blk-mq.c 68.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86
void blk_freeze_queue_start(struct request_queue *q)
87
{
88
	int freeze_depth;
89

90 91
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
92
		percpu_ref_kill(&q->q_usage_counter);
93
		blk_mq_run_hw_queues(q, false);
94
	}
95
}
96
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
97

98
void blk_mq_freeze_queue_wait(struct request_queue *q)
99
{
100
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
101
}
102
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
103

104 105 106 107 108 109 110 111
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
112

113 114 115 116
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
117
void blk_freeze_queue(struct request_queue *q)
118
{
119 120 121 122 123 124 125
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
126
	blk_freeze_queue_start(q);
127 128
	blk_mq_freeze_queue_wait(q);
}
129 130 131 132 133 134 135 136 137

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
139

140
void blk_mq_unfreeze_queue(struct request_queue *q)
141
{
142
	int freeze_depth;
143

144 145 146
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
147
		percpu_ref_reinit(&q->q_usage_counter);
148
		wake_up_all(&q->mq_freeze_wq);
149
	}
150
}
151
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

167
/**
168
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
169 170 171
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
172 173 174
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
175 176 177 178 179 180 181
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

182
	blk_mq_quiesce_queue_nowait(q);
183

184 185
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
186
			synchronize_srcu(hctx->queue_rq_srcu);
187 188 189 190 191 192 193 194
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

195 196 197 198 199 200 201 202 203
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
204 205 206
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
207
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
208
	spin_unlock_irqrestore(q->queue_lock, flags);
209

210 211
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
212 213 214
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

215 216 217 218 219 220 221 222
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
223 224 225 226 227 228 229

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
230 231
}

232 233 234 235 236 237
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

238 239
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
240
{
241 242 243
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

244 245
	rq->rq_flags = 0;

246 247 248 249 250 251 252 253 254 255 256 257 258
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

259 260
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
261 262
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
263
	rq->cmd_flags = op;
264
	if (blk_queue_io_stat(data->q))
265
		rq->rq_flags |= RQF_IO_STAT;
266 267 268 269 270 271
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
272
	rq->start_time = jiffies;
273 274
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
275
	set_start_time_ns(rq);
276 277 278 279 280 281 282 283 284 285 286
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
287 288
	rq->timeout = 0;

289 290 291 292
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

293 294
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
295 296
}

297 298 299 300 301 302
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
303
	unsigned int tag;
304
	struct blk_mq_ctx *local_ctx = NULL;
305 306 307 308

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
309
		data->ctx = local_ctx = blk_mq_get_ctx(q);
310 311
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
312 313
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
314 315 316 317 318 319 320 321

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
322 323
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
324 325
	}

326 327
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
328 329 330 331
		if (local_ctx) {
			blk_mq_put_ctx(local_ctx);
			data->ctx = NULL;
		}
332 333
		blk_queue_exit(q);
		return NULL;
334 335
	}

336
	rq = blk_mq_rq_ctx_init(data, tag, op);
337 338
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
339
		if (e && e->type->ops.mq.prepare_request) {
340 341 342
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

343 344
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
345
		}
346 347 348
	}
	data->hctx->queued++;
	return rq;
349 350
}

351
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
352
		unsigned int flags)
353
{
354
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
355
	struct request *rq;
356
	int ret;
357

358
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
359 360
	if (ret)
		return ERR_PTR(ret);
361

362
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
363

364
	if (!rq)
365
		return ERR_PTR(-EWOULDBLOCK);
366

367 368 369
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

370 371 372
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
373 374
	return rq;
}
375
EXPORT_SYMBOL(blk_mq_alloc_request);
376

377 378
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
379
{
380
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
381
	struct request *rq;
382
	unsigned int cpu;
M
Ming Lin 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

401 402 403 404
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
405 406 407 408
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
409
	}
410 411
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
412

413
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
414

415 416 417
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

418 419
	blk_queue_exit(q);

420
	return rq;
M
Ming Lin 已提交
421 422 423
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

424
void blk_mq_free_request(struct request *rq)
425 426
{
	struct request_queue *q = rq->q;
427 428 429 430 431
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

432
	if (rq->rq_flags & RQF_ELVPRIV) {
433 434 435 436 437 438 439
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
440

441
	ctx->rq_completed[rq_is_sync(rq)]++;
442
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
443
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
444 445

	wbt_done(q->rq_wb, &rq->issue_stat);
446

447
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
448
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
449 450 451
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
452
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
453
	blk_mq_sched_restart(hctx);
454
	blk_queue_exit(q);
455
}
J
Jens Axboe 已提交
456
EXPORT_SYMBOL_GPL(blk_mq_free_request);
457

458
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
459
{
M
Ming Lei 已提交
460 461
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
462
	if (rq->end_io) {
J
Jens Axboe 已提交
463
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
464
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
465 466 467
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
468
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
469
	}
470
}
471
EXPORT_SYMBOL(__blk_mq_end_request);
472

473
void blk_mq_end_request(struct request *rq, blk_status_t error)
474 475 476
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
477
	__blk_mq_end_request(rq, error);
478
}
479
EXPORT_SYMBOL(blk_mq_end_request);
480

481
static void __blk_mq_complete_request_remote(void *data)
482
{
483
	struct request *rq = data;
484

485
	rq->q->softirq_done_fn(rq);
486 487
}

488
static void __blk_mq_complete_request(struct request *rq)
489 490
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
491
	bool shared = false;
492 493
	int cpu;

494 495 496 497 498 499 500
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
501
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
502 503 504
		rq->q->softirq_done_fn(rq);
		return;
	}
505 506

	cpu = get_cpu();
C
Christoph Hellwig 已提交
507 508 509 510
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
511
		rq->csd.func = __blk_mq_complete_request_remote;
512 513
		rq->csd.info = rq;
		rq->csd.flags = 0;
514
		smp_call_function_single_async(ctx->cpu, &rq->csd);
515
	} else {
516
		rq->q->softirq_done_fn(rq);
517
	}
518 519
	put_cpu();
}
520 521 522 523 524 525 526 527 528

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
529
void blk_mq_complete_request(struct request *rq)
530
{
531 532 533
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
534
		return;
535
	if (!blk_mark_rq_complete(rq))
536
		__blk_mq_complete_request(rq);
537 538
}
EXPORT_SYMBOL(blk_mq_complete_request);
539

540 541 542 543 544 545
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

546
void blk_mq_start_request(struct request *rq)
547 548 549
{
	struct request_queue *q = rq->q;

550 551
	blk_mq_sched_started_request(rq);

552 553
	trace_block_rq_issue(q, rq);

554
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
555
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
556
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
557
		wbt_issue(q->rq_wb, &rq->issue_stat);
558 559
	}

560
	blk_add_timer(rq);
561

562 563 564 565 566 567
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

568 569 570 571 572 573
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
574 575 576 577
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
578 579 580 581 582 583 584 585 586

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
587
}
588
EXPORT_SYMBOL(blk_mq_start_request);
589

590 591
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
592
 * flag isn't set yet, so there may be race with timeout handler,
593 594 595 596 597 598
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
599
static void __blk_mq_requeue_request(struct request *rq)
600 601 602 603
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
604
	wbt_requeue(q->rq_wb, &rq->issue_stat);
605
	blk_mq_sched_requeue_request(rq);
606

607 608 609 610
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
611 612
}

613
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
614 615 616 617
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
618
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
619 620 621
}
EXPORT_SYMBOL(blk_mq_requeue_request);

622 623 624
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
625
		container_of(work, struct request_queue, requeue_work.work);
626 627 628 629 630 631 632 633 634
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
635
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
636 637
			continue;

638
		rq->rq_flags &= ~RQF_SOFTBARRIER;
639
		list_del_init(&rq->queuelist);
640
		blk_mq_sched_insert_request(rq, true, false, false, true);
641 642 643 644 645
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
646
		blk_mq_sched_insert_request(rq, false, false, false, true);
647 648
	}

649
	blk_mq_run_hw_queues(q, false);
650 651
}

652 653
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
654 655 656 657 658 659 660 661
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
662
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
663 664 665

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
666
		rq->rq_flags |= RQF_SOFTBARRIER;
667 668 669 670 671
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
672 673 674

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
675 676 677 678 679
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
680
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
681 682 683
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

684 685 686 687 688 689 690 691
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

692 693
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
694 695
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
696
		return tags->rqs[tag];
697
	}
698 699

	return NULL;
700 701 702
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

703
struct blk_mq_timeout_data {
704 705
	unsigned long next;
	unsigned int next_set;
706 707
};

708
void blk_mq_rq_timed_out(struct request *req, bool reserved)
709
{
J
Jens Axboe 已提交
710
	const struct blk_mq_ops *ops = req->q->mq_ops;
711
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
712 713 714 715 716 717 718

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
719
	 * both flags will get cleared. So check here again, and ignore
720 721
	 * a timeout event with a request that isn't active.
	 */
722 723
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
724

725
	if (ops->timeout)
726
		ret = ops->timeout(req, reserved);
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
742
}
743

744 745 746 747
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
748

749
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
750
		return;
751

752 753 754 755 756 757 758 759 760 761 762 763 764
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
765 766
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
767
			blk_mq_rq_timed_out(rq, reserved);
768 769 770 771
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
772 773
}

774
static void blk_mq_timeout_work(struct work_struct *work)
775
{
776 777
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
778 779 780 781 782
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
783

784 785 786 787 788 789 790 791 792
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
793
	 * blk_freeze_queue_start, and the moment the last request is
794 795 796 797
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
798 799
		return;

800
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
801

802 803 804
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
805
	} else {
806 807
		struct blk_mq_hw_ctx *hctx;

808 809 810 811 812
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
813
	}
814
	blk_queue_exit(q);
815 816
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

835 836 837 838
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
839
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840
{
841 842 843 844
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
845

846
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847
}
848
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849

850 851 852 853
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
854

855
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 857
}

858 859
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
860 861 862 863 864 865 866
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

867 868
	might_sleep_if(wait);

869 870
	if (rq->tag != -1)
		goto done;
871

872 873 874
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

875 876
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
877 878 879 880
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
881 882 883
		data.hctx->tags->rqs[rq->tag] = rq;
	}

884 885 886 887
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
888 889
}

890 891
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
892 893 894 895 896 897 898 899 900 901
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

946
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
947 948 949 950 951 952
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

953
	list_del(&wait->entry);
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

984
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
985
{
986
	struct blk_mq_hw_ctx *hctx;
987
	struct request *rq;
988
	int errors, queued;
989

990 991 992
	if (list_empty(list))
		return false;

993 994 995
	/*
	 * Now process all the entries, sending them to the driver.
	 */
996
	errors = queued = 0;
997
	do {
998
		struct blk_mq_queue_data bd;
999
		blk_status_t ret;
1000

1001
		rq = list_first_entry(list, struct request, queuelist);
1002 1003 1004
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1005 1006

			/*
1007 1008
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1009
			 */
1010 1011 1012 1013 1014 1015 1016 1017 1018
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1019
				break;
1020
		}
1021

1022 1023
		list_del_init(&rq->queuelist);

1024
		bd.rq = rq;
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1038 1039

		ret = q->mq_ops->queue_rq(hctx, &bd);
1040
		if (ret == BLK_STS_RESOURCE) {
1041
			blk_mq_put_driver_tag_hctx(hctx, rq);
1042
			list_add(&rq->queuelist, list);
1043
			__blk_mq_requeue_request(rq);
1044
			break;
1045 1046 1047
		}

		if (unlikely(ret != BLK_STS_OK)) {
1048
			errors++;
1049
			blk_mq_end_request(rq, BLK_STS_IOERR);
1050
			continue;
1051 1052
		}

1053
		queued++;
1054
	} while (!list_empty(list));
1055

1056
	hctx->dispatched[queued_to_index(queued)]++;
1057 1058 1059 1060 1061

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1062
	if (!list_empty(list)) {
1063
		/*
1064 1065
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1066 1067 1068 1069
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1070
		spin_lock(&hctx->lock);
1071
		list_splice_init(list, &hctx->dispatch);
1072
		spin_unlock(&hctx->lock);
1073

1074
		/*
1075 1076 1077
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1078
		 *
1079 1080 1081 1082
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1083
		 *
1084 1085 1086 1087 1088 1089 1090
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1091
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1092
		 *   and dm-rq.
1093
		 */
1094 1095
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1096
			blk_mq_run_hw_queue(hctx, true);
1097
	}
1098

1099
	return (queued + errors) != 0;
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1111
		blk_mq_sched_dispatch_requests(hctx);
1112 1113
		rcu_read_unlock();
	} else {
1114 1115
		might_sleep();

1116
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1117
		blk_mq_sched_dispatch_requests(hctx);
1118
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1119 1120 1121
	}
}

1122 1123 1124 1125 1126 1127 1128 1129
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1130 1131
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1132 1133

	if (--hctx->next_cpu_batch <= 0) {
1134
		int next_cpu;
1135 1136 1137 1138 1139 1140 1141 1142 1143

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1144
	return hctx->next_cpu;
1145 1146
}

1147 1148
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1149
{
1150 1151 1152 1153
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1154 1155
		return;

1156
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1157 1158
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1159
			__blk_mq_run_hw_queue(hctx);
1160
			put_cpu();
1161 1162
			return;
		}
1163

1164
		put_cpu();
1165
	}
1166

1167 1168 1169
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1181
}
O
Omar Sandoval 已提交
1182
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1183

1184
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1185 1186 1187 1188 1189
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1190
		if (!blk_mq_hctx_has_pending(hctx) ||
1191
		    blk_mq_hctx_stopped(hctx))
1192 1193
			continue;

1194
		blk_mq_run_hw_queue(hctx, async);
1195 1196
	}
}
1197
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1219 1220 1221 1222 1223 1224 1225 1226 1227
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1228 1229
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1230
	cancel_delayed_work(&hctx->run_work);
1231

1232
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1233
}
1234
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1245 1246
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1247 1248 1249 1250 1251
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1252 1253 1254
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1255 1256 1257
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1258

1259
	blk_mq_run_hw_queue(hctx, false);
1260 1261 1262
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1283
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1284 1285 1286 1287
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1288 1289
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1290 1291 1292
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1293
static void blk_mq_run_work_fn(struct work_struct *work)
1294 1295 1296
{
	struct blk_mq_hw_ctx *hctx;

1297
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1298

1299 1300 1301 1302 1303 1304 1305 1306
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1307

1308 1309 1310
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1311 1312 1313 1314

	__blk_mq_run_hw_queue(hctx);
}

1315 1316 1317

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1318
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1319
		return;
1320

1321 1322 1323 1324 1325
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1326
	blk_mq_stop_hw_queue(hctx);
1327 1328 1329 1330
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1331 1332 1333
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1334 1335 1336
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1337
{
J
Jens Axboe 已提交
1338 1339
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1340 1341
	lockdep_assert_held(&ctx->lock);

1342 1343
	trace_block_rq_insert(hctx->queue, rq);

1344 1345 1346 1347
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1348
}
1349

1350 1351
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1352 1353 1354
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1355 1356
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1357
	__blk_mq_insert_req_list(hctx, rq, at_head);
1358 1359 1360
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1361 1362
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1374
		BUG_ON(rq->mq_ctx != ctx);
1375
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1376
		__blk_mq_insert_req_list(hctx, rq, false);
1377
	}
1378
	blk_mq_hctx_mark_pending(hctx, ctx);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1415 1416 1417 1418
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1435 1436 1437
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1438 1439 1440 1441 1442
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1443
	blk_init_request_from_bio(rq, bio);
1444

1445
	blk_account_io_start(rq, true);
1446 1447
}

1448 1449 1450 1451 1452 1453
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1454 1455 1456 1457 1458 1459 1460
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1461
}
1462

1463 1464
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1465 1466 1467 1468
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1469 1470
}

M
Ming Lei 已提交
1471 1472 1473
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1474 1475 1476 1477
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1478
		.last = true,
1479
	};
1480
	blk_qc_t new_cookie;
1481
	blk_status_t ret;
M
Ming Lei 已提交
1482 1483
	bool run_queue = true;

1484 1485
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1486 1487 1488
		run_queue = false;
		goto insert;
	}
1489

1490
	if (q->elevator)
1491 1492
		goto insert;

M
Ming Lei 已提交
1493
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1494 1495 1496 1497
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1498 1499 1500 1501 1502 1503
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1504 1505
	switch (ret) {
	case BLK_STS_OK:
1506
		*cookie = new_cookie;
1507
		return;
1508 1509 1510 1511
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1512
		*cookie = BLK_QC_T_NONE;
1513
		blk_mq_end_request(rq, ret);
1514
		return;
1515
	}
1516

1517
insert:
M
Ming Lei 已提交
1518
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1519 1520
}

1521 1522 1523 1524 1525
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1526
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1527 1528
		rcu_read_unlock();
	} else {
1529 1530 1531 1532
		unsigned int srcu_idx;

		might_sleep();

1533
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1534
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1535
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1536 1537 1538
	}
}

1539
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1540
{
1541
	const int is_sync = op_is_sync(bio->bi_opf);
1542
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1543
	struct blk_mq_alloc_data data = { .flags = 0 };
1544
	struct request *rq;
1545
	unsigned int request_count = 0;
1546
	struct blk_plug *plug;
1547
	struct request *same_queue_rq = NULL;
1548
	blk_qc_t cookie;
J
Jens Axboe 已提交
1549
	unsigned int wb_acct;
1550 1551 1552

	blk_queue_bounce(q, &bio);

1553
	blk_queue_split(q, &bio);
1554

1555
	if (!bio_integrity_prep(bio))
1556
		return BLK_QC_T_NONE;
1557

1558 1559 1560
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1561

1562 1563 1564
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1565 1566
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1567 1568
	trace_block_getrq(q, bio, bio->bi_opf);

1569
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1570 1571
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1572 1573
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1574
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1575 1576 1577
	}

	wbt_track(&rq->issue_stat, wb_acct);
1578

1579
	cookie = request_to_qc_t(data.hctx, rq);
1580

1581
	plug = current->plug;
1582
	if (unlikely(is_flush_fua)) {
1583
		blk_mq_put_ctx(data.ctx);
1584
		blk_mq_bio_to_request(rq, bio);
1585 1586 1587
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1588
		} else {
1589 1590
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1591
		}
1592
	} else if (plug && q->nr_hw_queues == 1) {
1593 1594
		struct request *last = NULL;

1595
		blk_mq_put_ctx(data.ctx);
1596
		blk_mq_bio_to_request(rq, bio);
1597 1598 1599 1600 1601 1602 1603

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1604 1605 1606
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1607
		if (!request_count)
1608
			trace_block_plug(q);
1609 1610
		else
			last = list_entry_rq(plug->mq_list.prev);
1611

1612 1613
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1614 1615
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1616
		}
1617

1618
		list_add_tail(&rq->queuelist, &plug->mq_list);
1619
	} else if (plug && !blk_queue_nomerges(q)) {
1620
		blk_mq_bio_to_request(rq, bio);
1621 1622

		/*
1623
		 * We do limited plugging. If the bio can be merged, do that.
1624 1625
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1626 1627
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1628
		 */
1629 1630 1631 1632 1633 1634
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1635 1636
		blk_mq_put_ctx(data.ctx);

1637 1638 1639
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1640 1641
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1642
		}
1643
	} else if (q->nr_hw_queues > 1 && is_sync) {
1644
		blk_mq_put_ctx(data.ctx);
1645 1646
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1647
	} else if (q->elevator) {
1648
		blk_mq_put_ctx(data.ctx);
1649
		blk_mq_bio_to_request(rq, bio);
1650
		blk_mq_sched_insert_request(rq, false, true, true, true);
1651
	} else {
1652
		blk_mq_put_ctx(data.ctx);
1653 1654
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1655
		blk_mq_run_hw_queue(data.hctx, true);
1656
	}
1657

1658
	return cookie;
1659 1660
}

1661 1662
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1663
{
1664
	struct page *page;
1665

1666
	if (tags->rqs && set->ops->exit_request) {
1667
		int i;
1668

1669
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1670 1671 1672
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1673
				continue;
1674
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1675
			tags->static_rqs[i] = NULL;
1676
		}
1677 1678
	}

1679 1680
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1681
		list_del_init(&page->lru);
1682 1683 1684 1685 1686
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1687 1688
		__free_pages(page, page->private);
	}
1689
}
1690

1691 1692
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1693
	kfree(tags->rqs);
1694
	tags->rqs = NULL;
J
Jens Axboe 已提交
1695 1696
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1697

1698
	blk_mq_free_tags(tags);
1699 1700
}

1701 1702 1703 1704
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1705
{
1706
	struct blk_mq_tags *tags;
1707
	int node;
1708

1709 1710 1711 1712 1713
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1714
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1715 1716
	if (!tags)
		return NULL;
1717

1718
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1719
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1720
				 node);
1721 1722 1723 1724
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1725

J
Jens Axboe 已提交
1726 1727
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1728
				 node);
J
Jens Axboe 已提交
1729 1730 1731 1732 1733 1734
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1748 1749 1750 1751 1752
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1753 1754 1755

	INIT_LIST_HEAD(&tags->page_list);

1756 1757 1758 1759
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1760
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1761
				cache_line_size());
1762
	left = rq_size * depth;
1763

1764
	for (i = 0; i < depth; ) {
1765 1766 1767 1768 1769
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1770
		while (this_order && left < order_to_size(this_order - 1))
1771 1772 1773
			this_order--;

		do {
1774
			page = alloc_pages_node(node,
1775
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1776
				this_order);
1777 1778 1779 1780 1781 1782 1783 1784 1785
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1786
			goto fail;
1787 1788

		page->private = this_order;
1789
		list_add_tail(&page->lru, &tags->page_list);
1790 1791

		p = page_address(page);
1792 1793 1794 1795
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1796
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1797
		entries_per_page = order_to_size(this_order) / rq_size;
1798
		to_do = min(entries_per_page, depth - i);
1799 1800
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1801 1802 1803
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1804
			if (set->ops->init_request) {
1805
				if (set->ops->init_request(set, rq, hctx_idx,
1806
						node)) {
J
Jens Axboe 已提交
1807
					tags->static_rqs[i] = NULL;
1808
					goto fail;
1809
				}
1810 1811
			}

1812 1813 1814 1815
			p += rq_size;
			i++;
		}
	}
1816
	return 0;
1817

1818
fail:
1819 1820
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1821 1822
}

J
Jens Axboe 已提交
1823 1824 1825 1826 1827
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1828
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1829
{
1830
	struct blk_mq_hw_ctx *hctx;
1831 1832 1833
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1834
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1835
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1836 1837 1838 1839 1840 1841 1842 1843 1844

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1845
		return 0;
1846

J
Jens Axboe 已提交
1847 1848 1849
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1850 1851

	blk_mq_run_hw_queue(hctx, true);
1852
	return 0;
1853 1854
}

1855
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1856
{
1857 1858
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1859 1860
}

1861
/* hctx->ctxs will be freed in queue's release handler */
1862 1863 1864 1865
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1866 1867
	blk_mq_debugfs_unregister_hctx(hctx);

1868 1869
	blk_mq_tag_idle(hctx);

1870
	if (set->ops->exit_request)
1871
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1872

1873 1874
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1875 1876 1877
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1878
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1879
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1880

1881
	blk_mq_remove_cpuhp(hctx);
1882
	blk_free_flush_queue(hctx->fq);
1883
	sbitmap_free(&hctx->ctx_map);
1884 1885
}

M
Ming Lei 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1895
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1896 1897 1898
	}
}

1899 1900 1901
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1902
{
1903 1904 1905 1906 1907 1908
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1909
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1910 1911 1912
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
1913
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1914

1915
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1916 1917

	hctx->tags = set->tags[hctx_idx];
1918 1919

	/*
1920 1921
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1922
	 */
1923 1924 1925 1926
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1927

1928 1929
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1930
		goto free_ctxs;
1931

1932
	hctx->nr_ctx = 0;
1933

1934 1935 1936
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1937

1938 1939 1940
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1941 1942
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1943
		goto sched_exit_hctx;
1944

1945
	if (set->ops->init_request &&
1946 1947
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1948
		goto free_fq;
1949

1950
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1951
		init_srcu_struct(hctx->queue_rq_srcu);
1952

1953 1954
	blk_mq_debugfs_register_hctx(q, hctx);

1955
	return 0;
1956

1957 1958
 free_fq:
	kfree(hctx->fq);
1959 1960
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1961 1962 1963
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1964
 free_bitmap:
1965
	sbitmap_free(&hctx->ctx_map);
1966 1967 1968
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1969
	blk_mq_remove_cpuhp(hctx);
1970 1971
	return -1;
}
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

1987 1988
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
1989 1990
			continue;

C
Christoph Hellwig 已提交
1991
		hctx = blk_mq_map_queue(q, i);
1992

1993 1994 1995 1996 1997
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1998
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1999 2000 2001
	}
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2024 2025 2026 2027 2028
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2029 2030
}

2031
static void blk_mq_map_swqueue(struct request_queue *q)
2032
{
2033
	unsigned int i, hctx_idx;
2034 2035
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2036
	struct blk_mq_tag_set *set = q->tag_set;
2037

2038 2039 2040 2041 2042
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2043
	queue_for_each_hw_ctx(q, hctx, i) {
2044
		cpumask_clear(hctx->cpumask);
2045 2046 2047 2048
		hctx->nr_ctx = 0;
	}

	/*
2049 2050 2051
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2052
	 */
2053
	for_each_present_cpu(i) {
2054 2055
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2056 2057
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2058 2059 2060 2061 2062 2063
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2064
			q->mq_map[i] = 0;
2065 2066
		}

2067
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2068
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2069

2070
		cpumask_set_cpu(i, hctx->cpumask);
2071 2072 2073
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2074

2075 2076
	mutex_unlock(&q->sysfs_lock);

2077
	queue_for_each_hw_ctx(q, hctx, i) {
2078
		/*
2079 2080
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2081 2082
		 */
		if (!hctx->nr_ctx) {
2083 2084 2085 2086
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2087 2088 2089
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2090
			hctx->tags = NULL;
2091 2092 2093
			continue;
		}

M
Ming Lei 已提交
2094 2095 2096
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2097 2098 2099 2100 2101
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2102
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2103

2104 2105 2106
		/*
		 * Initialize batch roundrobin counts
		 */
2107 2108 2109
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2110 2111
}

2112 2113 2114 2115
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2116
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2117 2118 2119 2120
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2121
	queue_for_each_hw_ctx(q, hctx, i) {
2122 2123 2124
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2125
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2126 2127 2128
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2129
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2130
		}
2131 2132 2133
	}
}

2134 2135
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2136 2137
{
	struct request_queue *q;
2138

2139 2140
	lockdep_assert_held(&set->tag_list_lock);

2141 2142
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2143
		queue_set_hctx_shared(q, shared);
2144 2145 2146 2147 2148 2149 2150 2151 2152
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2153 2154
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2155 2156 2157 2158 2159 2160
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2161
	mutex_unlock(&set->tag_list_lock);
2162 2163

	synchronize_rcu();
2164 2165 2166 2167 2168 2169 2170 2171
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2172 2173 2174 2175 2176 2177 2178 2179 2180

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2181
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2182

2183 2184 2185
	mutex_unlock(&set->tag_list_lock);
}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2198 2199 2200
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2201
		kobject_put(&hctx->kobj);
2202
	}
2203

2204 2205
	q->mq_map = NULL;

2206 2207
	kfree(q->queue_hw_ctx);

2208 2209 2210 2211 2212 2213
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2214 2215 2216
	free_percpu(q->queue_ctx);
}

2217
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2247 2248
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2249
{
K
Keith Busch 已提交
2250 2251
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2252

K
Keith Busch 已提交
2253
	blk_mq_sysfs_unregister(q);
2254
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2255
		int node;
2256

K
Keith Busch 已提交
2257 2258 2259 2260
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2261
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2262
					GFP_KERNEL, node);
2263
		if (!hctxs[i])
K
Keith Busch 已提交
2264
			break;
2265

2266
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2267 2268 2269 2270 2271
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2272

2273
		atomic_set(&hctxs[i]->nr_active, 0);
2274
		hctxs[i]->numa_node = node;
2275
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2276 2277 2278 2279 2280 2281 2282 2283

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2284
	}
K
Keith Busch 已提交
2285 2286 2287 2288
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2289 2290
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2304 2305 2306
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2307
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2308 2309
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2310 2311 2312
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2313 2314
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2315
		goto err_exit;
K
Keith Busch 已提交
2316

2317 2318 2319
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2320 2321 2322 2323 2324
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2325
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2326 2327 2328 2329

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2330

2331
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2332
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2333 2334 2335

	q->nr_queues = nr_cpu_ids;

2336
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2337

2338 2339 2340
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2341 2342
	q->sg_reserved_size = INT_MAX;

2343
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2344 2345 2346
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2347
	blk_queue_make_request(q, blk_mq_make_request);
2348

2349 2350 2351 2352 2353
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2354 2355 2356 2357 2358
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2359 2360
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2361

2362
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2363
	blk_mq_add_queue_tag_set(set, q);
2364
	blk_mq_map_swqueue(q);
2365

2366 2367 2368 2369 2370 2371 2372 2373
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2374
	return q;
2375

2376
err_hctxs:
K
Keith Busch 已提交
2377
	kfree(q->queue_hw_ctx);
2378
err_percpu:
K
Keith Busch 已提交
2379
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2380 2381
err_exit:
	q->mq_ops = NULL;
2382 2383
	return ERR_PTR(-ENOMEM);
}
2384
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2385 2386 2387

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2388
	struct blk_mq_tag_set	*set = q->tag_set;
2389

2390
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2391
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2392 2393 2394
}

/* Basically redo blk_mq_init_queue with queue frozen */
2395
static void blk_mq_queue_reinit(struct request_queue *q)
2396
{
2397
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2398

2399
	blk_mq_debugfs_unregister_hctxs(q);
2400 2401
	blk_mq_sysfs_unregister(q);

2402 2403 2404 2405 2406 2407
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2408
	blk_mq_map_swqueue(q);
2409

2410
	blk_mq_sysfs_register(q);
2411
	blk_mq_debugfs_register_hctxs(q);
2412 2413
}

2414 2415 2416 2417
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2418 2419
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2420 2421 2422 2423 2424 2425
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2426
		blk_mq_free_rq_map(set->tags[i]);
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2466 2467 2468 2469 2470 2471 2472 2473
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2474 2475 2476 2477 2478 2479
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2480 2481
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2482 2483
	int ret;

B
Bart Van Assche 已提交
2484 2485
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2486 2487
	if (!set->nr_hw_queues)
		return -EINVAL;
2488
	if (!set->queue_depth)
2489 2490 2491 2492
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2493
	if (!set->ops->queue_rq)
2494 2495
		return -EINVAL;

2496 2497 2498 2499 2500
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2501

2502 2503 2504 2505 2506 2507 2508 2509 2510
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2511 2512 2513 2514 2515
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2516

K
Keith Busch 已提交
2517
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2518 2519
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2520
		return -ENOMEM;
2521

2522 2523 2524
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2525 2526 2527
	if (!set->mq_map)
		goto out_free_tags;

2528
	ret = blk_mq_update_queue_map(set);
2529 2530 2531 2532 2533
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2534
		goto out_free_mq_map;
2535

2536 2537 2538
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2539
	return 0;
2540 2541 2542 2543 2544

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2545 2546
	kfree(set->tags);
	set->tags = NULL;
2547
	return ret;
2548 2549 2550 2551 2552 2553 2554
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2555 2556
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2557

2558 2559 2560
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2561
	kfree(set->tags);
2562
	set->tags = NULL;
2563 2564 2565
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2566 2567 2568 2569 2570 2571
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2572
	if (!set)
2573 2574
		return -EINVAL;

2575 2576
	blk_mq_freeze_queue(q);

2577 2578
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2579 2580
		if (!hctx->tags)
			continue;
2581 2582 2583 2584
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2585 2586 2587 2588 2589 2590 2591 2592
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2593 2594 2595 2596 2597 2598 2599
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2600 2601
	blk_mq_unfreeze_queue(q);

2602 2603 2604
	return ret;
}

2605 2606
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2607 2608 2609
{
	struct request_queue *q;

2610 2611
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2621
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2622 2623
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2624
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2625 2626 2627 2628 2629
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2630 2631 2632 2633 2634 2635 2636

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2637 2638
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2665
	int bucket;
2666

2667 2668 2669 2670
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2671 2672
}

2673 2674 2675 2676 2677
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2678
	int bucket;
2679 2680 2681 2682 2683

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2684
	if (!blk_poll_stats_enable(q))
2685 2686 2687 2688 2689 2690 2691 2692
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2693 2694
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2695
	 */
2696 2697 2698 2699 2700 2701
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2702 2703 2704 2705

	return ret;
}

2706
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2707
				     struct blk_mq_hw_ctx *hctx,
2708 2709 2710 2711
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2712
	unsigned int nsecs;
2713 2714
	ktime_t kt;

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2733 2734 2735 2736 2737 2738 2739 2740
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2741
	kt = nsecs;
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2764 2765 2766 2767 2768
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2769 2770 2771 2772 2773 2774 2775
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2776
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2777 2778
		return true;

J
Jens Axboe 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2822 2823
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2824
	else {
2825
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2826 2827 2828 2829 2830 2831 2832 2833 2834
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2835 2836 2837 2838 2839

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2840 2841
static int __init blk_mq_init(void)
{
2842 2843
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2844 2845 2846
	return 0;
}
subsys_initcall(blk_mq_init);