blk-mq.c 72.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67 68
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129
		blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	blk_mq_freeze_queue_wait(q);
}
165 166 167 168 169 170 171 172 173

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
174
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175

176
void blk_mq_unfreeze_queue(struct request_queue *q)
177
{
178
	int freeze_depth;
179

180 181 182
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
183
		percpu_ref_reinit(&q->q_usage_counter);
184
		wake_up_all(&q->mq_freeze_wq);
185
	}
186
}
187
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

203
/**
204
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 206 207
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
208 209 210
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
211 212 213 214 215 216 217
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

218
	blk_mq_quiesce_queue_nowait(q);
219

220 221
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
222
			synchronize_srcu(hctx->queue_rq_srcu);
223 224 225 226 227 228 229 230
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

231 232 233 234 235 236 237 238 239
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
240 241 242
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
243
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244
	spin_unlock_irqrestore(q->queue_lock, flags);
245

246 247
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
248 249 250
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

251 252 253 254 255 256 257 258
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
259 260 261 262 263 264 265

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
266 267
}

268 269 270 271 272 273
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

274 275
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
276
{
277 278 279
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

280 281
	rq->rq_flags = 0;

282 283 284 285 286 287 288 289 290 291 292 293 294
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

295 296
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
297 298
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
299
	rq->cmd_flags = op;
300
	if (blk_queue_io_stat(data->q))
301
		rq->rq_flags |= RQF_IO_STAT;
302 303 304 305 306 307
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
308
	rq->start_time = jiffies;
309 310
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
311
	set_start_time_ns(rq);
312 313 314 315 316 317 318 319 320 321 322
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
323 324
	rq->timeout = 0;

325 326 327 328
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

329 330
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
331 332
}

333 334 335 336 337 338
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
339
	unsigned int tag;
340
	bool put_ctx_on_error = false;
341 342 343

	blk_queue_enter_live(q);
	data->q = q;
344 345 346 347
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
348 349
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
350 351
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
352 353 354 355 356 357 358 359

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
360 361
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
362 363
	}

364 365
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
366 367
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
368 369
			data->ctx = NULL;
		}
370 371
		blk_queue_exit(q);
		return NULL;
372 373
	}

374
	rq = blk_mq_rq_ctx_init(data, tag, op);
375 376
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
377
		if (e && e->type->ops.mq.prepare_request) {
378 379 380
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

381 382
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
383
		}
384 385 386
	}
	data->hctx->queued++;
	return rq;
387 388
}

389
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
390
		unsigned int flags)
391
{
392
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
393
	struct request *rq;
394
	int ret;
395

396
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
397 398
	if (ret)
		return ERR_PTR(ret);
399

400
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
401
	blk_queue_exit(q);
402

403
	if (!rq)
404
		return ERR_PTR(-EWOULDBLOCK);
405

406 407
	blk_mq_put_ctx(alloc_data.ctx);

408 409 410
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
411 412
	return rq;
}
413
EXPORT_SYMBOL(blk_mq_alloc_request);
414

415 416
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
417
{
418
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
419
	struct request *rq;
420
	unsigned int cpu;
M
Ming Lin 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

439 440 441 442
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
443 444 445 446
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
447
	}
448 449
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
450

451
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
452
	blk_queue_exit(q);
453

454 455 456 457
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
458 459 460
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

461
void blk_mq_free_request(struct request *rq)
462 463
{
	struct request_queue *q = rq->q;
464 465 466 467 468
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

469
	if (rq->rq_flags & RQF_ELVPRIV) {
470 471 472 473 474 475 476
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
477

478
	ctx->rq_completed[rq_is_sync(rq)]++;
479
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
480
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
481

482 483 484
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
485
	wbt_done(q->rq_wb, &rq->issue_stat);
486

S
Shaohua Li 已提交
487 488 489
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

490
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
491
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
492 493 494
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
495
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496
	blk_mq_sched_restart(hctx);
497
	blk_queue_exit(q);
498
}
J
Jens Axboe 已提交
499
EXPORT_SYMBOL_GPL(blk_mq_free_request);
500

501
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
502
{
M
Ming Lei 已提交
503 504
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
505
	if (rq->end_io) {
J
Jens Axboe 已提交
506
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
507
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
508 509 510
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
511
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
512
	}
513
}
514
EXPORT_SYMBOL(__blk_mq_end_request);
515

516
void blk_mq_end_request(struct request *rq, blk_status_t error)
517 518 519
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
520
	__blk_mq_end_request(rq, error);
521
}
522
EXPORT_SYMBOL(blk_mq_end_request);
523

524
static void __blk_mq_complete_request_remote(void *data)
525
{
526
	struct request *rq = data;
527

528
	rq->q->softirq_done_fn(rq);
529 530
}

531
static void __blk_mq_complete_request(struct request *rq)
532 533
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
534
	bool shared = false;
535 536
	int cpu;

537 538 539 540 541 542 543
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
544
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 546 547
		rq->q->softirq_done_fn(rq);
		return;
	}
548 549

	cpu = get_cpu();
C
Christoph Hellwig 已提交
550 551 552 553
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554
		rq->csd.func = __blk_mq_complete_request_remote;
555 556
		rq->csd.info = rq;
		rq->csd.flags = 0;
557
		smp_call_function_single_async(ctx->cpu, &rq->csd);
558
	} else {
559
		rq->q->softirq_done_fn(rq);
560
	}
561 562
	put_cpu();
}
563 564 565 566 567 568 569 570 571

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
572
void blk_mq_complete_request(struct request *rq)
573
{
574 575 576
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
577
		return;
578
	if (!blk_mark_rq_complete(rq))
579
		__blk_mq_complete_request(rq);
580 581
}
EXPORT_SYMBOL(blk_mq_complete_request);
582

583 584 585 586 587 588
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

589
void blk_mq_start_request(struct request *rq)
590 591 592
{
	struct request_queue *q = rq->q;

593 594
	blk_mq_sched_started_request(rq);

595 596
	trace_block_rq_issue(q, rq);

597
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
598
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
599
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
600
		wbt_issue(q->rq_wb, &rq->issue_stat);
601 602
	}

603
	blk_add_timer(rq);
604

605
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
606

607 608 609 610 611
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
612 613 614 615
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
616
	 */
617 618 619 620 621 622 623 624 625 626 627 628
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
629
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
630
	}
631 632 633 634 635 636 637 638 639

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
640
}
641
EXPORT_SYMBOL(blk_mq_start_request);
642

643 644
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
645
 * flag isn't set yet, so there may be race with timeout handler,
646 647 648 649 650 651
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
652
static void __blk_mq_requeue_request(struct request *rq)
653 654 655 656
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
657
	wbt_requeue(q->rq_wb, &rq->issue_stat);
658
	blk_mq_sched_requeue_request(rq);
659

660 661 662 663
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
664 665
}

666
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
667 668 669 670
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
671
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
672 673 674
}
EXPORT_SYMBOL(blk_mq_requeue_request);

675 676 677
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
678
		container_of(work, struct request_queue, requeue_work.work);
679 680 681
	LIST_HEAD(rq_list);
	struct request *rq, *next;

682
	spin_lock_irq(&q->requeue_lock);
683
	list_splice_init(&q->requeue_list, &rq_list);
684
	spin_unlock_irq(&q->requeue_lock);
685 686

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
687
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
688 689
			continue;

690
		rq->rq_flags &= ~RQF_SOFTBARRIER;
691
		list_del_init(&rq->queuelist);
692
		blk_mq_sched_insert_request(rq, true, false, false, true);
693 694 695 696 697
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
698
		blk_mq_sched_insert_request(rq, false, false, false, true);
699 700
	}

701
	blk_mq_run_hw_queues(q, false);
702 703
}

704 705
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
706 707 708 709 710 711 712 713
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
714
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
715 716 717

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
718
		rq->rq_flags |= RQF_SOFTBARRIER;
719 720 721 722 723
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
724 725 726

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
727 728 729 730 731
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
732
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
733 734 735
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

736 737 738
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
739 740
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
741 742 743
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

744 745
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
746 747
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
748
		return tags->rqs[tag];
749
	}
750 751

	return NULL;
752 753 754
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

755
struct blk_mq_timeout_data {
756 757
	unsigned long next;
	unsigned int next_set;
758 759
};

760
void blk_mq_rq_timed_out(struct request *req, bool reserved)
761
{
J
Jens Axboe 已提交
762
	const struct blk_mq_ops *ops = req->q->mq_ops;
763
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
764 765 766 767 768 769 770

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
771
	 * both flags will get cleared. So check here again, and ignore
772 773
	 * a timeout event with a request that isn't active.
	 */
774 775
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
776

777
	if (ops->timeout)
778
		ret = ops->timeout(req, reserved);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
794
}
795

796 797 798 799
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
800
	unsigned long deadline;
801

802
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
803
		return;
804

805 806 807 808 809 810 811 812
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

813 814 815 816 817 818 819 820 821 822 823 824 825
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
826 827 828 829 830 831 832 833 834 835
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
836
			blk_mq_rq_timed_out(rq, reserved);
837 838 839
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
840 841
		data->next_set = 1;
	}
842 843
}

844
static void blk_mq_timeout_work(struct work_struct *work)
845
{
846 847
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
848 849 850 851 852
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
853

854 855 856 857 858 859 860 861 862
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
863
	 * blk_freeze_queue_start, and the moment the last request is
864 865 866 867
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
868 869
		return;

870
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
871

872 873 874
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
875
	} else {
876 877
		struct blk_mq_hw_ctx *hctx;

878 879 880 881 882
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
883
	}
884
	blk_queue_exit(q);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

905 906 907 908
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
909
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910
{
911 912 913 914
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
915

916
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917
}
918
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

959 960 961 962
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
963

964
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 966
}

967 968
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
969 970 971 972 973 974 975
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

976 977
	might_sleep_if(wait);

978 979
	if (rq->tag != -1)
		goto done;
980

981 982 983
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

984 985
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
986 987 988 989
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
990 991 992
		data.hctx->tags->rqs[rq->tag] = rq;
	}

993 994 995 996
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
}

/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

1023
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1024 1025 1026 1027 1028 1029
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1030
	list_del(&wait->entry);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1061 1062
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
		bool got_budget)
1063
{
1064
	struct blk_mq_hw_ctx *hctx;
1065
	struct request *rq, *nxt;
1066
	int errors, queued;
1067

1068 1069 1070
	if (list_empty(list))
		return false;

1071 1072
	WARN_ON(!list_is_singular(list) && got_budget);

1073 1074 1075
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1076
	errors = queued = 0;
1077
	do {
1078
		struct blk_mq_queue_data bd;
1079
		blk_status_t ret;
1080

1081
		rq = list_first_entry(list, struct request, queuelist);
1082 1083 1084
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1085 1086

			/*
1087 1088
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1089
			 */
1090 1091 1092
			if (!blk_mq_dispatch_wait_add(hctx)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1093
				break;
1094
			}
1095 1096 1097 1098 1099 1100

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
1101 1102 1103 1104 1105 1106 1107
			if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
				break;
			}
		}

1108 1109
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;
1110

1111 1112
		list_del_init(&rq->queuelist);

1113
		bd.rq = rq;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1125 1126

		ret = q->mq_ops->queue_rq(hctx, &bd);
1127
		if (ret == BLK_STS_RESOURCE) {
1128 1129 1130 1131 1132 1133 1134 1135
			/*
			 * If an I/O scheduler has been configured and we got a
			 * driver tag for the next request already, free it again.
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1136
			blk_mq_put_driver_tag_hctx(hctx, rq);
1137
			list_add(&rq->queuelist, list);
1138
			__blk_mq_requeue_request(rq);
1139
			break;
1140 1141 1142
		}

		if (unlikely(ret != BLK_STS_OK)) {
1143
			errors++;
1144
			blk_mq_end_request(rq, BLK_STS_IOERR);
1145
			continue;
1146 1147
		}

1148
		queued++;
1149
	} while (!list_empty(list));
1150

1151
	hctx->dispatched[queued_to_index(queued)]++;
1152 1153 1154 1155 1156

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1157
	if (!list_empty(list)) {
1158
		spin_lock(&hctx->lock);
1159
		list_splice_init(list, &hctx->dispatch);
1160
		spin_unlock(&hctx->lock);
1161

1162
		/*
1163 1164 1165
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1166
		 *
1167 1168 1169 1170
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1171
		 *
1172 1173 1174 1175 1176 1177 1178
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1179
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1180
		 *   and dm-rq.
1181
		 */
1182 1183
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1184
			blk_mq_run_hw_queue(hctx, true);
1185
	}
1186

1187
	return (queued + errors) != 0;
1188 1189
}

1190 1191 1192 1193
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1194 1195 1196 1197
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1198 1199 1200
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1201 1202 1203 1204 1205 1206
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1207 1208
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1209
		blk_mq_sched_dispatch_requests(hctx);
1210 1211
		rcu_read_unlock();
	} else {
1212 1213
		might_sleep();

1214
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1215
		blk_mq_sched_dispatch_requests(hctx);
1216
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1217 1218 1219
	}
}

1220 1221 1222 1223 1224 1225 1226 1227
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1228 1229
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1230 1231

	if (--hctx->next_cpu_batch <= 0) {
1232
		int next_cpu;
1233 1234 1235 1236 1237 1238 1239 1240 1241

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1242
	return hctx->next_cpu;
1243 1244
}

1245 1246
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1247
{
1248 1249 1250 1251
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1252 1253
		return;

1254
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1255 1256
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1257
			__blk_mq_run_hw_queue(hctx);
1258
			put_cpu();
1259 1260
			return;
		}
1261

1262
		put_cpu();
1263
	}
1264

1265 1266 1267
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1279
}
O
Omar Sandoval 已提交
1280
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1281

1282
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1283 1284 1285 1286 1287
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1288
		if (!blk_mq_hctx_has_pending(hctx) ||
1289
		    blk_mq_hctx_stopped(hctx))
1290 1291
			continue;

1292
		blk_mq_run_hw_queue(hctx, async);
1293 1294
	}
}
1295
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1296

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1317 1318 1319
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1320
 * BLK_STS_RESOURCE is usually returned.
1321 1322 1323 1324 1325
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1326 1327
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1328
	cancel_delayed_work(&hctx->run_work);
1329

1330
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1331
}
1332
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1333

1334 1335 1336
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1337
 * BLK_STS_RESOURCE is usually returned.
1338 1339 1340 1341 1342
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1343 1344
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1345 1346 1347 1348 1349
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1350 1351 1352
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1353 1354 1355
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1356

1357
	blk_mq_run_hw_queue(hctx, false);
1358 1359 1360
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1381
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1382 1383 1384 1385
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1386 1387
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1388 1389 1390
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1391
static void blk_mq_run_work_fn(struct work_struct *work)
1392 1393 1394
{
	struct blk_mq_hw_ctx *hctx;

1395
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1396

1397 1398 1399 1400 1401 1402 1403 1404
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1405

1406 1407 1408
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1409 1410 1411 1412

	__blk_mq_run_hw_queue(hctx);
}

1413 1414 1415

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1416
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1417
		return;
1418

1419 1420 1421 1422 1423
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1424
	blk_mq_stop_hw_queue(hctx);
1425 1426 1427 1428
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1429 1430 1431
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1432 1433 1434
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1435
{
J
Jens Axboe 已提交
1436 1437
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1438 1439
	lockdep_assert_held(&ctx->lock);

1440 1441
	trace_block_rq_insert(hctx->queue, rq);

1442 1443 1444 1445
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1446
}
1447

1448 1449
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1450 1451 1452
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1453 1454
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1455
	__blk_mq_insert_req_list(hctx, rq, at_head);
1456 1457 1458
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1459 1460 1461 1462
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1463
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1464 1465 1466 1467 1468 1469 1470 1471
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1472 1473
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1474 1475
}

1476 1477
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1489
		BUG_ON(rq->mq_ctx != ctx);
1490
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1491
		__blk_mq_insert_req_list(hctx, rq, false);
1492
	}
1493
	blk_mq_hctx_mark_pending(hctx, ctx);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1530 1531 1532 1533
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1550 1551 1552
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1553 1554 1555 1556 1557
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1558
	blk_init_request_from_bio(rq, bio);
1559

S
Shaohua Li 已提交
1560 1561
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1562
	blk_account_io_start(rq, true);
1563 1564
}

1565 1566 1567 1568 1569 1570 1571
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1572
}
1573

1574 1575
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1576 1577 1578 1579
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1580 1581
}

M
Ming Lei 已提交
1582 1583 1584
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1585 1586 1587 1588
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1589
		.last = true,
1590
	};
1591
	blk_qc_t new_cookie;
1592
	blk_status_t ret;
M
Ming Lei 已提交
1593 1594
	bool run_queue = true;

1595 1596
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1597 1598 1599
		run_queue = false;
		goto insert;
	}
1600

1601
	if (q->elevator)
1602 1603
		goto insert;

M
Ming Lei 已提交
1604
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1605 1606
		goto insert;

1607
	if (!blk_mq_get_dispatch_budget(hctx)) {
1608 1609
		blk_mq_put_driver_tag(rq);
		goto insert;
1610
	}
1611

1612 1613
	new_cookie = request_to_qc_t(hctx, rq);

1614 1615 1616 1617 1618 1619
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1620 1621
	switch (ret) {
	case BLK_STS_OK:
1622
		*cookie = new_cookie;
1623
		return;
1624 1625 1626 1627
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1628
		*cookie = BLK_QC_T_NONE;
1629
		blk_mq_end_request(rq, ret);
1630
		return;
1631
	}
1632

1633
insert:
M
Ming Lei 已提交
1634
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1635 1636
}

1637 1638 1639 1640 1641
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1642
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1643 1644
		rcu_read_unlock();
	} else {
1645 1646 1647 1648
		unsigned int srcu_idx;

		might_sleep();

1649
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1650
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1651
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1652 1653 1654
	}
}

1655
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1656
{
1657
	const int is_sync = op_is_sync(bio->bi_opf);
1658
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1659
	struct blk_mq_alloc_data data = { .flags = 0 };
1660
	struct request *rq;
1661
	unsigned int request_count = 0;
1662
	struct blk_plug *plug;
1663
	struct request *same_queue_rq = NULL;
1664
	blk_qc_t cookie;
J
Jens Axboe 已提交
1665
	unsigned int wb_acct;
1666 1667 1668

	blk_queue_bounce(q, &bio);

1669
	blk_queue_split(q, &bio);
1670

1671
	if (!bio_integrity_prep(bio))
1672
		return BLK_QC_T_NONE;
1673

1674 1675 1676
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1677

1678 1679 1680
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1681 1682
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1683 1684
	trace_block_getrq(q, bio, bio->bi_opf);

1685
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1686 1687
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1688 1689
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1690
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1691 1692 1693
	}

	wbt_track(&rq->issue_stat, wb_acct);
1694

1695
	cookie = request_to_qc_t(data.hctx, rq);
1696

1697
	plug = current->plug;
1698
	if (unlikely(is_flush_fua)) {
1699
		blk_mq_put_ctx(data.ctx);
1700
		blk_mq_bio_to_request(rq, bio);
1701 1702 1703
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1704
		} else {
1705 1706
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1707
		}
1708
	} else if (plug && q->nr_hw_queues == 1) {
1709 1710
		struct request *last = NULL;

1711
		blk_mq_put_ctx(data.ctx);
1712
		blk_mq_bio_to_request(rq, bio);
1713 1714 1715 1716 1717 1718 1719

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1720 1721 1722
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1723
		if (!request_count)
1724
			trace_block_plug(q);
1725 1726
		else
			last = list_entry_rq(plug->mq_list.prev);
1727

1728 1729
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1730 1731
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1732
		}
1733

1734
		list_add_tail(&rq->queuelist, &plug->mq_list);
1735
	} else if (plug && !blk_queue_nomerges(q)) {
1736
		blk_mq_bio_to_request(rq, bio);
1737 1738

		/*
1739
		 * We do limited plugging. If the bio can be merged, do that.
1740 1741
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1742 1743
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1744
		 */
1745 1746 1747 1748 1749 1750
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1751 1752
		blk_mq_put_ctx(data.ctx);

1753 1754 1755
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1756 1757
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1758
		}
1759
	} else if (q->nr_hw_queues > 1 && is_sync) {
1760
		blk_mq_put_ctx(data.ctx);
1761 1762
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1763
	} else if (q->elevator) {
1764
		blk_mq_put_ctx(data.ctx);
1765
		blk_mq_bio_to_request(rq, bio);
1766
		blk_mq_sched_insert_request(rq, false, true, true, true);
1767
	} else {
1768
		blk_mq_put_ctx(data.ctx);
1769 1770
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1771
		blk_mq_run_hw_queue(data.hctx, true);
1772
	}
1773

1774
	return cookie;
1775 1776
}

1777 1778
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1779
{
1780
	struct page *page;
1781

1782
	if (tags->rqs && set->ops->exit_request) {
1783
		int i;
1784

1785
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1786 1787 1788
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1789
				continue;
1790
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1791
			tags->static_rqs[i] = NULL;
1792
		}
1793 1794
	}

1795 1796
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1797
		list_del_init(&page->lru);
1798 1799 1800 1801 1802
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1803 1804
		__free_pages(page, page->private);
	}
1805
}
1806

1807 1808
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1809
	kfree(tags->rqs);
1810
	tags->rqs = NULL;
J
Jens Axboe 已提交
1811 1812
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1813

1814
	blk_mq_free_tags(tags);
1815 1816
}

1817 1818 1819 1820
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1821
{
1822
	struct blk_mq_tags *tags;
1823
	int node;
1824

1825 1826 1827 1828 1829
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1830
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1831 1832
	if (!tags)
		return NULL;
1833

1834
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1835
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1836
				 node);
1837 1838 1839 1840
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1841

J
Jens Axboe 已提交
1842 1843
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1844
				 node);
J
Jens Axboe 已提交
1845 1846 1847 1848 1849 1850
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1864 1865 1866 1867 1868
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1869 1870 1871

	INIT_LIST_HEAD(&tags->page_list);

1872 1873 1874 1875
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1876
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1877
				cache_line_size());
1878
	left = rq_size * depth;
1879

1880
	for (i = 0; i < depth; ) {
1881 1882 1883 1884 1885
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1886
		while (this_order && left < order_to_size(this_order - 1))
1887 1888 1889
			this_order--;

		do {
1890
			page = alloc_pages_node(node,
1891
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1892
				this_order);
1893 1894 1895 1896 1897 1898 1899 1900 1901
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1902
			goto fail;
1903 1904

		page->private = this_order;
1905
		list_add_tail(&page->lru, &tags->page_list);
1906 1907

		p = page_address(page);
1908 1909 1910 1911
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1912
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1913
		entries_per_page = order_to_size(this_order) / rq_size;
1914
		to_do = min(entries_per_page, depth - i);
1915 1916
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1917 1918 1919
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1920
			if (set->ops->init_request) {
1921
				if (set->ops->init_request(set, rq, hctx_idx,
1922
						node)) {
J
Jens Axboe 已提交
1923
					tags->static_rqs[i] = NULL;
1924
					goto fail;
1925
				}
1926 1927
			}

1928 1929 1930 1931
			p += rq_size;
			i++;
		}
	}
1932
	return 0;
1933

1934
fail:
1935 1936
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1937 1938
}

J
Jens Axboe 已提交
1939 1940 1941 1942 1943
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1944
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1945
{
1946
	struct blk_mq_hw_ctx *hctx;
1947 1948 1949
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1950
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1951
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1952 1953 1954 1955 1956 1957 1958 1959 1960

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1961
		return 0;
1962

J
Jens Axboe 已提交
1963 1964 1965
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1966 1967

	blk_mq_run_hw_queue(hctx, true);
1968
	return 0;
1969 1970
}

1971
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1972
{
1973 1974
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1975 1976
}

1977
/* hctx->ctxs will be freed in queue's release handler */
1978 1979 1980 1981
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1982 1983
	blk_mq_debugfs_unregister_hctx(hctx);

1984 1985
	blk_mq_tag_idle(hctx);

1986
	if (set->ops->exit_request)
1987
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1988

1989 1990
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1991 1992 1993
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1994
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1995
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1996

1997
	blk_mq_remove_cpuhp(hctx);
1998
	blk_free_flush_queue(hctx->fq);
1999
	sbitmap_free(&hctx->ctx_map);
2000 2001
}

M
Ming Lei 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2011
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2012 2013 2014
	}
}

2015 2016 2017
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2018
{
2019 2020 2021 2022 2023 2024
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2025
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2026 2027 2028
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2029
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2030

2031
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2032 2033

	hctx->tags = set->tags[hctx_idx];
2034 2035

	/*
2036 2037
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2038
	 */
2039 2040 2041 2042
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2043

2044 2045
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2046
		goto free_ctxs;
2047

2048
	hctx->nr_ctx = 0;
2049

2050 2051 2052
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2053

2054 2055 2056
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2057 2058
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2059
		goto sched_exit_hctx;
2060

2061
	if (set->ops->init_request &&
2062 2063
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2064
		goto free_fq;
2065

2066
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2067
		init_srcu_struct(hctx->queue_rq_srcu);
2068

2069 2070
	blk_mq_debugfs_register_hctx(q, hctx);

2071
	return 0;
2072

2073 2074
 free_fq:
	kfree(hctx->fq);
2075 2076
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2077 2078 2079
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2080
 free_bitmap:
2081
	sbitmap_free(&hctx->ctx_map);
2082 2083 2084
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2085
	blk_mq_remove_cpuhp(hctx);
2086 2087
	return -1;
}
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2103 2104
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2105 2106
			continue;

C
Christoph Hellwig 已提交
2107
		hctx = blk_mq_map_queue(q, i);
2108

2109 2110 2111 2112 2113
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2114
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2115 2116 2117
	}
}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2140 2141 2142 2143 2144
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2145 2146
}

2147
static void blk_mq_map_swqueue(struct request_queue *q)
2148
{
2149
	unsigned int i, hctx_idx;
2150 2151
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2152
	struct blk_mq_tag_set *set = q->tag_set;
2153

2154 2155 2156 2157 2158
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2159
	queue_for_each_hw_ctx(q, hctx, i) {
2160
		cpumask_clear(hctx->cpumask);
2161 2162 2163 2164
		hctx->nr_ctx = 0;
	}

	/*
2165 2166 2167
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2168
	 */
2169
	for_each_present_cpu(i) {
2170 2171
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2172 2173
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2174 2175 2176 2177 2178 2179
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2180
			q->mq_map[i] = 0;
2181 2182
		}

2183
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2184
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2185

2186
		cpumask_set_cpu(i, hctx->cpumask);
2187 2188 2189
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2190

2191 2192
	mutex_unlock(&q->sysfs_lock);

2193
	queue_for_each_hw_ctx(q, hctx, i) {
2194
		/*
2195 2196
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2197 2198
		 */
		if (!hctx->nr_ctx) {
2199 2200 2201 2202
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2203 2204 2205
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2206
			hctx->tags = NULL;
2207 2208 2209
			continue;
		}

M
Ming Lei 已提交
2210 2211 2212
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2213 2214 2215 2216 2217
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2218
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2219

2220 2221 2222
		/*
		 * Initialize batch roundrobin counts
		 */
2223 2224 2225
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2226 2227
}

2228 2229 2230 2231
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2232
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2233 2234 2235 2236
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2237
	queue_for_each_hw_ctx(q, hctx, i) {
2238 2239 2240
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2241
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2242 2243 2244
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2245
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2246
		}
2247 2248 2249
	}
}

2250 2251
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2252 2253
{
	struct request_queue *q;
2254

2255 2256
	lockdep_assert_held(&set->tag_list_lock);

2257 2258
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2259
		queue_set_hctx_shared(q, shared);
2260 2261 2262 2263 2264 2265 2266 2267 2268
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2269 2270
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2271 2272 2273 2274 2275 2276
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2277
	mutex_unlock(&set->tag_list_lock);
2278 2279

	synchronize_rcu();
2280 2281 2282 2283 2284 2285 2286 2287
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2288 2289 2290 2291 2292 2293 2294 2295 2296

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2297
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2298

2299 2300 2301
	mutex_unlock(&set->tag_list_lock);
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2314 2315 2316
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2317
		kobject_put(&hctx->kobj);
2318
	}
2319

2320 2321
	q->mq_map = NULL;

2322 2323
	kfree(q->queue_hw_ctx);

2324 2325 2326 2327 2328 2329
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2330 2331 2332
	free_percpu(q->queue_ctx);
}

2333
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2363 2364
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2365
{
K
Keith Busch 已提交
2366 2367
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2368

K
Keith Busch 已提交
2369
	blk_mq_sysfs_unregister(q);
2370
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2371
		int node;
2372

K
Keith Busch 已提交
2373 2374 2375 2376
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2377
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2378
					GFP_KERNEL, node);
2379
		if (!hctxs[i])
K
Keith Busch 已提交
2380
			break;
2381

2382
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2383 2384 2385 2386 2387
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2388

2389
		atomic_set(&hctxs[i]->nr_active, 0);
2390
		hctxs[i]->numa_node = node;
2391
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2392 2393 2394 2395 2396 2397 2398 2399

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2400
	}
K
Keith Busch 已提交
2401 2402 2403 2404
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2405 2406
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2420 2421 2422
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2423
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2424 2425
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2426 2427 2428
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2429 2430
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2431
		goto err_exit;
K
Keith Busch 已提交
2432

2433 2434 2435
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2436 2437 2438 2439 2440
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2441
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2442 2443 2444 2445

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2446

2447
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2448
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2449 2450 2451

	q->nr_queues = nr_cpu_ids;

2452
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2453

2454 2455 2456
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2457 2458
	q->sg_reserved_size = INT_MAX;

2459
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2460 2461 2462
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2463
	blk_queue_make_request(q, blk_mq_make_request);
2464 2465
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2466

2467 2468 2469 2470 2471
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2472 2473 2474 2475 2476
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2477 2478
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2479

2480
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2481
	blk_mq_add_queue_tag_set(set, q);
2482
	blk_mq_map_swqueue(q);
2483

2484 2485 2486 2487 2488 2489 2490 2491
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2492
	return q;
2493

2494
err_hctxs:
K
Keith Busch 已提交
2495
	kfree(q->queue_hw_ctx);
2496
err_percpu:
K
Keith Busch 已提交
2497
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2498 2499
err_exit:
	q->mq_ops = NULL;
2500 2501
	return ERR_PTR(-ENOMEM);
}
2502
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2503 2504 2505

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2506
	struct blk_mq_tag_set	*set = q->tag_set;
2507

2508
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2509
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2510 2511 2512
}

/* Basically redo blk_mq_init_queue with queue frozen */
2513
static void blk_mq_queue_reinit(struct request_queue *q)
2514
{
2515
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2516

2517
	blk_mq_debugfs_unregister_hctxs(q);
2518 2519
	blk_mq_sysfs_unregister(q);

2520 2521 2522 2523 2524 2525
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2526
	blk_mq_map_swqueue(q);
2527

2528
	blk_mq_sysfs_register(q);
2529
	blk_mq_debugfs_register_hctxs(q);
2530 2531
}

2532 2533 2534 2535
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2536 2537
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2538 2539 2540 2541 2542 2543
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2544
		blk_mq_free_rq_map(set->tags[i]);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2584 2585 2586 2587 2588 2589 2590 2591
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2592 2593 2594 2595 2596 2597
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2598 2599
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2600 2601
	int ret;

B
Bart Van Assche 已提交
2602 2603
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2604 2605
	if (!set->nr_hw_queues)
		return -EINVAL;
2606
	if (!set->queue_depth)
2607 2608 2609 2610
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2611
	if (!set->ops->queue_rq)
2612 2613
		return -EINVAL;

2614 2615 2616
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2617 2618 2619 2620 2621
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2622

2623 2624 2625 2626 2627 2628 2629 2630 2631
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2632 2633 2634 2635 2636
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2637

K
Keith Busch 已提交
2638
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2639 2640
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2641
		return -ENOMEM;
2642

2643 2644 2645
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2646 2647 2648
	if (!set->mq_map)
		goto out_free_tags;

2649
	ret = blk_mq_update_queue_map(set);
2650 2651 2652 2653 2654
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2655
		goto out_free_mq_map;
2656

2657 2658 2659
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2660
	return 0;
2661 2662 2663 2664 2665

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2666 2667
	kfree(set->tags);
	set->tags = NULL;
2668
	return ret;
2669 2670 2671 2672 2673 2674 2675
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2676 2677
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2678

2679 2680 2681
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2682
	kfree(set->tags);
2683
	set->tags = NULL;
2684 2685 2686
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2687 2688 2689 2690 2691 2692
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2693
	if (!set)
2694 2695
		return -EINVAL;

2696 2697
	blk_mq_freeze_queue(q);

2698 2699
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2700 2701
		if (!hctx->tags)
			continue;
2702 2703 2704 2705
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2706
		if (!hctx->sched_tags) {
2707
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2708 2709 2710 2711 2712
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2713 2714 2715 2716 2717 2718 2719
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2720 2721
	blk_mq_unfreeze_queue(q);

2722 2723 2724
	return ret;
}

2725 2726
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2727 2728 2729
{
	struct request_queue *q;

2730 2731
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2732 2733 2734 2735 2736 2737 2738 2739 2740
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2741
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2742 2743
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2744
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2745 2746 2747 2748 2749
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2750 2751 2752 2753 2754 2755 2756

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2757 2758
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2785
	int bucket;
2786

2787 2788 2789 2790
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2791 2792
}

2793 2794 2795 2796 2797
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2798
	int bucket;
2799 2800 2801 2802 2803

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2804
	if (!blk_poll_stats_enable(q))
2805 2806 2807 2808 2809 2810 2811 2812
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2813 2814
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2815
	 */
2816 2817 2818 2819 2820 2821
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2822 2823 2824 2825

	return ret;
}

2826
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2827
				     struct blk_mq_hw_ctx *hctx,
2828 2829 2830 2831
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2832
	unsigned int nsecs;
2833 2834
	ktime_t kt;

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2853 2854 2855 2856 2857 2858 2859 2860
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2861
	kt = nsecs;
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2884 2885 2886 2887 2888
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2889 2890 2891 2892 2893 2894 2895
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2896
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2897 2898
		return true;

J
Jens Axboe 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2927
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
2928 2929 2930 2931
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2932
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
2933 2934 2935
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2936 2937
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2938
	else {
2939
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2940 2941 2942 2943 2944 2945 2946 2947 2948
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2949 2950 2951 2952

	return __blk_mq_poll(hctx, rq);
}

2953 2954
static int __init blk_mq_init(void)
{
2955 2956 2957 2958 2959 2960
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

2961 2962
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2963 2964 2965
	return 0;
}
subsys_initcall(blk_mq_init);