blk-mq.c 56.2 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
42
	return sbitmap_any_bit_set(&hctx->ctx_map);
43 44
}

45 46 47 48 49 50
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
51 52
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 54 55 56 57
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
58
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 60
}

61
void blk_mq_freeze_queue_start(struct request_queue *q)
62
{
63
	int freeze_depth;
64

65 66
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
67
		percpu_ref_kill(&q->q_usage_counter);
68
		blk_mq_run_hw_queues(q, false);
69
	}
70
}
71
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72 73 74

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
75
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 77
}

78 79 80 81
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
82
void blk_freeze_queue(struct request_queue *q)
83
{
84 85 86 87 88 89 90
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
91 92 93
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
94 95 96 97 98 99 100 101 102

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
103
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104

105
void blk_mq_unfreeze_queue(struct request_queue *q)
106
{
107
	int freeze_depth;
108

109 110 111
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
112
		percpu_ref_reinit(&q->q_usage_counter);
113
		wake_up_all(&q->mq_freeze_wq);
114
	}
115
}
116
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117

118 119 120 121 122 123 124 125
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
126 127 128 129 130 131 132

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
133 134
}

135 136 137 138 139 140
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

141
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142
			       struct request *rq, unsigned int op)
143
{
144 145 146
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
147
	rq->mq_ctx = ctx;
148
	rq->cmd_flags = op;
149 150
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
151 152 153 154 155 156
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
157
	rq->start_time = jiffies;
158 159
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
160
	set_start_time_ns(rq);
161 162 163 164 165 166 167 168 169 170
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

171 172
	rq->cmd = rq->__cmd;

173 174 175 176 177 178
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
179 180
	rq->timeout = 0;

181 182 183 184
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

185
	ctx->rq_dispatched[op_is_sync(op)]++;
186 187
}

188
static struct request *
189
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
190 191 192 193
{
	struct request *rq;
	unsigned int tag;

194
	tag = blk_mq_get_tag(data);
195
	if (tag != BLK_MQ_TAG_FAIL) {
196
		rq = data->hctx->tags->rqs[tag];
197

198
		if (blk_mq_tag_busy(data->hctx)) {
199
			rq->rq_flags = RQF_MQ_INFLIGHT;
200
			atomic_inc(&data->hctx->nr_active);
201 202 203
		}

		rq->tag = tag;
204
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
205 206 207 208 209 210
		return rq;
	}

	return NULL;
}

211 212
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
213
{
214 215
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
216
	struct request *rq;
217
	struct blk_mq_alloc_data alloc_data;
218
	int ret;
219

220
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
221 222
	if (ret)
		return ERR_PTR(ret);
223

224
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
225
	hctx = blk_mq_map_queue(q, ctx->cpu);
226
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
227
	rq = __blk_mq_alloc_request(&alloc_data, rw);
228
	blk_mq_put_ctx(ctx);
229

K
Keith Busch 已提交
230
	if (!rq) {
231
		blk_queue_exit(q);
232
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
233
	}
234 235 236 237

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
238 239
	return rq;
}
240
EXPORT_SYMBOL(blk_mq_alloc_request);
241

M
Ming Lin 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

267 268 269 270
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
271
	hctx = q->queue_hw_ctx[hctx_idx];
272 273 274 275
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
276 277 278
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
279
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
280
	if (!rq) {
281 282
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
283 284 285
	}

	return rq;
286 287 288 289

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
290 291 292
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

293 294 295 296 297 298
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

299
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
300
		atomic_dec(&hctx->nr_active);
301
	rq->rq_flags = 0;
302

303
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
304
	blk_mq_put_tag(hctx, ctx, tag);
305
	blk_queue_exit(q);
306 307
}

308
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
309 310 311 312 313
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
314 315 316 317 318 319

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
C
Christoph Hellwig 已提交
320
	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
321
}
J
Jens Axboe 已提交
322
EXPORT_SYMBOL_GPL(blk_mq_free_request);
323

324
inline void __blk_mq_end_request(struct request *rq, int error)
325
{
M
Ming Lei 已提交
326 327
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
328
	if (rq->end_io) {
329
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
330 331 332
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
333
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
334
	}
335
}
336
EXPORT_SYMBOL(__blk_mq_end_request);
337

338
void blk_mq_end_request(struct request *rq, int error)
339 340 341
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
342
	__blk_mq_end_request(rq, error);
343
}
344
EXPORT_SYMBOL(blk_mq_end_request);
345

346
static void __blk_mq_complete_request_remote(void *data)
347
{
348
	struct request *rq = data;
349

350
	rq->q->softirq_done_fn(rq);
351 352
}

353
static void blk_mq_ipi_complete_request(struct request *rq)
354 355
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
356
	bool shared = false;
357 358
	int cpu;

C
Christoph Hellwig 已提交
359
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
360 361 362
		rq->q->softirq_done_fn(rq);
		return;
	}
363 364

	cpu = get_cpu();
C
Christoph Hellwig 已提交
365 366 367 368
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
369
		rq->csd.func = __blk_mq_complete_request_remote;
370 371
		rq->csd.info = rq;
		rq->csd.flags = 0;
372
		smp_call_function_single_async(ctx->cpu, &rq->csd);
373
	} else {
374
		rq->q->softirq_done_fn(rq);
375
	}
376 377
	put_cpu();
}
378

379
static void __blk_mq_complete_request(struct request *rq)
380 381 382 383
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
384
		blk_mq_end_request(rq, rq->errors);
385 386 387 388
	else
		blk_mq_ipi_complete_request(rq);
}

389 390 391 392 393 394 395 396
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
397
void blk_mq_complete_request(struct request *rq, int error)
398
{
399 400 401
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
402
		return;
403 404
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
405
		__blk_mq_complete_request(rq);
406
	}
407 408
}
EXPORT_SYMBOL(blk_mq_complete_request);
409

410 411 412 413 414 415
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

416
void blk_mq_start_request(struct request *rq)
417 418 419 420 421
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
422
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
423 424
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
425

426
	blk_add_timer(rq);
427

428 429 430 431 432 433
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

434 435 436 437 438 439
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
440 441 442 443
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444 445 446 447 448 449 450 451 452

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
453
}
454
EXPORT_SYMBOL(blk_mq_start_request);
455

456
static void __blk_mq_requeue_request(struct request *rq)
457 458 459 460
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
461

462 463 464 465
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
466 467
}

468 469 470 471 472
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
473
	blk_mq_add_to_requeue_list(rq, true);
474 475 476
}
EXPORT_SYMBOL(blk_mq_requeue_request);

477 478 479
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
480
		container_of(work, struct request_queue, requeue_work.work);
481 482 483 484 485 486 487 488 489
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
490
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
491 492
			continue;

493
		rq->rq_flags &= ~RQF_SOFTBARRIER;
494 495 496 497 498 499 500 501 502 503
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

504
	blk_mq_run_hw_queues(q, false);
505 506 507 508 509 510 511 512 513 514 515
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
516
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
517 518 519

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
520
		rq->rq_flags |= RQF_SOFTBARRIER;
521 522 523 524 525 526 527 528 529 530
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
531
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
532 533 534
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

535 536 537 538 539 540 541 542
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

563 564
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
565 566
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
567
		return tags->rqs[tag];
568
	}
569 570

	return NULL;
571 572 573
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

574
struct blk_mq_timeout_data {
575 576
	unsigned long next;
	unsigned int next_set;
577 578
};

579
void blk_mq_rq_timed_out(struct request *req, bool reserved)
580
{
581 582
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
583 584 585 586 587 588 589 590 591 592

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
593 594
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
595

596
	if (ops->timeout)
597
		ret = ops->timeout(req, reserved);
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
613
}
614

615 616 617 618
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
619

620 621 622 623 624
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
625 626 627 628
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
629
		return;
630
	}
631

632 633
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
634
			blk_mq_rq_timed_out(rq, reserved);
635 636 637 638
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
639 640
}

641
static void blk_mq_timeout_work(struct work_struct *work)
642
{
643 644
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
645 646 647 648 649
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
665 666
		return;

667
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
668

669 670 671
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
672
	} else {
673 674
		struct blk_mq_hw_ctx *hctx;

675 676 677 678 679
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
680
	}
681
	blk_queue_exit(q);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

741 742 743 744 745 746
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
747 748 749 750
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
751

752
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
753 754
}

755 756 757 758
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
759

760
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
761 762
}

763 764 765 766 767 768 769 770 771 772 773
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
774 775
	LIST_HEAD(driver_list);
	struct list_head *dptr;
776
	int queued;
777

778
	if (unlikely(blk_mq_hctx_stopped(hctx)))
779 780
		return;

781 782 783
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

784 785 786 787 788
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
789
	flush_busy_ctxs(hctx, &rq_list);
790 791 792 793 794 795 796 797 798 799 800 801

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

802 803 804 805 806 807
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

808 809 810
	/*
	 * Now process all the entries, sending them to the driver.
	 */
811
	queued = 0;
812
	while (!list_empty(&rq_list)) {
813
		struct blk_mq_queue_data bd;
814 815 816 817 818
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

819 820 821 822 823
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
824 825 826
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
827
			break;
828 829
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
830
			__blk_mq_requeue_request(rq);
831 832 833 834
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
835
			rq->errors = -EIO;
836
			blk_mq_end_request(rq, rq->errors);
837 838 839 840 841
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
842 843 844 845 846 847 848

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
849 850
	}

851
	hctx->dispatched[queued_to_index(queued)]++;
852 853 854 855 856 857 858 859 860

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
861 862 863 864 865 866 867 868 869 870
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
871 872 873
	}
}

874 875 876 877 878 879 880 881
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
882 883
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
884 885

	if (--hctx->next_cpu_batch <= 0) {
886
		int cpu = hctx->next_cpu, next_cpu;
887 888 889 890 891 892 893

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
894 895

		return cpu;
896 897
	}

898
	return hctx->next_cpu;
899 900
}

901 902
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
903 904
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
905 906
		return;

907
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
908 909
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
910
			__blk_mq_run_hw_queue(hctx);
911
			put_cpu();
912 913
			return;
		}
914

915
		put_cpu();
916
	}
917

918
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
919 920
}

921
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
922 923 924 925 926 927 928
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
929
		    blk_mq_hctx_stopped(hctx))
930 931
			continue;

932
		blk_mq_run_hw_queue(hctx, async);
933 934
	}
}
935
EXPORT_SYMBOL(blk_mq_run_hw_queues);
936

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

957 958
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
959
	cancel_work(&hctx->run_work);
960
	cancel_delayed_work(&hctx->delay_work);
961 962 963 964
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

965 966 967 968 969 970 971 972 973 974
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

975 976 977
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
978

979
	blk_mq_run_hw_queue(hctx, false);
980 981 982
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

983 984 985 986 987 988 989 990 991 992
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

993
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
994 995 996 997 998
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
999
		if (!blk_mq_hctx_stopped(hctx))
1000 1001 1002
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1003
		blk_mq_run_hw_queue(hctx, async);
1004 1005 1006 1007
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1008
static void blk_mq_run_work_fn(struct work_struct *work)
1009 1010 1011
{
	struct blk_mq_hw_ctx *hctx;

1012
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1013

1014 1015 1016
	__blk_mq_run_hw_queue(hctx);
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1029 1030
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1031

1032 1033
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1034 1035 1036
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1037 1038 1039
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1040
{
J
Jens Axboe 已提交
1041 1042
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1043 1044
	trace_block_rq_insert(hctx->queue, rq);

1045 1046 1047 1048
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1049
}
1050

1051 1052 1053 1054 1055
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1056
	__blk_mq_insert_req_list(hctx, rq, at_head);
1057 1058 1059
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1060
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1061
			   bool async)
1062
{
J
Jens Axboe 已提交
1063
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1064
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1065
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1066

1067 1068 1069
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
C
Christoph Hellwig 已提交
1082
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	trace_block_unplug(q, depth, !from_schedule);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1095
		BUG_ON(rq->mq_ctx != ctx);
1096
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1097
		__blk_mq_insert_req_list(hctx, rq, false);
1098
	}
1099
	blk_mq_hctx_mark_pending(hctx, ctx);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1165

1166
	blk_account_io_start(rq, 1);
1167 1168
}

1169 1170 1171 1172 1173 1174
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1175 1176 1177
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1178
{
1179
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1180 1181 1182 1183 1184 1185 1186
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1187 1188
		struct request_queue *q = hctx->queue;

1189 1190 1191 1192 1193
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1194

1195 1196 1197
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1198
	}
1199
}
1200

1201 1202
static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
1203
					  struct blk_mq_alloc_data *data)
1204 1205 1206 1207
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1208

1209
	blk_queue_enter_live(q);
1210
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1211
	hctx = blk_mq_map_queue(q, ctx->cpu);
1212

1213
	trace_block_getrq(q, bio, bio->bi_opf);
1214
	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1215
	rq = __blk_mq_alloc_request(data, bio->bi_opf);
1216

1217
	data->hctx->queued++;
1218 1219 1220
	return rq;
}

1221 1222
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, blk_qc_t *cookie)
1223 1224 1225 1226 1227 1228 1229 1230
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1231
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1232

1233 1234 1235
	if (blk_mq_hctx_stopped(hctx))
		goto insert;

1236 1237 1238 1239 1240 1241
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1242 1243
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1244
		return;
1245
	}
1246

1247 1248 1249 1250 1251 1252
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1253
		return;
1254
	}
1255

1256 1257
insert:
	blk_mq_insert_request(rq, false, true, true);
1258 1259
}

1260 1261 1262 1263 1264
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1265
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1266
{
1267
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1268
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1269
	struct blk_mq_alloc_data data;
1270
	struct request *rq;
1271 1272
	unsigned int request_count = 0;
	struct blk_plug *plug;
1273
	struct request *same_queue_rq = NULL;
1274
	blk_qc_t cookie;
1275 1276 1277 1278

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1279
		bio_io_error(bio);
1280
		return BLK_QC_T_NONE;
1281 1282
	}

1283 1284
	blk_queue_split(q, &bio, q->bio_split);

1285 1286 1287
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1288

1289 1290
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1291
		return BLK_QC_T_NONE;
1292

1293
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1294 1295 1296 1297 1298 1299 1300

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1301
	plug = current->plug;
1302 1303 1304 1305 1306
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1307 1308 1309
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1310 1311 1312 1313

		blk_mq_bio_to_request(rq, bio);

		/*
1314
		 * We do limited pluging. If the bio can be merged, do that.
1315 1316
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1317
		 */
1318
		if (plug) {
1319 1320
			/*
			 * The plug list might get flushed before this. If that
1321 1322 1323
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1324 1325
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1326
				list_del_init(&old_rq->queuelist);
1327
			}
1328 1329 1330 1331 1332
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1333
			goto done;
1334
		blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
1335
		goto done;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1349 1350
done:
	return cookie;
1351 1352 1353 1354 1355 1356
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1357
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1358
{
1359
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1360
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1361 1362
	struct blk_plug *plug;
	unsigned int request_count = 0;
1363
	struct blk_mq_alloc_data data;
1364
	struct request *rq;
1365
	blk_qc_t cookie;
1366 1367 1368 1369

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1370
		bio_io_error(bio);
1371
		return BLK_QC_T_NONE;
1372 1373
	}

1374 1375
	blk_queue_split(q, &bio, q->bio_split);

1376 1377 1378 1379 1380
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1381 1382

	rq = blk_mq_map_request(q, bio, &data);
1383
	if (unlikely(!rq))
1384
		return BLK_QC_T_NONE;
1385

1386
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1399 1400 1401
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1402
		if (!request_count)
1403
			trace_block_plug(q);
1404 1405 1406 1407

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1408 1409
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1410
		}
1411

1412
		list_add_tail(&rq->queuelist, &plug->mq_list);
1413
		return cookie;
1414 1415
	}

1416 1417 1418 1419 1420 1421 1422 1423 1424
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1425 1426
	}

1427
	blk_mq_put_ctx(data.ctx);
1428
	return cookie;
1429 1430
}

1431 1432
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1433
{
1434
	struct page *page;
1435

1436
	if (tags->rqs && set->ops->exit_request) {
1437
		int i;
1438

1439 1440
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1441
				continue;
1442 1443
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1444
			tags->rqs[i] = NULL;
1445
		}
1446 1447
	}

1448 1449
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1450
		list_del_init(&page->lru);
1451 1452 1453 1454 1455
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1456 1457 1458
		__free_pages(page, page->private);
	}

1459
	kfree(tags->rqs);
1460

1461
	blk_mq_free_tags(tags);
1462 1463 1464 1465
}

static size_t order_to_size(unsigned int order)
{
1466
	return (size_t)PAGE_SIZE << order;
1467 1468
}

1469 1470
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1471
{
1472
	struct blk_mq_tags *tags;
1473 1474 1475
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1476
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1477 1478
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1479 1480
	if (!tags)
		return NULL;
1481

1482 1483
	INIT_LIST_HEAD(&tags->page_list);

1484 1485 1486
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1487 1488 1489 1490
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1491 1492 1493 1494 1495

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1496
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1497
				cache_line_size());
1498
	left = rq_size * set->queue_depth;
1499

1500
	for (i = 0; i < set->queue_depth; ) {
1501 1502 1503 1504 1505
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1506
		while (this_order && left < order_to_size(this_order - 1))
1507 1508 1509
			this_order--;

		do {
1510
			page = alloc_pages_node(set->numa_node,
1511
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1512
				this_order);
1513 1514 1515 1516 1517 1518 1519 1520 1521
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1522
			goto fail;
1523 1524

		page->private = this_order;
1525
		list_add_tail(&page->lru, &tags->page_list);
1526 1527

		p = page_address(page);
1528 1529 1530 1531 1532
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1533
		entries_per_page = order_to_size(this_order) / rq_size;
1534
		to_do = min(entries_per_page, set->queue_depth - i);
1535 1536
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1537 1538 1539 1540
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1541 1542
						set->numa_node)) {
					tags->rqs[i] = NULL;
1543
					goto fail;
1544
				}
1545 1546
			}

1547 1548 1549 1550
			p += rq_size;
			i++;
		}
	}
1551
	return tags;
1552

1553 1554 1555
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1556 1557
}

J
Jens Axboe 已提交
1558 1559 1560 1561 1562
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1563
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1564
{
1565
	struct blk_mq_hw_ctx *hctx;
1566 1567 1568
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1569
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1570
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1571 1572 1573 1574 1575 1576 1577 1578 1579

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1580
		return 0;
1581

J
Jens Axboe 已提交
1582 1583 1584
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1585 1586

	blk_mq_run_hw_queue(hctx, true);
1587
	return 0;
1588 1589
}

1590
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1591
{
1592 1593
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1594 1595
}

1596
/* hctx->ctxs will be freed in queue's release handler */
1597 1598 1599 1600
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1601 1602
	unsigned flush_start_tag = set->queue_depth;

1603 1604
	blk_mq_tag_idle(hctx);

1605 1606 1607 1608 1609
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1610 1611 1612
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1613
	blk_mq_remove_cpuhp(hctx);
1614
	blk_free_flush_queue(hctx->fq);
1615
	sbitmap_free(&hctx->ctx_map);
1616 1617
}

M
Ming Lei 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1627
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1637
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1638 1639 1640
		free_cpumask_var(hctx->cpumask);
}

1641 1642 1643
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1644
{
1645
	int node;
1646
	unsigned flush_start_tag = set->queue_depth;
1647 1648 1649 1650 1651

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1652
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1653 1654 1655 1656 1657
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1658
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1659

1660
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1661 1662

	hctx->tags = set->tags[hctx_idx];
1663 1664

	/*
1665 1666
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1667
	 */
1668 1669 1670 1671
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1672

1673 1674
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1675
		goto free_ctxs;
1676

1677
	hctx->nr_ctx = 0;
1678

1679 1680 1681
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1682

1683 1684 1685
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1686

1687 1688 1689 1690 1691
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1692

1693
	return 0;
1694

1695 1696 1697 1698 1699
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1700
 free_bitmap:
1701
	sbitmap_free(&hctx->ctx_map);
1702 1703 1704
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1705
	blk_mq_remove_cpuhp(hctx);
1706 1707
	return -1;
}
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1728
		hctx = blk_mq_map_queue(q, i);
1729

1730 1731 1732 1733 1734
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1735
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1736 1737 1738
	}
}

1739 1740
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1741 1742 1743 1744
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1745
	struct blk_mq_tag_set *set = q->tag_set;
1746

1747 1748 1749 1750 1751
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1752
	queue_for_each_hw_ctx(q, hctx, i) {
1753
		cpumask_clear(hctx->cpumask);
1754 1755 1756 1757 1758 1759
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1760
	for_each_possible_cpu(i) {
1761
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1762
		if (!cpumask_test_cpu(i, online_mask))
1763 1764
			continue;

1765
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1766
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1767

1768
		cpumask_set_cpu(i, hctx->cpumask);
1769 1770 1771
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1772

1773 1774
	mutex_unlock(&q->sysfs_lock);

1775
	queue_for_each_hw_ctx(q, hctx, i) {
1776
		/*
1777 1778
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1779 1780 1781 1782 1783 1784
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1785
			hctx->tags = NULL;
1786 1787 1788
			continue;
		}

M
Ming Lei 已提交
1789 1790 1791 1792 1793 1794
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1795 1796 1797 1798 1799
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1800
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1801

1802 1803 1804
		/*
		 * Initialize batch roundrobin counts
		 */
1805 1806 1807
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1808 1809
}

1810
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1811 1812 1813 1814
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1826 1827 1828

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1829
		queue_set_hctx_shared(q, shared);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1840 1841 1842 1843 1844 1845
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1846 1847 1848 1849 1850 1851 1852 1853 1854
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1855 1856 1857 1858 1859 1860 1861 1862 1863

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1864
	list_add_tail(&q->tag_set_list, &set->tag_list);
1865

1866 1867 1868
	mutex_unlock(&set->tag_list_lock);
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1881 1882 1883 1884
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1885
		kfree(hctx);
1886
	}
1887

1888 1889
	q->mq_map = NULL;

1890 1891 1892 1893 1894 1895
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1896
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1912 1913
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1914
{
K
Keith Busch 已提交
1915 1916
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1917

K
Keith Busch 已提交
1918
	blk_mq_sysfs_unregister(q);
1919
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1920
		int node;
1921

K
Keith Busch 已提交
1922 1923 1924 1925
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1926 1927
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1928
		if (!hctxs[i])
K
Keith Busch 已提交
1929
			break;
1930

1931
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
1932 1933 1934 1935 1936
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
1937

1938
		atomic_set(&hctxs[i]->nr_active, 0);
1939
		hctxs[i]->numa_node = node;
1940
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
1941 1942 1943 1944 1945 1946 1947 1948

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
1949
	}
K
Keith Busch 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
1974 1975 1976
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
1977 1978
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
1979
		goto err_exit;
K
Keith Busch 已提交
1980 1981 1982 1983 1984 1985

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

1986
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
1987 1988 1989 1990

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
1991

1992
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1993
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1994 1995 1996

	q->nr_queues = nr_cpu_ids;

1997
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1998

1999 2000 2001
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2002 2003
	q->sg_reserved_size = INT_MAX;

2004
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2005 2006 2007
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2008 2009 2010 2011 2012
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2013 2014 2015 2016 2017
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2018 2019
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2020

2021
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2022

2023
	get_online_cpus();
2024 2025
	mutex_lock(&all_q_mutex);

2026
	list_add_tail(&q->all_q_node, &all_q_list);
2027
	blk_mq_add_queue_tag_set(set, q);
2028
	blk_mq_map_swqueue(q, cpu_online_mask);
2029

2030
	mutex_unlock(&all_q_mutex);
2031
	put_online_cpus();
2032

2033
	return q;
2034

2035
err_hctxs:
K
Keith Busch 已提交
2036
	kfree(q->queue_hw_ctx);
2037
err_percpu:
K
Keith Busch 已提交
2038
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2039 2040
err_exit:
	q->mq_ops = NULL;
2041 2042
	return ERR_PTR(-ENOMEM);
}
2043
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2044 2045 2046

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2047
	struct blk_mq_tag_set	*set = q->tag_set;
2048

2049 2050 2051 2052
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2053 2054
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2055 2056
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2057 2058 2059
}

/* Basically redo blk_mq_init_queue with queue frozen */
2060 2061
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2062
{
2063
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2064

2065 2066
	blk_mq_sysfs_unregister(q);

2067 2068 2069 2070 2071 2072
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2073
	blk_mq_map_swqueue(q, online_mask);
2074

2075
	blk_mq_sysfs_register(q);
2076 2077
}

2078 2079 2080 2081 2082 2083 2084 2085
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2086 2087 2088 2089
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2090 2091 2092 2093 2094 2095 2096 2097 2098
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2099
	list_for_each_entry(q, &all_q_list, all_q_node) {
2100 2101
		blk_mq_freeze_queue_wait(q);

2102 2103 2104 2105 2106 2107 2108
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2109
	list_for_each_entry(q, &all_q_list, all_q_node)
2110
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2111 2112 2113 2114

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2115
	mutex_unlock(&all_q_mutex);
2116 2117 2118 2119
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2120
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
 * is ignored.
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2147 2148
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2203 2204 2205 2206 2207 2208
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2209 2210
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2211 2212
	int ret;

B
Bart Van Assche 已提交
2213 2214
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2215 2216
	if (!set->nr_hw_queues)
		return -EINVAL;
2217
	if (!set->queue_depth)
2218 2219 2220 2221
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2222
	if (!set->ops->queue_rq)
2223 2224
		return -EINVAL;

2225 2226 2227 2228 2229
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2230

2231 2232 2233 2234 2235 2236 2237 2238 2239
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2240 2241 2242 2243 2244
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2245

K
Keith Busch 已提交
2246
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2247 2248
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2249
		return -ENOMEM;
2250

2251 2252 2253
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2254 2255 2256
	if (!set->mq_map)
		goto out_free_tags;

2257 2258 2259 2260 2261 2262 2263 2264 2265
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2266
		goto out_free_mq_map;
2267

2268 2269 2270
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2271
	return 0;
2272 2273 2274 2275 2276

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2277 2278
	kfree(set->tags);
	set->tags = NULL;
2279
	return ret;
2280 2281 2282 2283 2284 2285 2286
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2287
	for (i = 0; i < nr_cpu_ids; i++) {
2288
		if (set->tags[i])
2289 2290 2291
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

2292 2293 2294
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2295
	kfree(set->tags);
2296
	set->tags = NULL;
2297 2298 2299
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2311 2312
		if (!hctx->tags)
			continue;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2363 2364
static int __init blk_mq_init(void)
{
2365 2366
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2367

2368 2369 2370
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2371 2372 2373
	return 0;
}
subsys_initcall(blk_mq_init);