blk-mq.c 71.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67 68
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129
		blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	blk_mq_freeze_queue_wait(q);
}
165 166 167 168 169 170 171 172 173

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
174
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175

176
void blk_mq_unfreeze_queue(struct request_queue *q)
177
{
178
	int freeze_depth;
179

180 181 182
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
183
		percpu_ref_reinit(&q->q_usage_counter);
184
		wake_up_all(&q->mq_freeze_wq);
185
	}
186
}
187
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

203
/**
204
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 206 207
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
208 209 210
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
211 212 213 214 215 216 217
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

218
	blk_mq_quiesce_queue_nowait(q);
219

220 221
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
222
			synchronize_srcu(hctx->queue_rq_srcu);
223 224 225 226 227 228 229 230
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

231 232 233 234 235 236 237 238 239
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
240 241 242
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
243
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244
	spin_unlock_irqrestore(q->queue_lock, flags);
245

246 247
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
248 249 250
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

251 252 253 254 255 256 257 258
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
259 260 261 262 263 264 265

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
266 267
}

268 269 270 271 272 273
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

274 275
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
276
{
277 278 279
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

280 281
	rq->rq_flags = 0;

282 283 284 285 286 287 288 289 290 291 292 293 294
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

295 296
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
297 298
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
299
	rq->cmd_flags = op;
300
	if (blk_queue_io_stat(data->q))
301
		rq->rq_flags |= RQF_IO_STAT;
302 303 304 305 306 307
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
308
	rq->start_time = jiffies;
309 310
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
311
	set_start_time_ns(rq);
312 313 314 315 316 317 318 319 320 321 322
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
323 324
	rq->timeout = 0;

325 326 327 328
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

329 330
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
331 332
}

333 334 335 336 337 338
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
339
	unsigned int tag;
340
	bool put_ctx_on_error = false;
341 342 343

	blk_queue_enter_live(q);
	data->q = q;
344 345 346 347
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
348 349
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
350 351
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
352 353 354 355 356 357 358 359

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
360 361
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
362 363
	}

364 365
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
366 367
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
368 369
			data->ctx = NULL;
		}
370 371
		blk_queue_exit(q);
		return NULL;
372 373
	}

374
	rq = blk_mq_rq_ctx_init(data, tag, op);
375 376
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
377
		if (e && e->type->ops.mq.prepare_request) {
378 379 380
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

381 382
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
383
		}
384 385 386
	}
	data->hctx->queued++;
	return rq;
387 388
}

389
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
390
		unsigned int flags)
391
{
392
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
393
	struct request *rq;
394
	int ret;
395

396
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
397 398
	if (ret)
		return ERR_PTR(ret);
399

400
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
401
	blk_queue_exit(q);
402

403
	if (!rq)
404
		return ERR_PTR(-EWOULDBLOCK);
405

406 407
	blk_mq_put_ctx(alloc_data.ctx);

408 409 410
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
411 412
	return rq;
}
413
EXPORT_SYMBOL(blk_mq_alloc_request);
414

415 416
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
417
{
418
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
419
	struct request *rq;
420
	unsigned int cpu;
M
Ming Lin 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

439 440 441 442
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
443 444 445 446
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
447
	}
448 449
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
450

451
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
452
	blk_queue_exit(q);
453

454 455 456 457
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
458 459 460
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

461
void blk_mq_free_request(struct request *rq)
462 463
{
	struct request_queue *q = rq->q;
464 465 466 467 468
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

469
	if (rq->rq_flags & RQF_ELVPRIV) {
470 471 472 473 474 475 476
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
477

478
	ctx->rq_completed[rq_is_sync(rq)]++;
479
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
480
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
481

482 483 484
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
485
	wbt_done(q->rq_wb, &rq->issue_stat);
486

S
Shaohua Li 已提交
487 488 489
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

490
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
491
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
492 493 494
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
495
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496
	blk_mq_sched_restart(hctx);
497
	blk_queue_exit(q);
498
}
J
Jens Axboe 已提交
499
EXPORT_SYMBOL_GPL(blk_mq_free_request);
500

501
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
502
{
M
Ming Lei 已提交
503 504
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
505
	if (rq->end_io) {
J
Jens Axboe 已提交
506
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
507
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
508 509 510
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
511
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
512
	}
513
}
514
EXPORT_SYMBOL(__blk_mq_end_request);
515

516
void blk_mq_end_request(struct request *rq, blk_status_t error)
517 518 519
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
520
	__blk_mq_end_request(rq, error);
521
}
522
EXPORT_SYMBOL(blk_mq_end_request);
523

524
static void __blk_mq_complete_request_remote(void *data)
525
{
526
	struct request *rq = data;
527

528
	rq->q->softirq_done_fn(rq);
529 530
}

531
static void __blk_mq_complete_request(struct request *rq)
532 533
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
534
	bool shared = false;
535 536
	int cpu;

537 538 539 540 541 542 543
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
544
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 546 547
		rq->q->softirq_done_fn(rq);
		return;
	}
548 549

	cpu = get_cpu();
C
Christoph Hellwig 已提交
550 551 552 553
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554
		rq->csd.func = __blk_mq_complete_request_remote;
555 556
		rq->csd.info = rq;
		rq->csd.flags = 0;
557
		smp_call_function_single_async(ctx->cpu, &rq->csd);
558
	} else {
559
		rq->q->softirq_done_fn(rq);
560
	}
561 562
	put_cpu();
}
563 564 565 566 567 568 569 570 571

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
572
void blk_mq_complete_request(struct request *rq)
573
{
574 575 576
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
577
		return;
578
	if (!blk_mark_rq_complete(rq))
579
		__blk_mq_complete_request(rq);
580 581
}
EXPORT_SYMBOL(blk_mq_complete_request);
582

583 584 585 586 587 588
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

589
void blk_mq_start_request(struct request *rq)
590 591 592
{
	struct request_queue *q = rq->q;

593 594
	blk_mq_sched_started_request(rq);

595 596
	trace_block_rq_issue(q, rq);

597
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
598
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
599
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
600
		wbt_issue(q->rq_wb, &rq->issue_stat);
601 602
	}

603
	blk_add_timer(rq);
604

605
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
606

607 608 609 610 611
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
612 613 614 615
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
616
	 */
617 618 619 620 621 622 623 624 625 626 627 628
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
629
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
630
	}
631 632 633 634 635 636 637 638 639

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
640
}
641
EXPORT_SYMBOL(blk_mq_start_request);
642

643 644
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
645
 * flag isn't set yet, so there may be race with timeout handler,
646 647 648 649 650 651
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
652
static void __blk_mq_requeue_request(struct request *rq)
653 654 655
{
	struct request_queue *q = rq->q;

656 657
	blk_mq_put_driver_tag(rq);

658
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
659
	wbt_requeue(q->rq_wb, &rq->issue_stat);
660
	blk_mq_sched_requeue_request(rq);
661

662 663 664 665
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
666 667
}

668
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
669 670 671 672
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
673
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
674 675 676
}
EXPORT_SYMBOL(blk_mq_requeue_request);

677 678 679
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
680
		container_of(work, struct request_queue, requeue_work.work);
681 682 683
	LIST_HEAD(rq_list);
	struct request *rq, *next;

684
	spin_lock_irq(&q->requeue_lock);
685
	list_splice_init(&q->requeue_list, &rq_list);
686
	spin_unlock_irq(&q->requeue_lock);
687 688

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
689
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
690 691
			continue;

692
		rq->rq_flags &= ~RQF_SOFTBARRIER;
693
		list_del_init(&rq->queuelist);
694
		blk_mq_sched_insert_request(rq, true, false, false, true);
695 696 697 698 699
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
700
		blk_mq_sched_insert_request(rq, false, false, false, true);
701 702
	}

703
	blk_mq_run_hw_queues(q, false);
704 705
}

706 707
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
708 709 710 711 712 713 714 715
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
716
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
717 718 719

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
720
		rq->rq_flags |= RQF_SOFTBARRIER;
721 722 723 724 725
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
726 727 728

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
729 730 731 732 733
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
734
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
735 736 737
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

738 739 740
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
741 742
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
743 744 745
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

746 747
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
748 749
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
750
		return tags->rqs[tag];
751
	}
752 753

	return NULL;
754 755 756
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

757
struct blk_mq_timeout_data {
758 759
	unsigned long next;
	unsigned int next_set;
760 761
};

762
void blk_mq_rq_timed_out(struct request *req, bool reserved)
763
{
J
Jens Axboe 已提交
764
	const struct blk_mq_ops *ops = req->q->mq_ops;
765
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
766 767 768 769 770 771 772

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
773
	 * both flags will get cleared. So check here again, and ignore
774 775
	 * a timeout event with a request that isn't active.
	 */
776 777
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
778

779
	if (ops->timeout)
780
		ret = ops->timeout(req, reserved);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
796
}
797

798 799 800 801
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
802
	unsigned long deadline;
803

804
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
805
		return;
806

807 808 809 810 811 812 813 814
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

815 816 817 818 819 820 821 822 823 824 825 826 827
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
828 829 830 831 832 833 834 835 836 837
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
838
			blk_mq_rq_timed_out(rq, reserved);
839 840 841
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
842 843
		data->next_set = 1;
	}
844 845
}

846
static void blk_mq_timeout_work(struct work_struct *work)
847
{
848 849
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
850 851 852 853 854
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
855

856 857 858 859 860 861 862 863 864
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
865
	 * blk_freeze_queue_start, and the moment the last request is
866 867 868 869
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
870 871
		return;

872
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
873

874 875 876
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
877
	} else {
878 879
		struct blk_mq_hw_ctx *hctx;

880 881 882 883 884
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
885
	}
886
	blk_queue_exit(q);
887 888
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

907 908 909 910
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
911
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
912
{
913 914 915 916
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
917

918
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
919
}
920
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
921

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

961 962 963 964
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
965

966
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
967 968
}

969 970
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
971 972 973 974 975 976 977
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

978 979
	might_sleep_if(wait);

980 981
	if (rq->tag != -1)
		goto done;
982

983 984 985
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

986 987
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
988 989 990 991
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
992 993 994
		data.hctx->tags->rqs[rq->tag] = rq;
	}

995 996 997 998
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
999 1000
}

1001
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1002 1003 1004 1005 1006 1007
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1008
	list_del(&wait->entry);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1039 1040
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
		bool got_budget)
1041
{
1042
	struct blk_mq_hw_ctx *hctx;
1043
	struct request *rq, *nxt;
1044
	int errors, queued;
1045

1046 1047 1048
	if (list_empty(list))
		return false;

1049 1050
	WARN_ON(!list_is_singular(list) && got_budget);

1051 1052 1053
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1054
	errors = queued = 0;
1055
	do {
1056
		struct blk_mq_queue_data bd;
1057
		blk_status_t ret;
1058

1059
		rq = list_first_entry(list, struct request, queuelist);
1060
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1061
			/*
1062 1063
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1064
			 */
1065 1066 1067
			if (!blk_mq_dispatch_wait_add(hctx)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1068
				break;
1069
			}
1070 1071 1072 1073 1074 1075

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
1076 1077 1078 1079 1080 1081 1082
			if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
				break;
			}
		}

1083 1084
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1085
			break;
1086
		}
1087

1088 1089
		list_del_init(&rq->queuelist);

1090
		bd.rq = rq;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1102 1103

		ret = q->mq_ops->queue_rq(hctx, &bd);
1104
		if (ret == BLK_STS_RESOURCE) {
1105 1106 1107 1108 1109 1110 1111 1112
			/*
			 * If an I/O scheduler has been configured and we got a
			 * driver tag for the next request already, free it again.
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1113
			list_add(&rq->queuelist, list);
1114
			__blk_mq_requeue_request(rq);
1115
			break;
1116 1117 1118
		}

		if (unlikely(ret != BLK_STS_OK)) {
1119
			errors++;
1120
			blk_mq_end_request(rq, BLK_STS_IOERR);
1121
			continue;
1122 1123
		}

1124
		queued++;
1125
	} while (!list_empty(list));
1126

1127
	hctx->dispatched[queued_to_index(queued)]++;
1128 1129 1130 1131 1132

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1133
	if (!list_empty(list)) {
1134
		spin_lock(&hctx->lock);
1135
		list_splice_init(list, &hctx->dispatch);
1136
		spin_unlock(&hctx->lock);
1137

1138
		/*
1139 1140 1141
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1142
		 *
1143 1144 1145 1146
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1147
		 *
1148 1149 1150 1151 1152 1153 1154
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1155
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1156
		 *   and dm-rq.
1157
		 */
1158 1159
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1160
			blk_mq_run_hw_queue(hctx, true);
1161
	}
1162

1163
	return (queued + errors) != 0;
1164 1165
}

1166 1167 1168 1169
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1170 1171 1172 1173
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1174 1175 1176
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1177 1178 1179 1180 1181 1182
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1183 1184
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1185
		blk_mq_sched_dispatch_requests(hctx);
1186 1187
		rcu_read_unlock();
	} else {
1188 1189
		might_sleep();

1190
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1191
		blk_mq_sched_dispatch_requests(hctx);
1192
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1193 1194 1195
	}
}

1196 1197 1198 1199 1200 1201 1202 1203
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1204 1205
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1206 1207

	if (--hctx->next_cpu_batch <= 0) {
1208
		int next_cpu;
1209 1210 1211 1212 1213 1214 1215 1216 1217

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1218
	return hctx->next_cpu;
1219 1220
}

1221 1222
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1223
{
1224 1225 1226 1227
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1228 1229
		return;

1230
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1231 1232
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1233
			__blk_mq_run_hw_queue(hctx);
1234
			put_cpu();
1235 1236
			return;
		}
1237

1238
		put_cpu();
1239
	}
1240

1241 1242 1243
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1255
}
O
Omar Sandoval 已提交
1256
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1257

1258
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1259 1260 1261 1262 1263
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1264
		if (!blk_mq_hctx_has_pending(hctx) ||
1265
		    blk_mq_hctx_stopped(hctx))
1266 1267
			continue;

1268
		blk_mq_run_hw_queue(hctx, async);
1269 1270
	}
}
1271
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1293 1294 1295
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1296
 * BLK_STS_RESOURCE is usually returned.
1297 1298 1299 1300 1301
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1302 1303
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1304
	cancel_delayed_work(&hctx->run_work);
1305

1306
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1307
}
1308
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1309

1310 1311 1312
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1313
 * BLK_STS_RESOURCE is usually returned.
1314 1315 1316 1317 1318
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1319 1320
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1321 1322 1323 1324 1325
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1326 1327 1328
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1329 1330 1331
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1332

1333
	blk_mq_run_hw_queue(hctx, false);
1334 1335 1336
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1357
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1358 1359 1360 1361
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1362 1363
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1364 1365 1366
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1367
static void blk_mq_run_work_fn(struct work_struct *work)
1368 1369 1370
{
	struct blk_mq_hw_ctx *hctx;

1371
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1372

1373 1374 1375 1376 1377 1378 1379 1380
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1381

1382 1383 1384
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1385 1386 1387 1388

	__blk_mq_run_hw_queue(hctx);
}

1389 1390 1391

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1392
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1393
		return;
1394

1395 1396 1397 1398 1399
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1400
	blk_mq_stop_hw_queue(hctx);
1401 1402 1403 1404
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1405 1406 1407
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1408 1409 1410
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1411
{
J
Jens Axboe 已提交
1412 1413
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1414 1415
	lockdep_assert_held(&ctx->lock);

1416 1417
	trace_block_rq_insert(hctx->queue, rq);

1418 1419 1420 1421
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1422
}
1423

1424 1425
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1426 1427 1428
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1429 1430
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1431
	__blk_mq_insert_req_list(hctx, rq, at_head);
1432 1433 1434
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1435 1436 1437 1438
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1439
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1440 1441 1442 1443 1444 1445 1446 1447
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1448 1449
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1450 1451
}

1452 1453
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1465
		BUG_ON(rq->mq_ctx != ctx);
1466
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1467
		__blk_mq_insert_req_list(hctx, rq, false);
1468
	}
1469
	blk_mq_hctx_mark_pending(hctx, ctx);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1506 1507 1508 1509
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1526 1527 1528
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1529 1530 1531 1532 1533
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1534
	blk_init_request_from_bio(rq, bio);
1535

S
Shaohua Li 已提交
1536 1537
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1538
	blk_account_io_start(rq, true);
1539 1540
}

1541 1542 1543 1544 1545 1546 1547
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1548
}
1549

1550 1551
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1552 1553 1554 1555
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1556 1557
}

M
Ming Lei 已提交
1558 1559 1560
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1561 1562 1563 1564
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1565
		.last = true,
1566
	};
1567
	blk_qc_t new_cookie;
1568
	blk_status_t ret;
M
Ming Lei 已提交
1569 1570
	bool run_queue = true;

1571 1572
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1573 1574 1575
		run_queue = false;
		goto insert;
	}
1576

1577
	if (q->elevator)
1578 1579
		goto insert;

M
Ming Lei 已提交
1580
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1581 1582
		goto insert;

1583
	if (!blk_mq_get_dispatch_budget(hctx)) {
1584 1585
		blk_mq_put_driver_tag(rq);
		goto insert;
1586
	}
1587

1588 1589
	new_cookie = request_to_qc_t(hctx, rq);

1590 1591 1592 1593 1594 1595
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1596 1597
	switch (ret) {
	case BLK_STS_OK:
1598
		*cookie = new_cookie;
1599
		return;
1600 1601 1602 1603
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1604
		*cookie = BLK_QC_T_NONE;
1605
		blk_mq_end_request(rq, ret);
1606
		return;
1607
	}
1608

1609
insert:
M
Ming Lei 已提交
1610
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1611 1612
}

1613 1614 1615 1616 1617
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1618
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1619 1620
		rcu_read_unlock();
	} else {
1621 1622 1623 1624
		unsigned int srcu_idx;

		might_sleep();

1625
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1626
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1627
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1628 1629 1630
	}
}

1631
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1632
{
1633
	const int is_sync = op_is_sync(bio->bi_opf);
1634
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1635
	struct blk_mq_alloc_data data = { .flags = 0 };
1636
	struct request *rq;
1637
	unsigned int request_count = 0;
1638
	struct blk_plug *plug;
1639
	struct request *same_queue_rq = NULL;
1640
	blk_qc_t cookie;
J
Jens Axboe 已提交
1641
	unsigned int wb_acct;
1642 1643 1644

	blk_queue_bounce(q, &bio);

1645
	blk_queue_split(q, &bio);
1646

1647
	if (!bio_integrity_prep(bio))
1648
		return BLK_QC_T_NONE;
1649

1650 1651 1652
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1653

1654 1655 1656
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1657 1658
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1659 1660
	trace_block_getrq(q, bio, bio->bi_opf);

1661
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1662 1663
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1664 1665
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1666
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1667 1668 1669
	}

	wbt_track(&rq->issue_stat, wb_acct);
1670

1671
	cookie = request_to_qc_t(data.hctx, rq);
1672

1673
	plug = current->plug;
1674
	if (unlikely(is_flush_fua)) {
1675
		blk_mq_put_ctx(data.ctx);
1676
		blk_mq_bio_to_request(rq, bio);
1677 1678 1679 1680

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1681
	} else if (plug && q->nr_hw_queues == 1) {
1682 1683
		struct request *last = NULL;

1684
		blk_mq_put_ctx(data.ctx);
1685
		blk_mq_bio_to_request(rq, bio);
1686 1687 1688 1689 1690 1691 1692

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1693 1694 1695
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1696
		if (!request_count)
1697
			trace_block_plug(q);
1698 1699
		else
			last = list_entry_rq(plug->mq_list.prev);
1700

1701 1702
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1703 1704
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1705
		}
1706

1707
		list_add_tail(&rq->queuelist, &plug->mq_list);
1708
	} else if (plug && !blk_queue_nomerges(q)) {
1709
		blk_mq_bio_to_request(rq, bio);
1710 1711

		/*
1712
		 * We do limited plugging. If the bio can be merged, do that.
1713 1714
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1715 1716
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1717
		 */
1718 1719 1720 1721 1722 1723
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1724 1725
		blk_mq_put_ctx(data.ctx);

1726 1727 1728
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1729 1730
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1731
		}
1732
	} else if (q->nr_hw_queues > 1 && is_sync) {
1733
		blk_mq_put_ctx(data.ctx);
1734 1735
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1736
	} else if (q->elevator) {
1737
		blk_mq_put_ctx(data.ctx);
1738
		blk_mq_bio_to_request(rq, bio);
1739
		blk_mq_sched_insert_request(rq, false, true, true, true);
1740
	} else {
1741
		blk_mq_put_ctx(data.ctx);
1742 1743
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1744
		blk_mq_run_hw_queue(data.hctx, true);
1745
	}
1746

1747
	return cookie;
1748 1749
}

1750 1751
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1752
{
1753
	struct page *page;
1754

1755
	if (tags->rqs && set->ops->exit_request) {
1756
		int i;
1757

1758
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1759 1760 1761
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1762
				continue;
1763
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1764
			tags->static_rqs[i] = NULL;
1765
		}
1766 1767
	}

1768 1769
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1770
		list_del_init(&page->lru);
1771 1772 1773 1774 1775
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1776 1777
		__free_pages(page, page->private);
	}
1778
}
1779

1780 1781
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1782
	kfree(tags->rqs);
1783
	tags->rqs = NULL;
J
Jens Axboe 已提交
1784 1785
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1786

1787
	blk_mq_free_tags(tags);
1788 1789
}

1790 1791 1792 1793
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1794
{
1795
	struct blk_mq_tags *tags;
1796
	int node;
1797

1798 1799 1800 1801 1802
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1803
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1804 1805
	if (!tags)
		return NULL;
1806

1807
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1808
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1809
				 node);
1810 1811 1812 1813
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1814

J
Jens Axboe 已提交
1815 1816
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1817
				 node);
J
Jens Axboe 已提交
1818 1819 1820 1821 1822 1823
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1837 1838 1839 1840 1841
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1842 1843 1844

	INIT_LIST_HEAD(&tags->page_list);

1845 1846 1847 1848
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1849
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1850
				cache_line_size());
1851
	left = rq_size * depth;
1852

1853
	for (i = 0; i < depth; ) {
1854 1855 1856 1857 1858
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1859
		while (this_order && left < order_to_size(this_order - 1))
1860 1861 1862
			this_order--;

		do {
1863
			page = alloc_pages_node(node,
1864
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1865
				this_order);
1866 1867 1868 1869 1870 1871 1872 1873 1874
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1875
			goto fail;
1876 1877

		page->private = this_order;
1878
		list_add_tail(&page->lru, &tags->page_list);
1879 1880

		p = page_address(page);
1881 1882 1883 1884
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1885
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1886
		entries_per_page = order_to_size(this_order) / rq_size;
1887
		to_do = min(entries_per_page, depth - i);
1888 1889
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1890 1891 1892
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1893
			if (set->ops->init_request) {
1894
				if (set->ops->init_request(set, rq, hctx_idx,
1895
						node)) {
J
Jens Axboe 已提交
1896
					tags->static_rqs[i] = NULL;
1897
					goto fail;
1898
				}
1899 1900
			}

1901 1902 1903 1904
			p += rq_size;
			i++;
		}
	}
1905
	return 0;
1906

1907
fail:
1908 1909
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1910 1911
}

J
Jens Axboe 已提交
1912 1913 1914 1915 1916
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1917
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1918
{
1919
	struct blk_mq_hw_ctx *hctx;
1920 1921 1922
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1923
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1924
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1925 1926 1927 1928 1929 1930 1931 1932 1933

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1934
		return 0;
1935

J
Jens Axboe 已提交
1936 1937 1938
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1939 1940

	blk_mq_run_hw_queue(hctx, true);
1941
	return 0;
1942 1943
}

1944
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1945
{
1946 1947
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1948 1949
}

1950
/* hctx->ctxs will be freed in queue's release handler */
1951 1952 1953 1954
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1955 1956
	blk_mq_debugfs_unregister_hctx(hctx);

1957 1958
	blk_mq_tag_idle(hctx);

1959
	if (set->ops->exit_request)
1960
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1961

1962 1963
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1964 1965 1966
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1967
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1968
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1969

1970
	blk_mq_remove_cpuhp(hctx);
1971
	blk_free_flush_queue(hctx->fq);
1972
	sbitmap_free(&hctx->ctx_map);
1973 1974
}

M
Ming Lei 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1984
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1985 1986 1987
	}
}

1988 1989 1990
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1991
{
1992 1993 1994 1995 1996 1997
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1998
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1999 2000 2001
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2002
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2003

2004
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2005 2006

	hctx->tags = set->tags[hctx_idx];
2007 2008

	/*
2009 2010
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2011
	 */
2012 2013 2014 2015
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2016

2017 2018
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2019
		goto free_ctxs;
2020

2021
	hctx->nr_ctx = 0;
2022

2023 2024 2025
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2026

2027 2028 2029
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2030 2031
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2032
		goto sched_exit_hctx;
2033

2034
	if (set->ops->init_request &&
2035 2036
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2037
		goto free_fq;
2038

2039
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2040
		init_srcu_struct(hctx->queue_rq_srcu);
2041

2042 2043
	blk_mq_debugfs_register_hctx(q, hctx);

2044
	return 0;
2045

2046 2047
 free_fq:
	kfree(hctx->fq);
2048 2049
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2050 2051 2052
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2053
 free_bitmap:
2054
	sbitmap_free(&hctx->ctx_map);
2055 2056 2057
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2058
	blk_mq_remove_cpuhp(hctx);
2059 2060
	return -1;
}
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2076 2077
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2078 2079
			continue;

C
Christoph Hellwig 已提交
2080
		hctx = blk_mq_map_queue(q, i);
2081

2082 2083 2084 2085 2086
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2087
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2088 2089 2090
	}
}

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2113 2114 2115 2116 2117
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2118 2119
}

2120
static void blk_mq_map_swqueue(struct request_queue *q)
2121
{
2122
	unsigned int i, hctx_idx;
2123 2124
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2125
	struct blk_mq_tag_set *set = q->tag_set;
2126

2127 2128 2129 2130 2131
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2132
	queue_for_each_hw_ctx(q, hctx, i) {
2133
		cpumask_clear(hctx->cpumask);
2134 2135 2136 2137
		hctx->nr_ctx = 0;
	}

	/*
2138 2139 2140
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2141
	 */
2142
	for_each_present_cpu(i) {
2143 2144
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2145 2146
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2147 2148 2149 2150 2151 2152
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2153
			q->mq_map[i] = 0;
2154 2155
		}

2156
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2157
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2158

2159
		cpumask_set_cpu(i, hctx->cpumask);
2160 2161 2162
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2163

2164 2165
	mutex_unlock(&q->sysfs_lock);

2166
	queue_for_each_hw_ctx(q, hctx, i) {
2167
		/*
2168 2169
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2170 2171
		 */
		if (!hctx->nr_ctx) {
2172 2173 2174 2175
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2176 2177 2178
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2179
			hctx->tags = NULL;
2180 2181 2182
			continue;
		}

M
Ming Lei 已提交
2183 2184 2185
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2186 2187 2188 2189 2190
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2191
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2192

2193 2194 2195
		/*
		 * Initialize batch roundrobin counts
		 */
2196 2197 2198
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2199 2200
}

2201 2202 2203 2204
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2205
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2206 2207 2208 2209
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2210
	queue_for_each_hw_ctx(q, hctx, i) {
2211 2212 2213
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2214
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2215 2216 2217
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2218
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2219
		}
2220 2221 2222
	}
}

2223 2224
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2225 2226
{
	struct request_queue *q;
2227

2228 2229
	lockdep_assert_held(&set->tag_list_lock);

2230 2231
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2232
		queue_set_hctx_shared(q, shared);
2233 2234 2235 2236 2237 2238 2239 2240 2241
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2242 2243
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2244 2245 2246 2247 2248 2249
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2250
	mutex_unlock(&set->tag_list_lock);
2251 2252

	synchronize_rcu();
2253 2254 2255 2256 2257 2258 2259 2260
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2261 2262 2263 2264 2265 2266 2267 2268 2269

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2270
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2271

2272 2273 2274
	mutex_unlock(&set->tag_list_lock);
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2287 2288 2289
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2290
		kobject_put(&hctx->kobj);
2291
	}
2292

2293 2294
	q->mq_map = NULL;

2295 2296
	kfree(q->queue_hw_ctx);

2297 2298 2299 2300 2301 2302
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2303 2304 2305
	free_percpu(q->queue_ctx);
}

2306
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2336 2337
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2338
{
K
Keith Busch 已提交
2339 2340
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2341

K
Keith Busch 已提交
2342
	blk_mq_sysfs_unregister(q);
2343
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2344
		int node;
2345

K
Keith Busch 已提交
2346 2347 2348 2349
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2350
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2351
					GFP_KERNEL, node);
2352
		if (!hctxs[i])
K
Keith Busch 已提交
2353
			break;
2354

2355
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2356 2357 2358 2359 2360
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2361

2362
		atomic_set(&hctxs[i]->nr_active, 0);
2363
		hctxs[i]->numa_node = node;
2364
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2365 2366 2367 2368 2369 2370 2371 2372

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2373
	}
K
Keith Busch 已提交
2374 2375 2376 2377
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2378 2379
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2393 2394 2395
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2396
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2397 2398
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2399 2400 2401
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2402 2403
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2404
		goto err_exit;
K
Keith Busch 已提交
2405

2406 2407 2408
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2409 2410 2411 2412 2413
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2414
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2415 2416 2417 2418

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2419

2420
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2421
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2422 2423 2424

	q->nr_queues = nr_cpu_ids;

2425
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2426

2427 2428 2429
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2430 2431
	q->sg_reserved_size = INT_MAX;

2432
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2433 2434 2435
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2436
	blk_queue_make_request(q, blk_mq_make_request);
2437 2438
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2439

2440 2441 2442 2443 2444
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2445 2446 2447 2448 2449
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2450 2451
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2452

2453
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2454
	blk_mq_add_queue_tag_set(set, q);
2455
	blk_mq_map_swqueue(q);
2456

2457 2458 2459 2460 2461 2462 2463 2464
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2465
	return q;
2466

2467
err_hctxs:
K
Keith Busch 已提交
2468
	kfree(q->queue_hw_ctx);
2469
err_percpu:
K
Keith Busch 已提交
2470
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2471 2472
err_exit:
	q->mq_ops = NULL;
2473 2474
	return ERR_PTR(-ENOMEM);
}
2475
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2476 2477 2478

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2479
	struct blk_mq_tag_set	*set = q->tag_set;
2480

2481
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2482
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2483 2484 2485
}

/* Basically redo blk_mq_init_queue with queue frozen */
2486
static void blk_mq_queue_reinit(struct request_queue *q)
2487
{
2488
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2489

2490
	blk_mq_debugfs_unregister_hctxs(q);
2491 2492
	blk_mq_sysfs_unregister(q);

2493 2494 2495 2496 2497 2498
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2499
	blk_mq_map_swqueue(q);
2500

2501
	blk_mq_sysfs_register(q);
2502
	blk_mq_debugfs_register_hctxs(q);
2503 2504
}

2505 2506 2507 2508
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2509 2510
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2511 2512 2513 2514 2515 2516
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2517
		blk_mq_free_rq_map(set->tags[i]);
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2557 2558 2559 2560 2561 2562 2563 2564
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2565 2566 2567 2568 2569 2570
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2571 2572
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2573 2574
	int ret;

B
Bart Van Assche 已提交
2575 2576
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2577 2578
	if (!set->nr_hw_queues)
		return -EINVAL;
2579
	if (!set->queue_depth)
2580 2581 2582 2583
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2584
	if (!set->ops->queue_rq)
2585 2586
		return -EINVAL;

2587 2588 2589
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2590 2591 2592 2593 2594
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2595

2596 2597 2598 2599 2600 2601 2602 2603 2604
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2605 2606 2607 2608 2609
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2610

K
Keith Busch 已提交
2611
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2612 2613
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2614
		return -ENOMEM;
2615

2616 2617 2618
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2619 2620 2621
	if (!set->mq_map)
		goto out_free_tags;

2622
	ret = blk_mq_update_queue_map(set);
2623 2624 2625 2626 2627
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2628
		goto out_free_mq_map;
2629

2630 2631 2632
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2633
	return 0;
2634 2635 2636 2637 2638

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2639 2640
	kfree(set->tags);
	set->tags = NULL;
2641
	return ret;
2642 2643 2644 2645 2646 2647 2648
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2649 2650
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2651

2652 2653 2654
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2655
	kfree(set->tags);
2656
	set->tags = NULL;
2657 2658 2659
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2660 2661 2662 2663 2664 2665
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2666
	if (!set)
2667 2668
		return -EINVAL;

2669 2670
	blk_mq_freeze_queue(q);

2671 2672
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2673 2674
		if (!hctx->tags)
			continue;
2675 2676 2677 2678
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2679
		if (!hctx->sched_tags) {
2680
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2681 2682 2683 2684 2685
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2686 2687 2688 2689 2690 2691 2692
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2693 2694
	blk_mq_unfreeze_queue(q);

2695 2696 2697
	return ret;
}

2698 2699
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2700 2701 2702
{
	struct request_queue *q;

2703 2704
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2714
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2715 2716
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2717
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2718 2719 2720 2721 2722
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2723 2724 2725 2726 2727 2728 2729

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2730 2731
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2758
	int bucket;
2759

2760 2761 2762 2763
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2764 2765
}

2766 2767 2768 2769 2770
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2771
	int bucket;
2772 2773 2774 2775 2776

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2777
	if (!blk_poll_stats_enable(q))
2778 2779 2780 2781 2782 2783 2784 2785
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2786 2787
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2788
	 */
2789 2790 2791 2792 2793 2794
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2795 2796 2797 2798

	return ret;
}

2799
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2800
				     struct blk_mq_hw_ctx *hctx,
2801 2802 2803 2804
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2805
	unsigned int nsecs;
2806 2807
	ktime_t kt;

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2826 2827 2828 2829 2830 2831 2832 2833
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2834
	kt = nsecs;
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2857 2858 2859 2860 2861
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2862 2863 2864 2865 2866 2867 2868
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2869
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2870 2871
		return true;

J
Jens Axboe 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2900
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
2901 2902 2903 2904
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2905
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
2906 2907 2908
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2909 2910
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2911
	else {
2912
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2913 2914 2915 2916 2917 2918 2919 2920 2921
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2922 2923 2924 2925

	return __blk_mq_poll(hctx, rq);
}

2926 2927
static int __init blk_mq_init(void)
{
2928 2929 2930 2931 2932 2933
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

2934 2935
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2936 2937 2938
	return 0;
}
subsys_initcall(blk_mq_init);