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

908 909
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
910 911 912 913
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
914 915 916
		data.hctx->tags->rqs[rq->tag] = rq;
	}

917 918 919 920
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
921 922
}

923 924
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
925 926 927 928 929 930 931 932 933 934
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

979
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
980 981 982 983 984 985
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

986
	list_del(&wait->entry);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1017
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1018
{
1019
	struct blk_mq_hw_ctx *hctx;
1020
	struct request *rq;
1021
	int errors, queued;
1022

1023 1024 1025
	if (list_empty(list))
		return false;

1026 1027 1028
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1029
	errors = queued = 0;
1030
	do {
1031
		struct blk_mq_queue_data bd;
1032
		blk_status_t ret;
1033

1034
		rq = list_first_entry(list, struct request, queuelist);
1035 1036 1037
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1038 1039

			/*
1040 1041
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1042
			 */
1043 1044 1045 1046 1047 1048 1049 1050 1051
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1052
				break;
1053
		}
1054

1055 1056
		list_del_init(&rq->queuelist);

1057
		bd.rq = rq;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1071 1072

		ret = q->mq_ops->queue_rq(hctx, &bd);
1073
		if (ret == BLK_STS_RESOURCE) {
1074
			blk_mq_put_driver_tag_hctx(hctx, rq);
1075
			list_add(&rq->queuelist, list);
1076
			__blk_mq_requeue_request(rq);
1077
			break;
1078 1079 1080
		}

		if (unlikely(ret != BLK_STS_OK)) {
1081
			errors++;
1082
			blk_mq_end_request(rq, BLK_STS_IOERR);
1083
			continue;
1084 1085
		}

1086
		queued++;
1087
	} while (!list_empty(list));
1088

1089
	hctx->dispatched[queued_to_index(queued)]++;
1090 1091 1092 1093 1094

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1095
	if (!list_empty(list)) {
1096
		/*
1097 1098
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1099 1100 1101 1102
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1103
		spin_lock(&hctx->lock);
1104
		list_splice_init(list, &hctx->dispatch);
1105
		spin_unlock(&hctx->lock);
1106

1107
		/*
1108 1109 1110
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1111
		 *
1112 1113 1114 1115
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1116
		 *
1117 1118 1119 1120 1121 1122 1123
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1124
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1125
		 *   and dm-rq.
1126
		 */
1127 1128
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1129
			blk_mq_run_hw_queue(hctx, true);
1130
	}
1131

1132
	return (queued + errors) != 0;
1133 1134
}

1135 1136 1137 1138
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1139 1140 1141 1142
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1143 1144 1145
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1146 1147 1148 1149 1150 1151
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1152 1153
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1154
		blk_mq_sched_dispatch_requests(hctx);
1155 1156
		rcu_read_unlock();
	} else {
1157 1158
		might_sleep();

1159
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1160
		blk_mq_sched_dispatch_requests(hctx);
1161
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1162 1163 1164
	}
}

1165 1166 1167 1168 1169 1170 1171 1172
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1173 1174
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1175 1176

	if (--hctx->next_cpu_batch <= 0) {
1177
		int next_cpu;
1178 1179 1180 1181 1182 1183 1184 1185 1186

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1187
	return hctx->next_cpu;
1188 1189
}

1190 1191
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1192
{
1193 1194 1195 1196
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1197 1198
		return;

1199
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1200 1201
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1202
			__blk_mq_run_hw_queue(hctx);
1203
			put_cpu();
1204 1205
			return;
		}
1206

1207
		put_cpu();
1208
	}
1209

1210 1211 1212
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1224
}
O
Omar Sandoval 已提交
1225
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1226

1227
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1228 1229 1230 1231 1232
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1233
		if (!blk_mq_hctx_has_pending(hctx) ||
1234
		    blk_mq_hctx_stopped(hctx))
1235 1236
			continue;

1237
		blk_mq_run_hw_queue(hctx, async);
1238 1239
	}
}
1240
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1262 1263 1264
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1265
 * BLK_STS_RESOURCE is usually returned.
1266 1267 1268 1269 1270
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1271 1272
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1273
	cancel_delayed_work(&hctx->run_work);
1274

1275
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1276
}
1277
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1278

1279 1280 1281
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1282
 * BLK_STS_RESOURCE is usually returned.
1283 1284 1285 1286 1287
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1288 1289
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1290 1291 1292 1293 1294
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1295 1296 1297
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1298 1299 1300
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1301

1302
	blk_mq_run_hw_queue(hctx, false);
1303 1304 1305
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1326
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1327 1328 1329 1330
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1331 1332
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1333 1334 1335
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1336
static void blk_mq_run_work_fn(struct work_struct *work)
1337 1338 1339
{
	struct blk_mq_hw_ctx *hctx;

1340
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1341

1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1350

1351 1352 1353
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1354 1355 1356 1357

	__blk_mq_run_hw_queue(hctx);
}

1358 1359 1360

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1361
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1362
		return;
1363

1364 1365 1366 1367 1368
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1369
	blk_mq_stop_hw_queue(hctx);
1370 1371 1372 1373
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1374 1375 1376
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1377 1378 1379
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1380
{
J
Jens Axboe 已提交
1381 1382
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1383 1384
	lockdep_assert_held(&ctx->lock);

1385 1386
	trace_block_rq_insert(hctx->queue, rq);

1387 1388 1389 1390
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1391
}
1392

1393 1394
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1395 1396 1397
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1398 1399
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1400
	__blk_mq_insert_req_list(hctx, rq, at_head);
1401 1402 1403
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
void blk_mq_request_bypass_insert(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, false);
}

1420 1421
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1433
		BUG_ON(rq->mq_ctx != ctx);
1434
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1435
		__blk_mq_insert_req_list(hctx, rq, false);
1436
	}
1437
	blk_mq_hctx_mark_pending(hctx, ctx);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1474 1475 1476 1477
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1494 1495 1496
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1497 1498 1499 1500 1501
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1502
	blk_init_request_from_bio(rq, bio);
1503

1504
	blk_account_io_start(rq, true);
1505 1506
}

1507 1508 1509 1510 1511 1512 1513
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1514
}
1515

1516 1517
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1518 1519 1520 1521
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1522 1523
}

M
Ming Lei 已提交
1524 1525 1526
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1527 1528 1529 1530
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1531
		.last = true,
1532
	};
1533
	blk_qc_t new_cookie;
1534
	blk_status_t ret;
M
Ming Lei 已提交
1535 1536
	bool run_queue = true;

1537 1538
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1539 1540 1541
		run_queue = false;
		goto insert;
	}
1542

1543
	if (q->elevator)
1544 1545
		goto insert;

M
Ming Lei 已提交
1546
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1547 1548 1549 1550
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1551 1552 1553 1554 1555 1556
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1557 1558
	switch (ret) {
	case BLK_STS_OK:
1559
		*cookie = new_cookie;
1560
		return;
1561 1562 1563 1564
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1565
		*cookie = BLK_QC_T_NONE;
1566
		blk_mq_end_request(rq, ret);
1567
		return;
1568
	}
1569

1570
insert:
M
Ming Lei 已提交
1571
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1572 1573
}

1574 1575 1576 1577 1578
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1579
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1580 1581
		rcu_read_unlock();
	} else {
1582 1583 1584 1585
		unsigned int srcu_idx;

		might_sleep();

1586
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1587
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1588
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1589 1590 1591
	}
}

1592
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1593
{
1594
	const int is_sync = op_is_sync(bio->bi_opf);
1595
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1596
	struct blk_mq_alloc_data data = { .flags = 0 };
1597
	struct request *rq;
1598
	unsigned int request_count = 0;
1599
	struct blk_plug *plug;
1600
	struct request *same_queue_rq = NULL;
1601
	blk_qc_t cookie;
J
Jens Axboe 已提交
1602
	unsigned int wb_acct;
1603 1604 1605

	blk_queue_bounce(q, &bio);

1606
	blk_queue_split(q, &bio);
1607

1608
	if (!bio_integrity_prep(bio))
1609
		return BLK_QC_T_NONE;
1610

1611 1612 1613
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1614

1615 1616 1617
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1618 1619
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1620 1621
	trace_block_getrq(q, bio, bio->bi_opf);

1622
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1623 1624
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1625 1626
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1627
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1628 1629 1630
	}

	wbt_track(&rq->issue_stat, wb_acct);
1631

1632
	cookie = request_to_qc_t(data.hctx, rq);
1633

1634
	plug = current->plug;
1635
	if (unlikely(is_flush_fua)) {
1636
		blk_mq_put_ctx(data.ctx);
1637
		blk_mq_bio_to_request(rq, bio);
1638 1639 1640
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1641
		} else {
1642 1643
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1644
		}
1645
	} else if (plug && q->nr_hw_queues == 1) {
1646 1647
		struct request *last = NULL;

1648
		blk_mq_put_ctx(data.ctx);
1649
		blk_mq_bio_to_request(rq, bio);
1650 1651 1652 1653 1654 1655 1656

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1657 1658 1659
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1660
		if (!request_count)
1661
			trace_block_plug(q);
1662 1663
		else
			last = list_entry_rq(plug->mq_list.prev);
1664

1665 1666
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1667 1668
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1669
		}
1670

1671
		list_add_tail(&rq->queuelist, &plug->mq_list);
1672
	} else if (plug && !blk_queue_nomerges(q)) {
1673
		blk_mq_bio_to_request(rq, bio);
1674 1675

		/*
1676
		 * We do limited plugging. If the bio can be merged, do that.
1677 1678
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1679 1680
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1681
		 */
1682 1683 1684 1685 1686 1687
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1688 1689
		blk_mq_put_ctx(data.ctx);

1690 1691 1692
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1693 1694
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1695
		}
1696
	} else if (q->nr_hw_queues > 1 && is_sync) {
1697
		blk_mq_put_ctx(data.ctx);
1698 1699
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1700
	} else if (q->elevator) {
1701
		blk_mq_put_ctx(data.ctx);
1702
		blk_mq_bio_to_request(rq, bio);
1703
		blk_mq_sched_insert_request(rq, false, true, true, true);
1704
	} else {
1705
		blk_mq_put_ctx(data.ctx);
1706 1707
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1708
		blk_mq_run_hw_queue(data.hctx, true);
1709
	}
1710

1711
	return cookie;
1712 1713
}

1714 1715
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1716
{
1717
	struct page *page;
1718

1719
	if (tags->rqs && set->ops->exit_request) {
1720
		int i;
1721

1722
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1723 1724 1725
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1726
				continue;
1727
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1728
			tags->static_rqs[i] = NULL;
1729
		}
1730 1731
	}

1732 1733
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1734
		list_del_init(&page->lru);
1735 1736 1737 1738 1739
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1740 1741
		__free_pages(page, page->private);
	}
1742
}
1743

1744 1745
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1746
	kfree(tags->rqs);
1747
	tags->rqs = NULL;
J
Jens Axboe 已提交
1748 1749
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1750

1751
	blk_mq_free_tags(tags);
1752 1753
}

1754 1755 1756 1757
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1758
{
1759
	struct blk_mq_tags *tags;
1760
	int node;
1761

1762 1763 1764 1765 1766
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1767
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1768 1769
	if (!tags)
		return NULL;
1770

1771
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1772
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1773
				 node);
1774 1775 1776 1777
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1778

J
Jens Axboe 已提交
1779 1780
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1781
				 node);
J
Jens Axboe 已提交
1782 1783 1784 1785 1786 1787
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1801 1802 1803 1804 1805
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1806 1807 1808

	INIT_LIST_HEAD(&tags->page_list);

1809 1810 1811 1812
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1813
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1814
				cache_line_size());
1815
	left = rq_size * depth;
1816

1817
	for (i = 0; i < depth; ) {
1818 1819 1820 1821 1822
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1823
		while (this_order && left < order_to_size(this_order - 1))
1824 1825 1826
			this_order--;

		do {
1827
			page = alloc_pages_node(node,
1828
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1829
				this_order);
1830 1831 1832 1833 1834 1835 1836 1837 1838
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1839
			goto fail;
1840 1841

		page->private = this_order;
1842
		list_add_tail(&page->lru, &tags->page_list);
1843 1844

		p = page_address(page);
1845 1846 1847 1848
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1849
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1850
		entries_per_page = order_to_size(this_order) / rq_size;
1851
		to_do = min(entries_per_page, depth - i);
1852 1853
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1854 1855 1856
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1857
			if (set->ops->init_request) {
1858
				if (set->ops->init_request(set, rq, hctx_idx,
1859
						node)) {
J
Jens Axboe 已提交
1860
					tags->static_rqs[i] = NULL;
1861
					goto fail;
1862
				}
1863 1864
			}

1865 1866 1867 1868
			p += rq_size;
			i++;
		}
	}
1869
	return 0;
1870

1871
fail:
1872 1873
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1874 1875
}

J
Jens Axboe 已提交
1876 1877 1878 1879 1880
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1881
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1882
{
1883
	struct blk_mq_hw_ctx *hctx;
1884 1885 1886
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1887
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1888
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1889 1890 1891 1892 1893 1894 1895 1896 1897

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1898
		return 0;
1899

J
Jens Axboe 已提交
1900 1901 1902
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1903 1904

	blk_mq_run_hw_queue(hctx, true);
1905
	return 0;
1906 1907
}

1908
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1909
{
1910 1911
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1912 1913
}

1914
/* hctx->ctxs will be freed in queue's release handler */
1915 1916 1917 1918
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1919 1920
	blk_mq_debugfs_unregister_hctx(hctx);

1921 1922
	blk_mq_tag_idle(hctx);

1923
	if (set->ops->exit_request)
1924
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1925

1926 1927
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1928 1929 1930
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1931
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1932
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1933

1934
	blk_mq_remove_cpuhp(hctx);
1935
	blk_free_flush_queue(hctx->fq);
1936
	sbitmap_free(&hctx->ctx_map);
1937 1938
}

M
Ming Lei 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1948
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1949 1950 1951
	}
}

1952 1953 1954
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1955
{
1956 1957 1958 1959 1960 1961
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1962
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1963 1964 1965
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
1966
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1967

1968
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1969 1970

	hctx->tags = set->tags[hctx_idx];
1971 1972

	/*
1973 1974
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1975
	 */
1976 1977 1978 1979
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1980

1981 1982
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1983
		goto free_ctxs;
1984

1985
	hctx->nr_ctx = 0;
1986

1987 1988 1989
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1990

1991 1992 1993
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1994 1995
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1996
		goto sched_exit_hctx;
1997

1998
	if (set->ops->init_request &&
1999 2000
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2001
		goto free_fq;
2002

2003
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2004
		init_srcu_struct(hctx->queue_rq_srcu);
2005

2006 2007
	blk_mq_debugfs_register_hctx(q, hctx);

2008
	return 0;
2009

2010 2011
 free_fq:
	kfree(hctx->fq);
2012 2013
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2014 2015 2016
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2017
 free_bitmap:
2018
	sbitmap_free(&hctx->ctx_map);
2019 2020 2021
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2022
	blk_mq_remove_cpuhp(hctx);
2023 2024
	return -1;
}
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2040 2041
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2042 2043
			continue;

C
Christoph Hellwig 已提交
2044
		hctx = blk_mq_map_queue(q, i);
2045

2046 2047 2048 2049 2050
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2051
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2052 2053 2054
	}
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2077 2078 2079 2080 2081
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2082 2083
}

2084
static void blk_mq_map_swqueue(struct request_queue *q)
2085
{
2086
	unsigned int i, hctx_idx;
2087 2088
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2089
	struct blk_mq_tag_set *set = q->tag_set;
2090

2091 2092 2093 2094 2095
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2096
	queue_for_each_hw_ctx(q, hctx, i) {
2097
		cpumask_clear(hctx->cpumask);
2098 2099 2100 2101
		hctx->nr_ctx = 0;
	}

	/*
2102 2103 2104
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2105
	 */
2106
	for_each_present_cpu(i) {
2107 2108
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2109 2110
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2111 2112 2113 2114 2115 2116
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2117
			q->mq_map[i] = 0;
2118 2119
		}

2120
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2121
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2122

2123
		cpumask_set_cpu(i, hctx->cpumask);
2124 2125 2126
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2127

2128 2129
	mutex_unlock(&q->sysfs_lock);

2130
	queue_for_each_hw_ctx(q, hctx, i) {
2131
		/*
2132 2133
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2134 2135
		 */
		if (!hctx->nr_ctx) {
2136 2137 2138 2139
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2140 2141 2142
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2143
			hctx->tags = NULL;
2144 2145 2146
			continue;
		}

M
Ming Lei 已提交
2147 2148 2149
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2150 2151 2152 2153 2154
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2155
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2156

2157 2158 2159
		/*
		 * Initialize batch roundrobin counts
		 */
2160 2161 2162
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2163 2164
}

2165 2166 2167 2168
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2169
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2170 2171 2172 2173
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2174
	queue_for_each_hw_ctx(q, hctx, i) {
2175 2176 2177
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2178
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2179 2180 2181
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2182
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2183
		}
2184 2185 2186
	}
}

2187 2188
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2189 2190
{
	struct request_queue *q;
2191

2192 2193
	lockdep_assert_held(&set->tag_list_lock);

2194 2195
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2196
		queue_set_hctx_shared(q, shared);
2197 2198 2199 2200 2201 2202 2203 2204 2205
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2206 2207
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2208 2209 2210 2211 2212 2213
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2214
	mutex_unlock(&set->tag_list_lock);
2215 2216

	synchronize_rcu();
2217 2218 2219 2220 2221 2222 2223 2224
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2225 2226 2227 2228 2229 2230 2231 2232 2233

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2234
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2235

2236 2237 2238
	mutex_unlock(&set->tag_list_lock);
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2251 2252 2253
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2254
		kobject_put(&hctx->kobj);
2255
	}
2256

2257 2258
	q->mq_map = NULL;

2259 2260
	kfree(q->queue_hw_ctx);

2261 2262 2263 2264 2265 2266
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2267 2268 2269
	free_percpu(q->queue_ctx);
}

2270
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2300 2301
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2302
{
K
Keith Busch 已提交
2303 2304
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2305

K
Keith Busch 已提交
2306
	blk_mq_sysfs_unregister(q);
2307
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2308
		int node;
2309

K
Keith Busch 已提交
2310 2311 2312 2313
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2314
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2315
					GFP_KERNEL, node);
2316
		if (!hctxs[i])
K
Keith Busch 已提交
2317
			break;
2318

2319
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2320 2321 2322 2323 2324
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2325

2326
		atomic_set(&hctxs[i]->nr_active, 0);
2327
		hctxs[i]->numa_node = node;
2328
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2329 2330 2331 2332 2333 2334 2335 2336

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2337
	}
K
Keith Busch 已提交
2338 2339 2340 2341
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2342 2343
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2357 2358 2359
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2360
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2361 2362
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2363 2364 2365
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2366 2367
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2368
		goto err_exit;
K
Keith Busch 已提交
2369

2370 2371 2372
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2373 2374 2375 2376 2377
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2378
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2379 2380 2381 2382

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2383

2384
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2385
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2386 2387 2388

	q->nr_queues = nr_cpu_ids;

2389
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2390

2391 2392 2393
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2394 2395
	q->sg_reserved_size = INT_MAX;

2396
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2397 2398 2399
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2400
	blk_queue_make_request(q, blk_mq_make_request);
2401

2402 2403 2404 2405 2406
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2407 2408 2409 2410 2411
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2412 2413
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2414

2415
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2416
	blk_mq_add_queue_tag_set(set, q);
2417
	blk_mq_map_swqueue(q);
2418

2419 2420 2421 2422 2423 2424 2425 2426
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2427
	return q;
2428

2429
err_hctxs:
K
Keith Busch 已提交
2430
	kfree(q->queue_hw_ctx);
2431
err_percpu:
K
Keith Busch 已提交
2432
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2433 2434
err_exit:
	q->mq_ops = NULL;
2435 2436
	return ERR_PTR(-ENOMEM);
}
2437
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2438 2439 2440

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2441
	struct blk_mq_tag_set	*set = q->tag_set;
2442

2443
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2444
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2445 2446 2447
}

/* Basically redo blk_mq_init_queue with queue frozen */
2448
static void blk_mq_queue_reinit(struct request_queue *q)
2449
{
2450
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2451

2452
	blk_mq_debugfs_unregister_hctxs(q);
2453 2454
	blk_mq_sysfs_unregister(q);

2455 2456 2457 2458 2459 2460
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2461
	blk_mq_map_swqueue(q);
2462

2463
	blk_mq_sysfs_register(q);
2464
	blk_mq_debugfs_register_hctxs(q);
2465 2466
}

2467 2468 2469 2470
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2471 2472
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2473 2474 2475 2476 2477 2478
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2479
		blk_mq_free_rq_map(set->tags[i]);
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2519 2520 2521 2522 2523 2524 2525 2526
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2527 2528 2529 2530 2531 2532
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2533 2534
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2535 2536
	int ret;

B
Bart Van Assche 已提交
2537 2538
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2539 2540
	if (!set->nr_hw_queues)
		return -EINVAL;
2541
	if (!set->queue_depth)
2542 2543 2544 2545
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2546
	if (!set->ops->queue_rq)
2547 2548
		return -EINVAL;

2549 2550 2551 2552 2553
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2554

2555 2556 2557 2558 2559 2560 2561 2562 2563
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2564 2565 2566 2567 2568
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2569

K
Keith Busch 已提交
2570
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2571 2572
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2573
		return -ENOMEM;
2574

2575 2576 2577
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2578 2579 2580
	if (!set->mq_map)
		goto out_free_tags;

2581
	ret = blk_mq_update_queue_map(set);
2582 2583 2584 2585 2586
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2587
		goto out_free_mq_map;
2588

2589 2590 2591
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2592
	return 0;
2593 2594 2595 2596 2597

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2598 2599
	kfree(set->tags);
	set->tags = NULL;
2600
	return ret;
2601 2602 2603 2604 2605 2606 2607
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2608 2609
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2610

2611 2612 2613
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2614
	kfree(set->tags);
2615
	set->tags = NULL;
2616 2617 2618
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2619 2620 2621 2622 2623 2624
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2625
	if (!set)
2626 2627
		return -EINVAL;

2628 2629
	blk_mq_freeze_queue(q);

2630 2631
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2632 2633
		if (!hctx->tags)
			continue;
2634 2635 2636 2637
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2638 2639 2640 2641 2642 2643 2644 2645
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2646 2647 2648 2649 2650 2651 2652
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2653 2654
	blk_mq_unfreeze_queue(q);

2655 2656 2657
	return ret;
}

2658 2659
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2660 2661 2662
{
	struct request_queue *q;

2663 2664
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2674
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2675 2676
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2677
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2678 2679 2680 2681 2682
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2683 2684 2685 2686 2687 2688 2689

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2690 2691
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2718
	int bucket;
2719

2720 2721 2722 2723
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2724 2725
}

2726 2727 2728 2729 2730
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2731
	int bucket;
2732 2733 2734 2735 2736

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2737
	if (!blk_poll_stats_enable(q))
2738 2739 2740 2741 2742 2743 2744 2745
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2746 2747
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2748
	 */
2749 2750 2751 2752 2753 2754
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2755 2756 2757 2758

	return ret;
}

2759
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2760
				     struct blk_mq_hw_ctx *hctx,
2761 2762 2763 2764
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2765
	unsigned int nsecs;
2766 2767
	ktime_t kt;

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2786 2787 2788 2789 2790 2791 2792 2793
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2794
	kt = nsecs;
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2817 2818 2819 2820 2821
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2822 2823 2824 2825 2826 2827 2828
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2829
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2830 2831
		return true;

J
Jens Axboe 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2875 2876
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2877
	else {
2878
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2879 2880 2881 2882 2883 2884 2885 2886 2887
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2888 2889 2890 2891 2892

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2893 2894
static int __init blk_mq_init(void)
{
2895 2896
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2897 2898 2899
	return 0;
}
subsys_initcall(blk_mq_init);