blk-mq.c 54.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
23
#include <linux/crash_dump.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

44
	for (i = 0; i < hctx->ctx_map.size; i++)
45
		if (hctx->ctx_map.map[i].word)
46 47 48 49 50
			return true;

	return false;
}

51 52 53 54 55 56 57 58 59
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

60 61 62 63 64 65
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
66 67 68 69 70 71 72 73 74 75 76 77
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 79
}

80
static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81
{
82 83
	while (true) {
		int ret;
84

85 86
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
87

88 89 90
		if (!(gfp & __GFP_WAIT))
			return -EBUSY;

91
		ret = wait_event_interruptible(q->mq_freeze_wq,
92 93
				!atomic_read(&q->mq_freeze_depth) ||
				blk_queue_dying(q));
94 95 96 97 98
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
99 100 101 102
}

static void blk_mq_queue_exit(struct request_queue *q)
{
103 104 105 106 107 108 109 110 111
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
112 113
}

114
void blk_mq_freeze_queue_start(struct request_queue *q)
115
{
116
	int freeze_depth;
117

118 119
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
120
		percpu_ref_kill(&q->mq_usage_counter);
121
		blk_mq_run_hw_queues(q, false);
122
	}
123
}
124
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125 126 127

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
128
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 130
}

131 132 133 134 135 136 137 138 139
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
{
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
140
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141

142
void blk_mq_unfreeze_queue(struct request_queue *q)
143
{
144
	int freeze_depth;
145

146 147 148
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
149
		percpu_ref_reinit(&q->mq_usage_counter);
150
		wake_up_all(&q->mq_freeze_wq);
151
	}
152
}
153
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154

155 156 157 158 159 160 161 162
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
163 164 165 166 167 168 169

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
170 171
}

172 173 174 175 176 177
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

178 179
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
180
{
181 182 183
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

184 185 186
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
187
	rq->mq_ctx = ctx;
188
	rq->cmd_flags |= rw_flags;
189 190 191 192 193 194
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
195
	rq->start_time = jiffies;
196 197
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
198
	set_start_time_ns(rq);
199 200 201 202 203 204 205 206 207 208
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

209 210
	rq->cmd = rq->__cmd;

211 212 213 214 215 216
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
217 218
	rq->timeout = 0;

219 220 221 222
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

223 224 225
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

226
static struct request *
227
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 229 230 231
{
	struct request *rq;
	unsigned int tag;

232
	tag = blk_mq_get_tag(data);
233
	if (tag != BLK_MQ_TAG_FAIL) {
234
		rq = data->hctx->tags->rqs[tag];
235

236
		if (blk_mq_tag_busy(data->hctx)) {
237
			rq->cmd_flags = REQ_MQ_INFLIGHT;
238
			atomic_inc(&data->hctx->nr_active);
239 240 241
		}

		rq->tag = tag;
242
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 244 245 246 247 248
		return rq;
	}

	return NULL;
}

249 250
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
251
{
252 253
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
254
	struct request *rq;
255
	struct blk_mq_alloc_data alloc_data;
256
	int ret;
257

258
	ret = blk_mq_queue_enter(q, gfp);
259 260
	if (ret)
		return ERR_PTR(ret);
261

262 263
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 265
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
266

267
	rq = __blk_mq_alloc_request(&alloc_data, rw);
268 269 270 271 272 273
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 275 276 277
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
278 279
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
280 281
	if (!rq) {
		blk_mq_queue_exit(q);
282
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
283
	}
284 285
	return rq;
}
286
EXPORT_SYMBOL(blk_mq_alloc_request);
287 288 289 290 291 292 293

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

294 295
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
296
	rq->cmd_flags = 0;
297

298
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 301 302
	blk_mq_queue_exit(q);
}

303
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 305 306 307 308
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
309 310 311 312 313 314 315 316 317 318 319

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
320
}
J
Jens Axboe 已提交
321
EXPORT_SYMBOL_GPL(blk_mq_free_request);
322

323
inline void __blk_mq_end_request(struct request *rq, int error)
324
{
M
Ming Lei 已提交
325 326
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
327
	if (rq->end_io) {
328
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
329 330 331
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
332
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
333
	}
334
}
335
EXPORT_SYMBOL(__blk_mq_end_request);
336

337
void blk_mq_end_request(struct request *rq, int error)
338 339 340
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
341
	__blk_mq_end_request(rq, error);
342
}
343
EXPORT_SYMBOL(blk_mq_end_request);
344

345
static void __blk_mq_complete_request_remote(void *data)
346
{
347
	struct request *rq = data;
348

349
	rq->q->softirq_done_fn(rq);
350 351
}

352
static void blk_mq_ipi_complete_request(struct request *rq)
353 354
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
355
	bool shared = false;
356 357
	int cpu;

C
Christoph Hellwig 已提交
358
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 360 361
		rq->q->softirq_done_fn(rq);
		return;
	}
362 363

	cpu = get_cpu();
C
Christoph Hellwig 已提交
364 365 366 367
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368
		rq->csd.func = __blk_mq_complete_request_remote;
369 370
		rq->csd.info = rq;
		rq->csd.flags = 0;
371
		smp_call_function_single_async(ctx->cpu, &rq->csd);
372
	} else {
373
		rq->q->softirq_done_fn(rq);
374
	}
375 376
	put_cpu();
}
377

378 379 380 381 382
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
383
		blk_mq_end_request(rq, rq->errors);
384 385 386 387
	else
		blk_mq_ipi_complete_request(rq);
}

388 389 390 391 392 393 394 395 396 397
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
398 399 400
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
401
		return;
402 403
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
404 405
}
EXPORT_SYMBOL(blk_mq_complete_request);
406

407 408 409 410 411 412
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

413
void blk_mq_start_request(struct request *rq)
414 415 416 417 418
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
419
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
420 421
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
422

423
	blk_add_timer(rq);
424

425 426 427 428 429 430
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

431 432 433 434 435 436
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
437 438 439 440
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441 442 443 444 445 446 447 448 449

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
450
}
451
EXPORT_SYMBOL(blk_mq_start_request);
452

453
static void __blk_mq_requeue_request(struct request *rq)
454 455 456 457
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
458

459 460 461 462
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
463 464
}

465 466 467 468 469
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
470
	blk_mq_add_to_requeue_list(rq, true);
471 472 473
}
EXPORT_SYMBOL(blk_mq_requeue_request);

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

501 502 503 504 505
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

530 531 532 533 534 535
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

536 537 538 539 540 541
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

562 563
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
564
	return tags->rqs[tag];
565 566 567
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

568
struct blk_mq_timeout_data {
569 570
	unsigned long next;
	unsigned int next_set;
571 572
};

573
void blk_mq_rq_timed_out(struct request *req, bool reserved)
574
{
575 576
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
577 578 579 580 581 582 583 584 585 586

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
587 588
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
589

590
	if (ops->timeout)
591
		ret = ops->timeout(req, reserved);
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
607
}
608

609 610 611 612
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
613

614 615 616 617 618 619 620 621 622
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_complete_request(rq);
		}
623
		return;
624
	}
625 626
	if (rq->cmd_flags & REQ_NO_TIMEOUT)
		return;
627

628 629
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
630
			blk_mq_rq_timed_out(rq, reserved);
631 632 633 634
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
635 636
}

637
static void blk_mq_rq_timer(unsigned long priv)
638
{
639 640 641 642 643
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
644
	struct blk_mq_hw_ctx *hctx;
645
	int i;
646

647 648 649 650 651
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
652
		if (!blk_mq_hw_queue_mapped(hctx))
653 654
			continue;

655
		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
656
	}
657

658 659 660
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
661
	} else {
662 663 664 665 666
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
667
	}
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

709 710 711 712 713 714 715 716 717
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

718
	for (i = 0; i < hctx->ctx_map.size; i++) {
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

743 744 745 746 747 748 749 750 751 752 753
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
754 755
	LIST_HEAD(driver_list);
	struct list_head *dptr;
756
	int queued;
757

758
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
759

760
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
761 762 763 764 765 766 767
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
768
	flush_busy_ctxs(hctx, &rq_list);
769 770 771 772 773 774 775 776 777 778 779 780

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

781 782 783 784 785 786
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

787 788 789
	/*
	 * Now process all the entries, sending them to the driver.
	 */
790
	queued = 0;
791
	while (!list_empty(&rq_list)) {
792
		struct blk_mq_queue_data bd;
793 794 795 796 797
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

798 799 800 801 802
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
803 804 805 806 807 808
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
809
			__blk_mq_requeue_request(rq);
810 811 812 813
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
814
			rq->errors = -EIO;
815
			blk_mq_end_request(rq, rq->errors);
816 817 818 819 820
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
821 822 823 824 825 826 827

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
843 844 845 846 847 848 849 850 851 852
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
853 854 855
	}
}

856 857 858 859 860 861 862 863
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
864 865
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
866 867

	if (--hctx->next_cpu_batch <= 0) {
868
		int cpu = hctx->next_cpu, next_cpu;
869 870 871 872 873 874 875

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
876 877

		return cpu;
878 879
	}

880
	return hctx->next_cpu;
881 882
}

883 884
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
885 886
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
887 888
		return;

889
	if (!async) {
890 891
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
892
			__blk_mq_run_hw_queue(hctx);
893
			put_cpu();
894 895
			return;
		}
896

897
		put_cpu();
898
	}
899

900 901
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
902 903
}

904
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
905 906 907 908 909 910 911
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
912
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
913 914
			continue;

915
		blk_mq_run_hw_queue(hctx, async);
916 917
	}
}
918
EXPORT_SYMBOL(blk_mq_run_hw_queues);
919 920 921

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
922 923
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
924 925 926 927
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

928 929 930 931 932 933 934 935 936 937
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

938 939 940
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
941

942
	blk_mq_run_hw_queue(hctx, false);
943 944 945
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

946 947 948 949 950 951 952 953 954 955
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

956
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
957 958 959 960 961 962 963 964 965
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
966
		blk_mq_run_hw_queue(hctx, async);
967 968 969 970
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

971
static void blk_mq_run_work_fn(struct work_struct *work)
972 973 974
{
	struct blk_mq_hw_ctx *hctx;

975
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
976

977 978 979
	__blk_mq_run_hw_queue(hctx);
}

980 981 982 983 984 985 986 987 988 989 990 991
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
992 993
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
994

995 996
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
997 998 999
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1000
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1001
				    struct request *rq, bool at_head)
1002 1003 1004
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1005 1006
	trace_block_rq_insert(hctx->queue, rq);

1007 1008 1009 1010
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1011

1012 1013 1014
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1015 1016
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1017
{
1018
	struct request_queue *q = rq->q;
1019
	struct blk_mq_hw_ctx *hctx;
1020 1021 1022 1023 1024
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1025 1026 1027

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1028 1029 1030
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1031 1032 1033

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1034 1035

	blk_mq_put_ctx(current_ctx);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1067
		__blk_mq_insert_request(hctx, rq, false);
1068 1069 1070 1071
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1072
	blk_mq_put_ctx(current_ctx);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1135

1136
	if (blk_do_io_stat(rq))
1137
		blk_account_io_start(rq, 1);
1138 1139
}

1140 1141 1142 1143 1144 1145
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1146 1147 1148
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1149
{
1150
	if (!hctx_allow_merges(hctx)) {
1151 1152 1153 1154 1155 1156 1157
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1158 1159
		struct request_queue *q = hctx->queue;

1160 1161 1162 1163 1164
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1165

1166 1167 1168
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1169
	}
1170
}
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1185
	struct blk_mq_alloc_data alloc_data;
1186

1187
	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1188
		bio_io_error(bio);
1189
		return NULL;
1190 1191 1192 1193 1194
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1195
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1196
		rw |= REQ_SYNC;
1197

1198
	trace_block_getrq(q, bio, rw);
1199 1200 1201
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1202
	if (unlikely(!rq)) {
1203
		__blk_mq_run_hw_queue(hctx);
1204 1205
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1206 1207

		ctx = blk_mq_get_ctx(q);
1208
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1209 1210 1211 1212 1213
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1214 1215 1216
	}

	hctx->queued++;
1217 1218 1219 1220 1221
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
static int blk_mq_direct_issue_request(struct request *rq)
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	if (ret == BLK_MQ_RQ_QUEUE_OK)
		return 0;
	else {
		__blk_mq_requeue_request(rq);

		if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
			return 0;
		}
		return -1;
	}
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1265 1266
	unsigned int request_count = 0;
	struct blk_plug *plug;
1267
	struct request *same_queue_rq = NULL;
1268 1269 1270 1271

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1272
		bio_io_error(bio);
1273 1274 1275
		return;
	}

1276 1277
	blk_queue_split(q, &bio, q->bio_split);

1278
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1279
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1280 1281
		return;

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1292
	plug = current->plug;
1293 1294 1295 1296 1297
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1298 1299 1300
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1301 1302 1303 1304

		blk_mq_bio_to_request(rq, bio);

		/*
1305 1306 1307
		 * we do limited pluging. If bio can be merged, do merge.
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1308
		 */
1309
		if (plug) {
1310 1311 1312 1313 1314 1315
			/*
			 * The plug list might get flushed before this. If that
			 * happens, same_queue_rq is invalid and plug list is empty
			 **/
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1316
				list_del_init(&old_rq->queuelist);
1317
			}
1318 1319 1320 1321 1322
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1323
			return;
1324 1325 1326 1327
		if (!blk_mq_direct_issue_request(old_rq))
			return;
		blk_mq_insert_request(old_rq, false, true, true);
		return;
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1351 1352
	struct blk_plug *plug;
	unsigned int request_count = 0;
1353 1354 1355 1356 1357 1358
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1359
		bio_io_error(bio);
1360 1361 1362
		return;
	}

1363 1364
	blk_queue_split(q, &bio, q->bio_split);

1365
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1366
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1367 1368 1369
		return;

	rq = blk_mq_map_request(q, bio, &data);
1370 1371
	if (unlikely(!rq))
		return;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1384 1385 1386 1387 1388 1389 1390 1391
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
		if (list_empty(&plug->mq_list))
			trace_block_plug(q);
		else if (request_count >= BLK_MAX_REQUEST_COUNT) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1392
		}
1393 1394 1395
		list_add_tail(&rq->queuelist, &plug->mq_list);
		blk_mq_put_ctx(data.ctx);
		return;
1396 1397
	}

1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1407 1408
	}

1409
	blk_mq_put_ctx(data.ctx);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1421 1422
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1423
{
1424
	struct page *page;
1425

1426
	if (tags->rqs && set->ops->exit_request) {
1427
		int i;
1428

1429 1430
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1431
				continue;
1432 1433
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1434
			tags->rqs[i] = NULL;
1435
		}
1436 1437
	}

1438 1439
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1440
		list_del_init(&page->lru);
1441 1442 1443
		__free_pages(page, page->private);
	}

1444
	kfree(tags->rqs);
1445

1446
	blk_mq_free_tags(tags);
1447 1448 1449 1450
}

static size_t order_to_size(unsigned int order)
{
1451
	return (size_t)PAGE_SIZE << order;
1452 1453
}

1454 1455
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1456
{
1457
	struct blk_mq_tags *tags;
1458 1459 1460
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1461
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1462 1463
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1464 1465
	if (!tags)
		return NULL;
1466

1467 1468
	INIT_LIST_HEAD(&tags->page_list);

1469 1470 1471
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1472 1473 1474 1475
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1476 1477 1478 1479 1480

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1481
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1482
				cache_line_size());
1483
	left = rq_size * set->queue_depth;
1484

1485
	for (i = 0; i < set->queue_depth; ) {
1486 1487 1488 1489 1490 1491 1492 1493 1494
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1495
			page = alloc_pages_node(set->numa_node,
1496
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1497
				this_order);
1498 1499 1500 1501 1502 1503 1504 1505 1506
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1507
			goto fail;
1508 1509

		page->private = this_order;
1510
		list_add_tail(&page->lru, &tags->page_list);
1511 1512 1513

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1514
		to_do = min(entries_per_page, set->queue_depth - i);
1515 1516
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1517 1518 1519 1520
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1521 1522
						set->numa_node)) {
					tags->rqs[i] = NULL;
1523
					goto fail;
1524
				}
1525 1526
			}

1527 1528 1529 1530
			p += rq_size;
			i++;
		}
	}
1531
	return tags;
1532

1533 1534 1535
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1613 1614 1615 1616 1617

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1618 1619 1620 1621

	return NOTIFY_OK;
}

1622
/* hctx->ctxs will be freed in queue's release handler */
1623 1624 1625 1626
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1627 1628
	unsigned flush_start_tag = set->queue_depth;

1629 1630
	blk_mq_tag_idle(hctx);

1631 1632 1633 1634 1635
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1636 1637 1638 1639
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1640
	blk_free_flush_queue(hctx->fq);
1641 1642 1643
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1653
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1663
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1664 1665 1666
		free_cpumask_var(hctx->cpumask);
}

1667 1668 1669
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1670
{
1671
	int node;
1672
	unsigned flush_start_tag = set->queue_depth;
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1691 1692

	/*
1693 1694
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1695
	 */
1696 1697 1698 1699
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1700

1701 1702
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1703

1704
	hctx->nr_ctx = 0;
1705

1706 1707 1708
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1709

1710 1711 1712
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1713

1714 1715 1716 1717 1718
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1719

1720
	return 0;
1721

1722 1723 1724 1725 1726
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1727 1728 1729 1730 1731 1732
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1733

1734 1735
	return -1;
}
1736

1737 1738 1739 1740 1741
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1742

1743 1744 1745 1746 1747
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1748 1749 1750 1751 1752 1753 1754 1755 1756
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1757
	blk_mq_exit_hw_queues(q, set, i);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1781 1782
		hctx = q->mq_ops->map_queue(q, i);

1783 1784 1785 1786 1787 1788 1789 1790 1791
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

1792 1793
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1794 1795 1796 1797
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1798
	struct blk_mq_tag_set *set = q->tag_set;
1799 1800

	queue_for_each_hw_ctx(q, hctx, i) {
1801
		cpumask_clear(hctx->cpumask);
1802 1803 1804 1805 1806 1807 1808 1809
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1810
		if (!cpumask_test_cpu(i, online_mask))
1811 1812
			continue;

1813
		hctx = q->mq_ops->map_queue(q, i);
1814
		cpumask_set_cpu(i, hctx->cpumask);
1815 1816 1817
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1818 1819

	queue_for_each_hw_ctx(q, hctx, i) {
1820 1821
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1822
		/*
1823 1824
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1825 1826 1827 1828 1829 1830
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1831
			hctx->tags = NULL;
1832 1833 1834
			continue;
		}

M
Ming Lei 已提交
1835 1836 1837 1838 1839 1840
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1841 1842 1843 1844 1845
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1846
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1847

1848 1849 1850
		/*
		 * Initialize batch roundrobin counts
		 */
1851 1852 1853
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1854 1855

	queue_for_each_ctx(q, ctx, i) {
1856
		if (!cpumask_test_cpu(i, online_mask))
1857 1858 1859 1860 1861
			continue;

		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->tags->cpumask);
	}
1862 1863
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1922 1923 1924 1925
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1926
		kfree(hctx);
1927
	}
1928

1929 1930 1931
	kfree(q->mq_map);
	q->mq_map = NULL;

1932 1933 1934 1935 1936 1937
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1938
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
1956 1957
{
	struct blk_mq_hw_ctx **hctxs;
1958
	struct blk_mq_ctx __percpu *ctx;
1959
	unsigned int *map;
1960 1961 1962 1963 1964 1965
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1966 1967
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1968 1969 1970 1971

	if (!hctxs)
		goto err_percpu;

1972 1973 1974 1975
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1976
	for (i = 0; i < set->nr_hw_queues; i++) {
1977 1978
		int node = blk_mq_hw_queue_to_node(map, i);

1979 1980
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1981 1982 1983
		if (!hctxs[i])
			goto err_hctxs;

1984 1985
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
1986 1987
			goto err_hctxs;

1988
		atomic_set(&hctxs[i]->nr_active, 0);
1989
		hctxs[i]->numa_node = node;
1990 1991 1992
		hctxs[i]->queue_num = i;
	}

1993 1994 1995 1996
	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
1997
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1998
			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1999
		goto err_hctxs;
2000

2001
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2002
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2003 2004

	q->nr_queues = nr_cpu_ids;
2005
	q->nr_hw_queues = set->nr_hw_queues;
2006
	q->mq_map = map;
2007 2008 2009 2010

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

2011
	q->mq_ops = set->ops;
2012
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2013

2014 2015 2016
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2017 2018
	q->sg_reserved_size = INT_MAX;

2019 2020 2021 2022
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2023 2024 2025 2026 2027
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2028 2029 2030 2031 2032
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2033 2034
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2035

2036
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2037

2038
	if (blk_mq_init_hw_queues(q, set))
2039
		goto err_hctxs;
2040

2041
	get_online_cpus();
2042 2043
	mutex_lock(&all_q_mutex);

2044
	list_add_tail(&q->all_q_node, &all_q_list);
2045
	blk_mq_add_queue_tag_set(set, q);
2046
	blk_mq_map_swqueue(q, cpu_online_mask);
2047

2048
	mutex_unlock(&all_q_mutex);
2049
	put_online_cpus();
2050

2051
	return q;
2052

2053
err_hctxs:
2054
	kfree(map);
2055
	for (i = 0; i < set->nr_hw_queues; i++) {
2056 2057
		if (!hctxs[i])
			break;
2058
		free_cpumask_var(hctxs[i]->cpumask);
2059
		kfree(hctxs[i]);
2060
	}
2061
err_map:
2062 2063 2064 2065 2066
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
2067
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2068 2069 2070

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2071
	struct blk_mq_tag_set	*set = q->tag_set;
2072

2073 2074 2075 2076
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2077 2078
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2079 2080
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2081

2082
	percpu_ref_exit(&q->mq_usage_counter);
2083 2084 2085
}

/* Basically redo blk_mq_init_queue with queue frozen */
2086 2087
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2088
{
2089
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2090

2091 2092
	blk_mq_sysfs_unregister(q);

2093
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2094 2095 2096 2097 2098 2099 2100

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2101
	blk_mq_map_swqueue(q, online_mask);
2102

2103
	blk_mq_sysfs_register(q);
2104 2105
}

2106 2107
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2108 2109
{
	struct request_queue *q;
2110 2111 2112 2113 2114 2115 2116
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2117 2118

	/*
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2134
	 */
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2145
		return NOTIFY_OK;
2146
	}
2147 2148

	mutex_lock(&all_q_mutex);
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2159
	list_for_each_entry(q, &all_q_list, all_q_node) {
2160 2161
		blk_mq_freeze_queue_wait(q);

2162 2163 2164 2165 2166 2167 2168
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2169
	list_for_each_entry(q, &all_q_list, all_q_node)
2170
		blk_mq_queue_reinit(q, &online_new);
2171 2172 2173 2174

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2175 2176 2177 2178
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2233 2234 2235 2236 2237 2238
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2239 2240 2241 2242 2243 2244
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2245 2246
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2247 2248
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2249 2250
	if (!set->nr_hw_queues)
		return -EINVAL;
2251
	if (!set->queue_depth)
2252 2253 2254 2255
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2256
	if (!set->ops->queue_rq || !set->ops->map_queue)
2257 2258
		return -EINVAL;

2259 2260 2261 2262 2263
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2264

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2275 2276
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2277 2278
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2279
		return -ENOMEM;
2280

2281 2282
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2283

2284 2285 2286
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2287
	return 0;
2288
enomem:
2289 2290
	kfree(set->tags);
	set->tags = NULL;
2291 2292 2293 2294 2295 2296 2297 2298
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2299
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2300
		if (set->tags[i]) {
2301
			blk_mq_free_rq_map(set, set->tags[i], i);
K
Keith Busch 已提交
2302 2303
			free_cpumask_var(set->tags[i]->cpumask);
		}
2304 2305
	}

M
Ming Lei 已提交
2306
	kfree(set->tags);
2307
	set->tags = NULL;
2308 2309 2310
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2343 2344 2345 2346
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2347
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2348 2349 2350 2351

	return 0;
}
subsys_initcall(blk_mq_init);