blk-mq.c 72.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67 68
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129
		blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	blk_mq_freeze_queue_wait(q);
}
165 166 167 168 169 170 171 172 173

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
174
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175

176
void blk_mq_unfreeze_queue(struct request_queue *q)
177
{
178
	int freeze_depth;
179

180 181 182
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
183
		percpu_ref_reinit(&q->q_usage_counter);
184
		wake_up_all(&q->mq_freeze_wq);
185
	}
186
}
187
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

203
/**
204
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 206 207
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
208 209 210
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
211 212 213 214 215 216 217
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

218
	blk_mq_quiesce_queue_nowait(q);
219

220 221
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
222
			synchronize_srcu(hctx->queue_rq_srcu);
223 224 225 226 227 228 229 230
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

231 232 233 234 235 236 237 238 239
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
240 241 242
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
243
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244
	spin_unlock_irqrestore(q->queue_lock, flags);
245

246 247
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
248 249 250
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

251 252 253 254 255 256 257 258
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
259 260 261 262 263 264 265

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
266 267
}

268 269 270 271 272 273
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

274 275
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
276
{
277 278 279
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

280 281
	rq->rq_flags = 0;

282 283 284 285 286 287 288 289 290 291 292 293 294
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

295 296
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
297 298
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
299
	rq->cmd_flags = op;
300
	if (blk_queue_io_stat(data->q))
301
		rq->rq_flags |= RQF_IO_STAT;
302 303 304 305 306 307
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
308
	rq->start_time = jiffies;
309 310
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
311
	set_start_time_ns(rq);
312 313 314 315 316 317 318 319 320 321 322
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
323 324
	rq->timeout = 0;

325 326 327 328
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

329 330
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
331 332
}

333 334 335 336 337 338
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
339
	unsigned int tag;
340
	bool put_ctx_on_error = false;
341 342 343

	blk_queue_enter_live(q);
	data->q = q;
344 345 346 347
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
348 349
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
350 351
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
352 353 354 355 356 357 358 359

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
360 361
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
362 363
	}

364 365
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
366 367
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
368 369
			data->ctx = NULL;
		}
370 371
		blk_queue_exit(q);
		return NULL;
372 373
	}

374
	rq = blk_mq_rq_ctx_init(data, tag, op);
375 376
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
377
		if (e && e->type->ops.mq.prepare_request) {
378 379 380
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

381 382
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
383
		}
384 385 386
	}
	data->hctx->queued++;
	return rq;
387 388
}

389
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
390
		unsigned int flags)
391
{
392
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
393
	struct request *rq;
394
	int ret;
395

396
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
397 398
	if (ret)
		return ERR_PTR(ret);
399

400
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
401
	blk_queue_exit(q);
402

403
	if (!rq)
404
		return ERR_PTR(-EWOULDBLOCK);
405

406 407
	blk_mq_put_ctx(alloc_data.ctx);

408 409 410
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
411 412
	return rq;
}
413
EXPORT_SYMBOL(blk_mq_alloc_request);
414

415 416
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
417
{
418
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
419
	struct request *rq;
420
	unsigned int cpu;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

439 440 441 442
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
443 444 445 446
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
447
	}
448 449
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
450

451
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
452
	blk_queue_exit(q);
453

454 455 456 457
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
458 459 460
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

461
void blk_mq_free_request(struct request *rq)
462 463
{
	struct request_queue *q = rq->q;
464 465 466 467 468
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

469
	if (rq->rq_flags & RQF_ELVPRIV) {
470 471 472 473 474 475 476
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
477

478
	ctx->rq_completed[rq_is_sync(rq)]++;
479
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
480
		atomic_dec(&hctx->nr_active);
481

482 483 484
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

485
	wbt_done(q->rq_wb, &rq->issue_stat);
486

487 488 489
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

490
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
491
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
492 493 494
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
495
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496
	blk_mq_sched_restart(hctx);
497
	blk_queue_exit(q);
498
}
499
EXPORT_SYMBOL_GPL(blk_mq_free_request);
500

501
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
502
{
503 504
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
505
	if (rq->end_io) {
506
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
507
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
508 509 510
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
511
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
512
	}
513
}
514
EXPORT_SYMBOL(__blk_mq_end_request);
515

516
void blk_mq_end_request(struct request *rq, blk_status_t error)
517 518 519
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
520
	__blk_mq_end_request(rq, error);
521
}
522
EXPORT_SYMBOL(blk_mq_end_request);
523

524
static void __blk_mq_complete_request_remote(void *data)
525
{
526
	struct request *rq = data;
527

528
	rq->q->softirq_done_fn(rq);
529 530
}

531
static void __blk_mq_complete_request(struct request *rq)
532 533
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
534
	bool shared = false;
535 536
	int cpu;

537 538 539 540 541 542 543
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

544
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 546 547
		rq->q->softirq_done_fn(rq);
		return;
	}
548 549

	cpu = get_cpu();
550 551 552 553
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554
		rq->csd.func = __blk_mq_complete_request_remote;
555 556
		rq->csd.info = rq;
		rq->csd.flags = 0;
557
		smp_call_function_single_async(ctx->cpu, &rq->csd);
558
	} else {
559
		rq->q->softirq_done_fn(rq);
560
	}
561 562
	put_cpu();
}
563 564 565 566 567 568 569 570 571

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
572
void blk_mq_complete_request(struct request *rq)
573
{
574 575 576
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
577
		return;
578
	if (!blk_mark_rq_complete(rq))
579
		__blk_mq_complete_request(rq);
580 581
}
EXPORT_SYMBOL(blk_mq_complete_request);
582

583 584 585 586 587 588
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

589
void blk_mq_start_request(struct request *rq)
590 591 592
{
	struct request_queue *q = rq->q;

593 594
	blk_mq_sched_started_request(rq);

595 596
	trace_block_rq_issue(q, rq);

597
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
598
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
599
		rq->rq_flags |= RQF_STATS;
600
		wbt_issue(q->rq_wb, &rq->issue_stat);
601 602
	}

603
	blk_add_timer(rq);
604

605
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
606

607 608 609 610 611
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
612 613 614 615
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
616
	 */
617 618 619 620 621 622 623 624 625 626 627 628
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
629
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
630
	}
631 632 633 634 635 636 637 638 639

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
640
}
641
EXPORT_SYMBOL(blk_mq_start_request);
642

643 644
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
645
 * flag isn't set yet, so there may be race with timeout handler,
646 647 648 649 650 651
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
652
static void __blk_mq_requeue_request(struct request *rq)
653 654 655 656
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
657
	wbt_requeue(q->rq_wb, &rq->issue_stat);
658
	blk_mq_sched_requeue_request(rq);
659

660 661 662 663
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
664 665
}

666
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
667 668 669 670
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
671
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
672 673 674
}
EXPORT_SYMBOL(blk_mq_requeue_request);

675 676 677
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
678
		container_of(work, struct request_queue, requeue_work.work);
679 680 681
	LIST_HEAD(rq_list);
	struct request *rq, *next;

682
	spin_lock_irq(&q->requeue_lock);
683
	list_splice_init(&q->requeue_list, &rq_list);
684
	spin_unlock_irq(&q->requeue_lock);
685 686

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
687
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
688 689
			continue;

690
		rq->rq_flags &= ~RQF_SOFTBARRIER;
691
		list_del_init(&rq->queuelist);
692
		blk_mq_sched_insert_request(rq, true, false, false, true);
693 694 695 696 697
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
698
		blk_mq_sched_insert_request(rq, false, false, false, true);
699 700
	}

701
	blk_mq_run_hw_queues(q, false);
702 703
}

704 705
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
706 707 708 709 710 711 712 713
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
714
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
715 716 717

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
718
		rq->rq_flags |= RQF_SOFTBARRIER;
719 720 721 722 723
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
724 725 726

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
727 728 729 730 731
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
732
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
733 734 735
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

736 737 738
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
739 740
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
741 742 743
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

744 745
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
746 747
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
748
		return tags->rqs[tag];
749
	}
750 751

	return NULL;
752 753 754
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

755
struct blk_mq_timeout_data {
756 757
	unsigned long next;
	unsigned int next_set;
758 759
};

760
void blk_mq_rq_timed_out(struct request *req, bool reserved)
761
{
762
	const struct blk_mq_ops *ops = req->q->mq_ops;
763
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
764 765 766 767 768 769 770

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
771
	 * both flags will get cleared. So check here again, and ignore
772 773
	 * a timeout event with a request that isn't active.
	 */
774 775
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
776

777
	if (ops->timeout)
778
		ret = ops->timeout(req, reserved);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
794
}
795

796 797 798 799
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
800
	unsigned long deadline;
801

802
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
803
		return;
804

805 806 807 808 809 810 811 812
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

813 814 815 816 817 818 819 820 821 822 823 824 825
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
826 827 828 829 830 831 832 833 834 835
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
836
			blk_mq_rq_timed_out(rq, reserved);
837 838 839
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
840 841
		data->next_set = 1;
	}
842 843
}

844
static void blk_mq_timeout_work(struct work_struct *work)
845
{
846 847
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
848 849 850 851 852
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
853

854 855 856 857 858 859 860 861 862
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
863
	 * blk_freeze_queue_start, and the moment the last request is
864 865 866 867
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
868 869
		return;

870
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
871

872 873 874
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
875
	} else {
876 877
		struct blk_mq_hw_ctx *hctx;

878 879 880 881 882
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
883
	}
884
	blk_queue_exit(q);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

905 906 907 908
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
909
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910
{
911 912 913 914
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
915

916
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917
}
918
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

959 960 961 962
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
963

964
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 966
}

967 968
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
969 970 971 972 973 974 975
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

976 977
	might_sleep_if(wait);

978 979
	if (rq->tag != -1)
		goto done;
980

981 982 983
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

984 985
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
986 987 988 989
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
990 991 992
		data.hctx->tags->rqs[rq->tag] = rq;
	}

993 994 995 996
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
997 998
}

999 1000
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

1055
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1056 1057 1058 1059 1060 1061
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1062
	list_del(&wait->entry);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1093 1094
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
		bool got_budget)
1095
{
1096
	struct blk_mq_hw_ctx *hctx;
1097
	struct request *rq;
1098
	int errors, queued;
1099

1100 1101 1102
	if (list_empty(list))
		return false;

1103 1104
	WARN_ON(!list_is_singular(list) && got_budget);

1105 1106 1107
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1108
	errors = queued = 0;
1109
	do {
1110
		struct blk_mq_queue_data bd;
1111
		blk_status_t ret;
1112

1113
		rq = list_first_entry(list, struct request, queuelist);
1114 1115 1116
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1117 1118

			/*
1119 1120
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1121
			 */
1122 1123 1124
			if (!blk_mq_dispatch_wait_add(hctx)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1125
				break;
1126
			}
1127 1128 1129 1130 1131 1132

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
			if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
				break;
			}
		}

		if (!got_budget) {
			ret = blk_mq_get_dispatch_budget(hctx);
			if (ret == BLK_STS_RESOURCE)
1143
				break;
1144 1145
			if (ret != BLK_STS_OK)
				goto fail_rq;
1146
		}
1147

1148 1149
		list_del_init(&rq->queuelist);

1150
		bd.rq = rq;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1164 1165

		ret = q->mq_ops->queue_rq(hctx, &bd);
1166
		if (ret == BLK_STS_RESOURCE) {
1167
			blk_mq_put_driver_tag_hctx(hctx, rq);
1168
			list_add(&rq->queuelist, list);
1169
			__blk_mq_requeue_request(rq);
1170
			break;
1171 1172
		}

1173
 fail_rq:
1174
		if (unlikely(ret != BLK_STS_OK)) {
1175
			errors++;
1176
			blk_mq_end_request(rq, BLK_STS_IOERR);
1177
			continue;
1178 1179
		}

1180
		queued++;
1181
	} while (!list_empty(list));
1182

1183
	hctx->dispatched[queued_to_index(queued)]++;
1184 1185 1186 1187 1188

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1189
	if (!list_empty(list)) {
1190
		/*
1191 1192
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1193 1194 1195 1196
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1197
		spin_lock(&hctx->lock);
1198
		list_splice_init(list, &hctx->dispatch);
1199
		spin_unlock(&hctx->lock);
1200

1201
		/*
1202 1203 1204
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1205
		 *
1206 1207 1208 1209
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1210
		 *
1211 1212 1213 1214 1215 1216 1217
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1218
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1219
		 *   and dm-rq.
1220
		 */
1221 1222
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1223
			blk_mq_run_hw_queue(hctx, true);
1224
	}
1225

1226
	return (queued + errors) != 0;
1227 1228
}

1229 1230 1231 1232
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1233 1234 1235 1236
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1237 1238 1239
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1240 1241 1242 1243 1244 1245
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1246 1247
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1248
		blk_mq_sched_dispatch_requests(hctx);
1249 1250
		rcu_read_unlock();
	} else {
1251 1252
		might_sleep();

1253
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1254
		blk_mq_sched_dispatch_requests(hctx);
1255
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1256 1257 1258
	}
}

1259 1260 1261 1262 1263 1264 1265 1266
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1267 1268
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1269 1270

	if (--hctx->next_cpu_batch <= 0) {
1271
		int next_cpu;
1272 1273 1274 1275 1276 1277 1278 1279 1280

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1281
	return hctx->next_cpu;
1282 1283
}

1284 1285
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1286
{
1287 1288 1289 1290
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1291 1292
		return;

1293
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1294 1295
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1296
			__blk_mq_run_hw_queue(hctx);
1297
			put_cpu();
1298 1299
			return;
		}
1300

1301
		put_cpu();
1302
	}
1303

1304 1305 1306
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1318
}
O
Omar Sandoval 已提交
1319
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1320

1321
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1322 1323 1324 1325 1326
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1327
		if (!blk_mq_hctx_has_pending(hctx) ||
1328
		    blk_mq_hctx_stopped(hctx))
1329 1330
			continue;

1331
		blk_mq_run_hw_queue(hctx, async);
1332 1333
	}
}
1334
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1356 1357 1358
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1359
 * BLK_STS_RESOURCE is usually returned.
1360 1361 1362 1363 1364
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1365 1366
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1367
	cancel_delayed_work(&hctx->run_work);
1368

1369
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1370
}
1371
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1372

1373 1374 1375
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1376
 * BLK_STS_RESOURCE is usually returned.
1377 1378 1379 1380 1381
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1382 1383
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1384 1385 1386 1387 1388
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1389 1390 1391
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1392 1393 1394
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1395

1396
	blk_mq_run_hw_queue(hctx, false);
1397 1398 1399
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1420
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1421 1422 1423 1424
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1425 1426
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1427 1428 1429
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1430
static void blk_mq_run_work_fn(struct work_struct *work)
1431 1432 1433
{
	struct blk_mq_hw_ctx *hctx;

1434
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1435

1436 1437 1438 1439 1440 1441 1442 1443
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1444

1445 1446 1447
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1448 1449 1450 1451

	__blk_mq_run_hw_queue(hctx);
}

1452 1453 1454

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1455
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1456
		return;
1457

1458 1459 1460 1461 1462
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1463
	blk_mq_stop_hw_queue(hctx);
1464 1465 1466 1467
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1468 1469 1470
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1471 1472 1473
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1474
{
1475 1476
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1477 1478
	lockdep_assert_held(&ctx->lock);

1479 1480
	trace_block_rq_insert(hctx->queue, rq);

1481 1482 1483 1484
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1485
}
1486

1487 1488
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1489 1490 1491
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1492 1493
	lockdep_assert_held(&ctx->lock);

1494
	__blk_mq_insert_req_list(hctx, rq, at_head);
1495 1496 1497
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
void blk_mq_request_bypass_insert(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, false);
}

1514 1515
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
1527
		BUG_ON(rq->mq_ctx != ctx);
1528
		list_del_init(&rq->queuelist);
1529
		__blk_mq_insert_req_list(hctx, rq, false);
1530
	}
1531
	blk_mq_hctx_mark_pending(hctx, ctx);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1568 1569 1570 1571
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1588 1589 1590
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1591 1592 1593 1594 1595
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1596
	blk_init_request_from_bio(rq, bio);
1597

1598 1599
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1600
	blk_account_io_start(rq, true);
1601 1602
}

1603 1604 1605 1606 1607 1608 1609
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1610
}
1611

1612 1613
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1614 1615 1616 1617
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1618 1619
}

M
Ming Lei 已提交
1620 1621 1622
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1623 1624 1625 1626
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1627
		.last = true,
1628
	};
1629
	blk_qc_t new_cookie;
1630
	blk_status_t ret;
M
Ming Lei 已提交
1631 1632
	bool run_queue = true;

1633 1634
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1635 1636 1637
		run_queue = false;
		goto insert;
	}
1638

1639
	if (q->elevator)
1640 1641
		goto insert;

M
Ming Lei 已提交
1642
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1643 1644
		goto insert;

1645 1646 1647 1648 1649 1650 1651
	ret = blk_mq_get_dispatch_budget(hctx);
	if (ret == BLK_STS_RESOURCE) {
		blk_mq_put_driver_tag(rq);
		goto insert;
	} else if (ret != BLK_STS_OK)
		goto fail_rq;

1652 1653
	new_cookie = request_to_qc_t(hctx, rq);

1654 1655 1656 1657 1658 1659
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1660 1661
	switch (ret) {
	case BLK_STS_OK:
1662
		*cookie = new_cookie;
1663
		return;
1664 1665 1666 1667
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1668
 fail_rq:
1669
		*cookie = BLK_QC_T_NONE;
1670
		blk_mq_end_request(rq, ret);
1671
		return;
1672
	}
1673

1674
insert:
M
Ming Lei 已提交
1675
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1676 1677
}

1678 1679 1680 1681 1682
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1683
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1684 1685
		rcu_read_unlock();
	} else {
1686 1687 1688 1689
		unsigned int srcu_idx;

		might_sleep();

1690
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1691
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1692
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1693 1694 1695
	}
}

1696
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1697
{
1698
	const int is_sync = op_is_sync(bio->bi_opf);
1699
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1700
	struct blk_mq_alloc_data data = { .flags = 0 };
1701
	struct request *rq;
1702
	unsigned int request_count = 0;
1703
	struct blk_plug *plug;
1704
	struct request *same_queue_rq = NULL;
1705
	blk_qc_t cookie;
1706
	unsigned int wb_acct;
1707 1708 1709

	blk_queue_bounce(q, &bio);

1710
	blk_queue_split(q, &bio);
1711

1712
	if (!bio_integrity_prep(bio))
1713
		return BLK_QC_T_NONE;
1714

1715 1716 1717
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1718

1719 1720 1721
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

1722 1723
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1724 1725
	trace_block_getrq(q, bio, bio->bi_opf);

1726
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1727 1728
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1729 1730
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1731
		return BLK_QC_T_NONE;
1732 1733 1734
	}

	wbt_track(&rq->issue_stat, wb_acct);
1735

1736
	cookie = request_to_qc_t(data.hctx, rq);
1737

1738
	plug = current->plug;
1739
	if (unlikely(is_flush_fua)) {
1740
		blk_mq_put_ctx(data.ctx);
1741
		blk_mq_bio_to_request(rq, bio);
1742 1743 1744
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1745
		} else {
1746 1747
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1748
		}
1749
	} else if (plug && q->nr_hw_queues == 1) {
1750 1751
		struct request *last = NULL;

1752
		blk_mq_put_ctx(data.ctx);
1753
		blk_mq_bio_to_request(rq, bio);
1754 1755 1756 1757 1758 1759 1760

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1761 1762 1763
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

1764
		if (!request_count)
1765
			trace_block_plug(q);
1766 1767
		else
			last = list_entry_rq(plug->mq_list.prev);
1768

1769 1770
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1771 1772
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1773
		}
1774

1775
		list_add_tail(&rq->queuelist, &plug->mq_list);
1776
	} else if (plug && !blk_queue_nomerges(q)) {
1777
		blk_mq_bio_to_request(rq, bio);
1778 1779

		/*
1780
		 * We do limited plugging. If the bio can be merged, do that.
1781 1782
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1783 1784
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1785
		 */
1786 1787 1788 1789 1790 1791
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1792 1793
		blk_mq_put_ctx(data.ctx);

1794 1795 1796
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1797 1798
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1799
		}
1800
	} else if (q->nr_hw_queues > 1 && is_sync) {
1801
		blk_mq_put_ctx(data.ctx);
1802 1803
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1804
	} else if (q->elevator) {
1805
		blk_mq_put_ctx(data.ctx);
1806
		blk_mq_bio_to_request(rq, bio);
1807
		blk_mq_sched_insert_request(rq, false, true, true, true);
1808
	} else {
1809
		blk_mq_put_ctx(data.ctx);
1810 1811
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1812
		blk_mq_run_hw_queue(data.hctx, true);
1813
	}
1814

1815
	return cookie;
1816 1817
}

1818 1819
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1820
{
1821
	struct page *page;
1822

1823
	if (tags->rqs && set->ops->exit_request) {
1824
		int i;
1825

1826
		for (i = 0; i < tags->nr_tags; i++) {
1827 1828 1829
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1830
				continue;
1831
			set->ops->exit_request(set, rq, hctx_idx);
1832
			tags->static_rqs[i] = NULL;
1833
		}
1834 1835
	}

1836 1837
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1838
		list_del_init(&page->lru);
1839 1840 1841 1842 1843
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1844 1845
		__free_pages(page, page->private);
	}
1846
}
1847

1848 1849
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1850
	kfree(tags->rqs);
1851
	tags->rqs = NULL;
1852 1853
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1854

1855
	blk_mq_free_tags(tags);
1856 1857
}

1858 1859 1860 1861
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1862
{
1863
	struct blk_mq_tags *tags;
1864
	int node;
1865

1866 1867 1868 1869 1870
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1871
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1872 1873
	if (!tags)
		return NULL;
1874

1875
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1876
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1877
				 node);
1878 1879 1880 1881
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1882

1883 1884
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1885
				 node);
1886 1887 1888 1889 1890 1891
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1905 1906 1907 1908 1909
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1910 1911 1912

	INIT_LIST_HEAD(&tags->page_list);

1913 1914 1915 1916
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1917
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1918
				cache_line_size());
1919
	left = rq_size * depth;
1920

1921
	for (i = 0; i < depth; ) {
1922 1923 1924 1925 1926
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1927
		while (this_order && left < order_to_size(this_order - 1))
1928 1929 1930
			this_order--;

		do {
1931
			page = alloc_pages_node(node,
1932
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1933
				this_order);
1934 1935 1936 1937 1938 1939 1940 1941 1942
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1943
			goto fail;
1944 1945

		page->private = this_order;
1946
		list_add_tail(&page->lru, &tags->page_list);
1947 1948

		p = page_address(page);
1949 1950 1951 1952
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1953
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1954
		entries_per_page = order_to_size(this_order) / rq_size;
1955
		to_do = min(entries_per_page, depth - i);
1956 1957
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1958 1959 1960
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1961
			if (set->ops->init_request) {
1962
				if (set->ops->init_request(set, rq, hctx_idx,
1963
						node)) {
1964
					tags->static_rqs[i] = NULL;
1965
					goto fail;
1966
				}
1967 1968
			}

1969 1970 1971 1972
			p += rq_size;
			i++;
		}
	}
1973
	return 0;
1974

1975
fail:
1976 1977
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1978 1979
}

1980 1981 1982 1983 1984
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1985
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1986
{
1987
	struct blk_mq_hw_ctx *hctx;
1988 1989 1990
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1991
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1992
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1993 1994 1995 1996 1997 1998 1999 2000 2001

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2002
		return 0;
2003

2004 2005 2006
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2007 2008

	blk_mq_run_hw_queue(hctx, true);
2009
	return 0;
2010 2011
}

2012
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2013
{
2014 2015
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2016 2017
}

2018
/* hctx->ctxs will be freed in queue's release handler */
2019 2020 2021 2022
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2023 2024
	blk_mq_debugfs_unregister_hctx(hctx);

2025 2026
	blk_mq_tag_idle(hctx);

2027
	if (set->ops->exit_request)
2028
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2029

2030 2031
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2032 2033 2034
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2035
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2036
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2037

2038
	blk_mq_remove_cpuhp(hctx);
2039
	blk_free_flush_queue(hctx->fq);
2040
	sbitmap_free(&hctx->ctx_map);
2041 2042
}

M
Ming Lei 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2052
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2053 2054 2055
	}
}

2056 2057 2058
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2059
{
2060 2061 2062 2063 2064 2065
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2066
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2067 2068 2069
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2070
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2071

2072
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2073 2074

	hctx->tags = set->tags[hctx_idx];
2075 2076

	/*
2077 2078
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2079
	 */
2080 2081 2082 2083
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2084

2085 2086
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2087
		goto free_ctxs;
2088

2089
	hctx->nr_ctx = 0;
2090

2091 2092 2093
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2094

2095 2096 2097
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2098 2099
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2100
		goto sched_exit_hctx;
2101

2102
	if (set->ops->init_request &&
2103 2104
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2105
		goto free_fq;
2106

2107
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2108
		init_srcu_struct(hctx->queue_rq_srcu);
2109

2110 2111
	blk_mq_debugfs_register_hctx(q, hctx);

2112
	return 0;
2113

2114 2115
 free_fq:
	kfree(hctx->fq);
2116 2117
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2118 2119 2120
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2121
 free_bitmap:
2122
	sbitmap_free(&hctx->ctx_map);
2123 2124 2125
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2126
	blk_mq_remove_cpuhp(hctx);
2127 2128
	return -1;
}
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2144 2145
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2146 2147
			continue;

2148
		hctx = blk_mq_map_queue(q, i);
2149

2150 2151 2152 2153 2154
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2155
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2156 2157 2158
	}
}

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2181 2182 2183 2184 2185
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2186 2187
}

2188
static void blk_mq_map_swqueue(struct request_queue *q)
2189
{
2190
	unsigned int i, hctx_idx;
2191 2192
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
2193
	struct blk_mq_tag_set *set = q->tag_set;
2194

2195 2196 2197 2198 2199
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2200
	queue_for_each_hw_ctx(q, hctx, i) {
2201
		cpumask_clear(hctx->cpumask);
2202 2203 2204 2205
		hctx->nr_ctx = 0;
	}

	/*
2206 2207 2208
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2209
	 */
2210
	for_each_present_cpu(i) {
2211 2212
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2213 2214
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2215 2216 2217 2218 2219 2220
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2221
			q->mq_map[i] = 0;
2222 2223
		}

2224
		ctx = per_cpu_ptr(q->queue_ctx, i);
2225
		hctx = blk_mq_map_queue(q, i);
2226

2227
		cpumask_set_cpu(i, hctx->cpumask);
2228 2229 2230
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2231

2232 2233
	mutex_unlock(&q->sysfs_lock);

2234
	queue_for_each_hw_ctx(q, hctx, i) {
2235
		/*
2236 2237
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2238 2239
		 */
		if (!hctx->nr_ctx) {
2240 2241 2242 2243
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2244 2245 2246
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

2247
			hctx->tags = NULL;
2248 2249 2250
			continue;
		}

2251 2252 2253
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2254 2255 2256 2257 2258
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2259
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2260

2261 2262 2263
		/*
		 * Initialize batch roundrobin counts
		 */
2264 2265 2266
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2267 2268
}

2269 2270 2271 2272
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2273
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2274 2275 2276 2277
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2278
	queue_for_each_hw_ctx(q, hctx, i) {
2279 2280 2281
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2282
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2283 2284 2285
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2286
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2287
		}
2288 2289 2290
	}
}

2291 2292
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2293 2294
{
	struct request_queue *q;
2295

2296 2297
	lockdep_assert_held(&set->tag_list_lock);

2298 2299
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2300
		queue_set_hctx_shared(q, shared);
2301 2302 2303 2304 2305 2306 2307 2308 2309
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2310 2311
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2312 2313 2314 2315 2316 2317
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2318
	mutex_unlock(&set->tag_list_lock);
2319 2320

	synchronize_rcu();
2321 2322 2323 2324 2325 2326 2327 2328
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2329 2330 2331 2332 2333 2334 2335 2336 2337

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2338
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2339

2340 2341 2342
	mutex_unlock(&set->tag_list_lock);
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2355 2356 2357
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2358
		kobject_put(&hctx->kobj);
2359
	}
2360

2361 2362
	q->mq_map = NULL;

2363 2364
	kfree(q->queue_hw_ctx);

2365 2366 2367 2368 2369 2370
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2371 2372 2373
	free_percpu(q->queue_ctx);
}

2374
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2404 2405
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2406
{
2407 2408
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2409

2410
	blk_mq_sysfs_unregister(q);
2411
	for (i = 0; i < set->nr_hw_queues; i++) {
2412
		int node;
2413

2414 2415 2416 2417
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2418
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2419
					GFP_KERNEL, node);
2420
		if (!hctxs[i])
2421
			break;
2422

2423
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2424 2425 2426 2427 2428
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2429

2430
		atomic_set(&hctxs[i]->nr_active, 0);
2431
		hctxs[i]->numa_node = node;
2432
		hctxs[i]->queue_num = i;
2433 2434 2435 2436 2437 2438 2439 2440

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2441
	}
2442 2443 2444 2445
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2446 2447
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
2461 2462 2463
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2464
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2465 2466
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2467 2468 2469
	if (!q->poll_cb)
		goto err_exit;

2470 2471
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
2472
		goto err_exit;
2473

2474 2475 2476
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2477 2478 2479 2480 2481
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2482
	q->mq_map = set->mq_map;
2483 2484 2485 2486

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2487

2488
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2489
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2490 2491 2492

	q->nr_queues = nr_cpu_ids;

2493
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2494

2495 2496 2497
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2498 2499
	q->sg_reserved_size = INT_MAX;

2500
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2501 2502 2503
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2504
	blk_queue_make_request(q, blk_mq_make_request);
2505 2506
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2507

2508 2509 2510 2511 2512
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2513 2514 2515 2516 2517
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2518 2519
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2520

2521
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2522
	blk_mq_add_queue_tag_set(set, q);
2523
	blk_mq_map_swqueue(q);
2524

2525 2526 2527 2528 2529 2530 2531 2532
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2533
	return q;
2534

2535
err_hctxs:
2536
	kfree(q->queue_hw_ctx);
2537
err_percpu:
2538
	free_percpu(q->queue_ctx);
2539 2540
err_exit:
	q->mq_ops = NULL;
2541 2542
	return ERR_PTR(-ENOMEM);
}
2543
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2544 2545 2546

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2547
	struct blk_mq_tag_set	*set = q->tag_set;
2548

2549
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2550
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2551 2552 2553
}

/* Basically redo blk_mq_init_queue with queue frozen */
2554
static void blk_mq_queue_reinit(struct request_queue *q)
2555
{
2556
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2557

2558
	blk_mq_debugfs_unregister_hctxs(q);
2559 2560
	blk_mq_sysfs_unregister(q);

2561 2562 2563 2564 2565 2566
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2567
	blk_mq_map_swqueue(q);
2568

2569
	blk_mq_sysfs_register(q);
2570
	blk_mq_debugfs_register_hctxs(q);
2571 2572
}

2573 2574 2575 2576
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2577 2578
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2579 2580 2581 2582 2583 2584
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2585
		blk_mq_free_rq_map(set->tags[i]);
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2625 2626 2627 2628 2629 2630 2631 2632
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2633 2634 2635 2636 2637 2638
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2639 2640
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2641 2642
	int ret;

2643 2644
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2645 2646
	if (!set->nr_hw_queues)
		return -EINVAL;
2647
	if (!set->queue_depth)
2648 2649 2650 2651
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2652
	if (!set->ops->queue_rq)
2653 2654
		return -EINVAL;

2655 2656 2657
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2658 2659 2660 2661 2662
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
2673 2674 2675 2676 2677
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2678

2679
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2680 2681
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2682
		return -ENOMEM;
2683

2684 2685 2686
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2687 2688 2689
	if (!set->mq_map)
		goto out_free_tags;

2690
	ret = blk_mq_update_queue_map(set);
2691 2692 2693 2694 2695
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2696
		goto out_free_mq_map;
2697

2698 2699 2700
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2701
	return 0;
2702 2703 2704 2705 2706

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2707 2708
	kfree(set->tags);
	set->tags = NULL;
2709
	return ret;
2710 2711 2712 2713 2714 2715 2716
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2717 2718
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2719

2720 2721 2722
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2723
	kfree(set->tags);
2724
	set->tags = NULL;
2725 2726 2727
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2728 2729 2730 2731 2732 2733
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2734
	if (!set)
2735 2736
		return -EINVAL;

2737 2738
	blk_mq_freeze_queue(q);

2739 2740
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2741 2742
		if (!hctx->tags)
			continue;
2743 2744 2745 2746
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2747
		if (!hctx->sched_tags) {
2748
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2749 2750 2751 2752 2753
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2754 2755 2756 2757 2758 2759 2760
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2761 2762
	blk_mq_unfreeze_queue(q);

2763 2764 2765
	return ret;
}

2766 2767
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
2768 2769 2770
{
	struct request_queue *q;

2771 2772
	lockdep_assert_held(&set->tag_list_lock);

2773 2774 2775 2776 2777 2778 2779 2780 2781
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2782
	blk_mq_update_queue_map(set);
2783 2784
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2785
		blk_mq_queue_reinit(q);
2786 2787 2788 2789 2790
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2791 2792 2793 2794 2795 2796 2797

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
2798 2799
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2826
	int bucket;
2827

2828 2829 2830 2831
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2832 2833
}

2834 2835 2836 2837 2838
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2839
	int bucket;
2840 2841 2842 2843 2844

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2845
	if (!blk_poll_stats_enable(q))
2846 2847 2848 2849 2850 2851 2852 2853
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2854 2855
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2856
	 */
2857 2858 2859 2860 2861 2862
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2863 2864 2865 2866

	return ret;
}

2867
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2868
				     struct blk_mq_hw_ctx *hctx,
2869 2870 2871 2872
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2873
	unsigned int nsecs;
2874 2875
	ktime_t kt;

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2894 2895 2896 2897 2898 2899 2900 2901
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
2902
	kt = nsecs;
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

2925 2926 2927 2928 2929
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2930 2931 2932 2933 2934 2935 2936
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2937
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2938 2939
		return true;

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2968
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2969 2970 2971 2972
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2973
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2974 2975 2976
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2977 2978
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2979
	else {
2980
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2981 2982 2983 2984 2985 2986 2987 2988 2989
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
2990 2991 2992 2993

	return __blk_mq_poll(hctx, rq);
}

2994 2995
static int __init blk_mq_init(void)
{
2996 2997 2998 2999 3000 3001
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

3002 3003
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3004 3005 3006
	return 0;
}
subsys_initcall(blk_mq_init);
反馈
建议
客服 返回
顶部