blk-mq.c 47.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
23
#include <linux/crash_dump.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

44 45
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
46 47 48 49 50
			return true;

	return false;
}

51 52 53 54 55 56 57 58 59
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

60 61 62 63 64 65
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
66 67 68 69 70 71 72 73 74 75 76 77
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 79 80 81
}

static int blk_mq_queue_enter(struct request_queue *q)
{
82 83
	while (true) {
		int ret;
84

85 86
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
87

88 89 90 91 92 93 94
		ret = wait_event_interruptible(q->mq_freeze_wq,
				!q->mq_freeze_depth || blk_queue_dying(q));
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
95 96 97 98
}

static void blk_mq_queue_exit(struct request_queue *q)
{
99 100 101 102 103 104 105 106 107
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
108 109
}

110 111 112 113 114
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
115
{
116 117
	bool freeze;

118
	spin_lock_irq(q->queue_lock);
119
	freeze = !q->mq_freeze_depth++;
120 121
	spin_unlock_irq(q->queue_lock);

122 123 124 125
	if (freeze) {
		percpu_ref_kill(&q->mq_usage_counter);
		blk_mq_run_queues(q, false);
	}
126
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
127 128
}

129 130
static void blk_mq_unfreeze_queue(struct request_queue *q)
{
131
	bool wake;
132 133

	spin_lock_irq(q->queue_lock);
134 135
	wake = !--q->mq_freeze_depth;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
136
	spin_unlock_irq(q->queue_lock);
137 138
	if (wake) {
		percpu_ref_reinit(&q->mq_usage_counter);
139
		wake_up_all(&q->mq_freeze_wq);
140
	}
141 142 143 144 145 146 147 148
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

149 150
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
151
{
152 153 154
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

155 156 157
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
158
	rq->mq_ctx = ctx;
159
	rq->cmd_flags |= rw_flags;
160 161 162 163 164 165
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
166
	rq->start_time = jiffies;
167 168
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
169
	set_start_time_ns(rq);
170 171 172 173 174 175 176 177 178 179
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

180 181
	rq->cmd = rq->__cmd;

182 183 184 185 186 187
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
188 189
	rq->timeout = 0;

190 191 192 193
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

194 195 196
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

197
static struct request *
198
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
199 200 201 202
{
	struct request *rq;
	unsigned int tag;

203
	tag = blk_mq_get_tag(data);
204
	if (tag != BLK_MQ_TAG_FAIL) {
205
		rq = data->hctx->tags->rqs[tag];
206

207
		if (blk_mq_tag_busy(data->hctx)) {
208
			rq->cmd_flags = REQ_MQ_INFLIGHT;
209
			atomic_inc(&data->hctx->nr_active);
210 211 212
		}

		rq->tag = tag;
213
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
214 215 216 217 218 219
		return rq;
	}

	return NULL;
}

220 221
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
222
{
223 224
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
225
	struct request *rq;
226
	struct blk_mq_alloc_data alloc_data;
227
	int ret;
228

229 230 231
	ret = blk_mq_queue_enter(q);
	if (ret)
		return ERR_PTR(ret);
232

233 234
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
235 236
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
237

238
	rq = __blk_mq_alloc_request(&alloc_data, rw);
239 240 241 242 243 244
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 246 247 248
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
249 250
	}
	blk_mq_put_ctx(ctx);
251 252
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);
253 254
	return rq;
}
255
EXPORT_SYMBOL(blk_mq_alloc_request);
256 257 258 259 260 261 262

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

263 264
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
265
	rq->cmd_flags = 0;
266

267
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
268
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/*
 * Clone all relevant state from a request that has been put on hold in
 * the flush state machine into the preallocated flush request that hangs
 * off the request queue.
 *
 * For a driver the flush request should be invisible, that's why we are
 * impersonating the original request here.
 */
void blk_mq_clone_flush_request(struct request *flush_rq,
		struct request *orig_rq)
{
	struct blk_mq_hw_ctx *hctx =
		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);

	flush_rq->mq_ctx = orig_rq->mq_ctx;
	flush_rq->tag = orig_rq->tag;
	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
		hctx->cmd_size);
}

304
inline void __blk_mq_end_request(struct request *rq, int error)
305
{
M
Ming Lei 已提交
306 307
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
308
	if (rq->end_io) {
309
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
310 311 312
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
313
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
314
	}
315
}
316
EXPORT_SYMBOL(__blk_mq_end_request);
317

318
void blk_mq_end_request(struct request *rq, int error)
319 320 321
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
322
	__blk_mq_end_request(rq, error);
323
}
324
EXPORT_SYMBOL(blk_mq_end_request);
325

326
static void __blk_mq_complete_request_remote(void *data)
327
{
328
	struct request *rq = data;
329

330
	rq->q->softirq_done_fn(rq);
331 332
}

333
static void blk_mq_ipi_complete_request(struct request *rq)
334 335
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
336
	bool shared = false;
337 338
	int cpu;

C
Christoph Hellwig 已提交
339
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 341 342
		rq->q->softirq_done_fn(rq);
		return;
	}
343 344

	cpu = get_cpu();
C
Christoph Hellwig 已提交
345 346 347 348
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349
		rq->csd.func = __blk_mq_complete_request_remote;
350 351
		rq->csd.info = rq;
		rq->csd.flags = 0;
352
		smp_call_function_single_async(ctx->cpu, &rq->csd);
353
	} else {
354
		rq->q->softirq_done_fn(rq);
355
	}
356 357
	put_cpu();
}
358

359 360 361 362 363
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
364
		blk_mq_end_request(rq, rq->errors);
365 366 367 368
	else
		blk_mq_ipi_complete_request(rq);
}

369 370 371 372 373 374 375 376 377 378
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
379 380 381
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
382
		return;
383 384
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
385 386
}
EXPORT_SYMBOL(blk_mq_complete_request);
387

388
void blk_mq_start_request(struct request *rq)
389 390 391 392 393
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
394
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
395 396
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
397

398
	blk_add_timer(rq);
399

400 401 402 403 404 405
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

406 407 408 409 410 411
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
412 413 414 415
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
416 417 418 419 420 421 422 423 424

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
425
}
426
EXPORT_SYMBOL(blk_mq_start_request);
427

428
static void __blk_mq_requeue_request(struct request *rq)
429 430 431 432
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
433

434 435 436 437
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
438 439
}

440 441 442 443 444
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
445
	blk_mq_add_to_requeue_list(rq, true);
446 447 448
}
EXPORT_SYMBOL(blk_mq_requeue_request);

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

476 477 478 479 480
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

511 512
static inline bool is_flush_request(struct request *rq,
		struct blk_flush_queue *fq, unsigned int tag)
513
{
514
	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
515
			fq->flush_rq->tag == tag);
516 517 518 519 520
}

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	struct request *rq = tags->rqs[tag];
521 522
	/* mq_ctx of flush rq is always cloned from the corresponding req */
	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
523

524
	if (!is_flush_request(rq, fq, tag))
525
		return rq;
526

527
	return fq->flush_rq;
528 529 530
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

531 532 533 534 535
struct blk_mq_timeout_data {
	unsigned long next;
	unsigned int next_set;
};

536
void blk_mq_rq_timed_out(struct request *req, bool reserved)
537
{
538 539
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
540 541 542 543 544 545 546 547 548 549

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
550 551
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
552

553
	if (ops->timeout)
554
		ret = ops->timeout(req, reserved);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
570
}
571 572 573 574 575
		
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
576

577 578 579 580 581
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return;

	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
582
			blk_mq_rq_timed_out(rq, reserved);
583 584 585 586
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
587 588 589
}

static void blk_mq_rq_timer(unsigned long priv)
590
{
591 592 593 594 595
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
596
	struct blk_mq_hw_ctx *hctx;
597
	int i;
598

599 600 601 602 603 604 605 606
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
		if (!hctx->nr_ctx || !hctx->tags)
			continue;

607
		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
608
	}
609

610 611 612
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
613 614 615 616
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

692 693 694 695 696 697 698 699 700 701 702
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
703
	int queued;
704

705
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
706

707
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
708 709 710 711 712 713 714
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
715
	flush_busy_ctxs(hctx, &rq_list);
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Now process all the entries, sending them to the driver.
	 */
731
	queued = 0;
732 733 734 735 736 737
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

C
Christoph Hellwig 已提交
738
		ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
739 740 741 742 743 744
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
745
			__blk_mq_requeue_request(rq);
746 747 748 749
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
750
			rq->errors = -EIO;
751
			blk_mq_end_request(rq, rq->errors);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

799 800
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
801
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
802 803
		return;

804
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
805
		__blk_mq_run_hw_queue(hctx);
806
	else if (hctx->queue->nr_hw_queues == 1)
807
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
808 809 810
	else {
		unsigned int cpu;

811
		cpu = blk_mq_hctx_next_cpu(hctx);
812
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
813
	}
814 815 816 817 818 819 820 821 822 823
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
824
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
825 826
			continue;

827
		preempt_disable();
828
		blk_mq_run_hw_queue(hctx, async);
829
		preempt_enable();
830 831 832 833 834 835
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
836 837
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
838 839 840 841
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

842 843 844 845 846 847 848 849 850 851
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

852 853 854
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
855 856

	preempt_disable();
857
	blk_mq_run_hw_queue(hctx, false);
858
	preempt_enable();
859 860 861
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

862 863 864 865 866 867 868 869 870 871 872
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


873
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
874 875 876 877 878 879 880 881 882
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
883
		preempt_disable();
884
		blk_mq_run_hw_queue(hctx, async);
885
		preempt_enable();
886 887 888 889
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

890
static void blk_mq_run_work_fn(struct work_struct *work)
891 892 893
{
	struct blk_mq_hw_ctx *hctx;

894
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
895

896 897 898
	__blk_mq_run_hw_queue(hctx);
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

918
		cpu = blk_mq_hctx_next_cpu(hctx);
919 920 921 922 923
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

924
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
925
				    struct request *rq, bool at_head)
926 927 928
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

929 930
	trace_block_rq_insert(hctx->queue, rq);

931 932 933 934
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
935

936 937 938
	blk_mq_hctx_mark_pending(hctx, ctx);
}

939 940
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
941
{
942
	struct request_queue *q = rq->q;
943
	struct blk_mq_hw_ctx *hctx;
944 945 946 947 948
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
949 950 951

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

952 953 954
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
955 956 957

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
958 959

	blk_mq_put_ctx(current_ctx);
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
991
		__blk_mq_insert_request(hctx, rq, false);
992 993 994 995
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
996
	blk_mq_put_ctx(current_ctx);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1059

1060
	if (blk_do_io_stat(rq))
1061
		blk_account_io_start(rq, 1);
1062 1063
}

1064 1065 1066 1067 1068 1069
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1070 1071 1072
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1073
{
1074
	if (!hctx_allow_merges(hctx)) {
1075 1076 1077 1078 1079 1080 1081
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1082 1083
		struct request_queue *q = hctx->queue;

1084 1085 1086 1087 1088
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1089

1090 1091 1092
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1093
	}
1094
}
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1109
	struct blk_mq_alloc_data alloc_data;
1110

1111
	if (unlikely(blk_mq_queue_enter(q))) {
1112
		bio_endio(bio, -EIO);
1113
		return NULL;
1114 1115 1116 1117 1118
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1119
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1120
		rw |= REQ_SYNC;
1121

1122
	trace_block_getrq(q, bio, rw);
1123 1124 1125
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1126
	if (unlikely(!rq)) {
1127
		__blk_mq_run_hw_queue(hctx);
1128 1129
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1130 1131

		ctx = blk_mq_get_ctx(q);
1132
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1133 1134 1135 1136 1137
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1138 1139 1140
	}

	hctx->queued++;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
C
Christoph Hellwig 已提交
1185
		ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1186 1187 1188 1189 1190 1191 1192
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
1193
				blk_mq_end_request(rq, rq->errors);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1243 1244
	if (unlikely(!rq))
		return;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1262
			if (list_empty(&plug->mq_list))
1263 1264 1265 1266 1267 1268
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1269
			blk_mq_put_ctx(data.ctx);
1270 1271 1272 1273
			return;
		}
	}

1274 1275 1276 1277 1278 1279 1280 1281 1282
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1283 1284
	}

1285
	blk_mq_put_ctx(data.ctx);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1297 1298
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1299
{
1300
	struct page *page;
1301

1302
	if (tags->rqs && set->ops->exit_request) {
1303
		int i;
1304

1305 1306
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1307
				continue;
1308 1309
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1310
			tags->rqs[i] = NULL;
1311
		}
1312 1313
	}

1314 1315
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1316
		list_del_init(&page->lru);
1317 1318 1319
		__free_pages(page, page->private);
	}

1320
	kfree(tags->rqs);
1321

1322
	blk_mq_free_tags(tags);
1323 1324 1325 1326
}

static size_t order_to_size(unsigned int order)
{
1327
	return (size_t)PAGE_SIZE << order;
1328 1329
}

1330 1331
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1332
{
1333
	struct blk_mq_tags *tags;
1334 1335 1336
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1337 1338 1339 1340
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1341

1342 1343
	INIT_LIST_HEAD(&tags->page_list);

1344 1345 1346
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1347 1348 1349 1350
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1351 1352 1353 1354 1355

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1356
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1357
				cache_line_size());
1358
	left = rq_size * set->queue_depth;
1359

1360
	for (i = 0; i < set->queue_depth; ) {
1361 1362 1363 1364 1365 1366 1367 1368 1369
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1370 1371 1372
			page = alloc_pages_node(set->numa_node,
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				this_order);
1373 1374 1375 1376 1377 1378 1379 1380 1381
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1382
			goto fail;
1383 1384

		page->private = this_order;
1385
		list_add_tail(&page->lru, &tags->page_list);
1386 1387 1388

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1389
		to_do = min(entries_per_page, set->queue_depth - i);
1390 1391
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1392
			tags->rqs[i] = p;
1393 1394
			tags->rqs[i]->atomic_flags = 0;
			tags->rqs[i]->cmd_flags = 0;
1395 1396 1397
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1398 1399
						set->numa_node)) {
					tags->rqs[i] = NULL;
1400
					goto fail;
1401
				}
1402 1403
			}

1404 1405 1406 1407 1408
			p += rq_size;
			i++;
		}
	}

1409
	return tags;
1410

1411 1412 1413
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1414 1415
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
	blk_mq_tag_idle(hctx);

	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
	kfree(hctx->ctxs);
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1538
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
1550
		kfree(hctx);
M
Ming Lei 已提交
1551 1552 1553
	}
}

1554 1555 1556
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1557
{
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;
	hctx->cmd_size = set->cmd_size;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1578 1579

	/*
1580 1581
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1582
	 */
1583 1584 1585 1586
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1587

1588 1589
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1590

1591
	hctx->nr_ctx = 0;
1592

1593 1594 1595
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1596

1597
	return 0;
1598

1599 1600 1601 1602 1603 1604
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1605

1606 1607
	return -1;
}
1608

1609 1610 1611 1612 1613
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1614

1615 1616 1617 1618 1619
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1620 1621 1622 1623 1624 1625 1626 1627 1628
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1629
	blk_mq_exit_hw_queues(q, set, i);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1653 1654 1655 1656
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1673
		cpumask_clear(hctx->cpumask);
1674 1675 1676 1677 1678 1679 1680 1681
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1682 1683 1684
		if (!cpu_online(i))
			continue;

1685
		hctx = q->mq_ops->map_queue(q, i);
1686
		cpumask_set_cpu(i, hctx->cpumask);
1687 1688 1689
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1690 1691

	queue_for_each_hw_ctx(q, hctx, i) {
1692
		/*
1693 1694
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1710 1711 1712
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1713 1714
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1761
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1762 1763
{
	struct blk_mq_hw_ctx **hctxs;
1764
	struct blk_mq_ctx __percpu *ctx;
1765
	struct request_queue *q;
1766
	unsigned int *map;
1767 1768 1769 1770 1771 1772
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

1783 1784
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1785 1786 1787 1788

	if (!hctxs)
		goto err_percpu;

1789 1790 1791 1792
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1793
	for (i = 0; i < set->nr_hw_queues; i++) {
1794 1795
		int node = blk_mq_hw_queue_to_node(map, i);

1796 1797
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1798 1799 1800
		if (!hctxs[i])
			goto err_hctxs;

1801 1802 1803
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1804
		atomic_set(&hctxs[i]->nr_active, 0);
1805
		hctxs[i]->numa_node = node;
1806 1807 1808
		hctxs[i]->queue_num = i;
	}

1809
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1810 1811 1812
	if (!q)
		goto err_hctxs;

1813
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1814 1815
		goto err_map;

1816 1817 1818 1819
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1820
	q->nr_hw_queues = set->nr_hw_queues;
1821
	q->mq_map = map;
1822 1823 1824 1825

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1826
	q->mq_ops = set->ops;
1827
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1828

1829 1830 1831
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1832 1833
	q->sg_reserved_size = INT_MAX;

1834 1835 1836 1837
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1838 1839 1840 1841 1842
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1843 1844
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1845

1846 1847 1848 1849 1850
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1851 1852
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1853

1854
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1855

1856
	if (blk_mq_init_hw_queues(q, set))
1857
		goto err_hw;
1858

1859 1860 1861 1862
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1863 1864
	blk_mq_add_queue_tag_set(set, q);

1865 1866
	q->fq = blk_alloc_flush_queue(q);
	if (!q->fq)
1867 1868
		goto err_hw_queues;

1869 1870
	blk_mq_map_swqueue(q);

1871
	return q;
1872

1873 1874
err_hw_queues:
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1875 1876 1877
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1878
	kfree(map);
1879
	for (i = 0; i < set->nr_hw_queues; i++) {
1880 1881
		if (!hctxs[i])
			break;
1882
		free_cpumask_var(hctxs[i]->cpumask);
1883
		kfree(hctxs[i]);
1884
	}
1885
err_map:
1886 1887 1888 1889 1890 1891 1892 1893 1894
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1895
	struct blk_mq_tag_set	*set = q->tag_set;
1896

1897 1898
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1899 1900
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1901

1902
	percpu_ref_exit(&q->mq_usage_counter);
1903

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1918
static void blk_mq_queue_reinit(struct request_queue *q)
1919 1920 1921
{
	blk_mq_freeze_queue(q);

1922 1923
	blk_mq_sysfs_unregister(q);

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

1934 1935
	blk_mq_sysfs_register(q);

1936 1937 1938
	blk_mq_unfreeze_queue(q);
}

1939 1940
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1941 1942 1943 1944
{
	struct request_queue *q;

	/*
1945 1946 1947 1948
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2015 2016 2017 2018 2019 2020
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2021 2022 2023 2024
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	if (!set->nr_hw_queues)
		return -EINVAL;
2025
	if (!set->queue_depth)
2026 2027 2028 2029
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2030
	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2031 2032
		return -EINVAL;

2033 2034 2035 2036 2037
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2038

M
Ming Lei 已提交
2039 2040
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2041 2042
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2043
		return -ENOMEM;
2044

2045 2046
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2047

2048 2049 2050
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2051
	return 0;
2052
enomem:
2053 2054
	kfree(set->tags);
	set->tags = NULL;
2055 2056 2057 2058 2059 2060 2061 2062
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2063 2064 2065 2066 2067
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2068
	kfree(set->tags);
2069
	set->tags = NULL;
2070 2071 2072
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2105 2106 2107 2108
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2109
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2110 2111 2112 2113

	return 0;
}
subsys_initcall(blk_mq_init);