blk-mq.c 69.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
48
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49
{
50 51 52
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
53 54
}

55 56 57 58 59 60
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
61 62
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 64 65 66 67
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
68
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 70
}

71
void blk_freeze_queue_start(struct request_queue *q)
72
{
73
	int freeze_depth;
74

75 76
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
77
		percpu_ref_kill(&q->q_usage_counter);
78
		blk_mq_run_hw_queues(q, false);
79
	}
80
}
81
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82

83
void blk_mq_freeze_queue_wait(struct request_queue *q)
84
{
85
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86
}
87
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88

89 90 91 92 93 94 95 96
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111
	blk_freeze_queue_start(q);
112 113
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

165 166 167 168 169 170 171 172
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
173 174 175 176 177 178 179

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
180 181
}

182 183 184 185 186 187
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

188 189
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
190
{
191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags = op;
196 197
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
198 199 200 201 202 203
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
204
	rq->start_time = jiffies;
205 206
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
207
	set_start_time_ns(rq);
208 209 210 211 212 213 214 215 216 217 218 219
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
220 221
	rq->timeout = 0;

222 223 224 225
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

226
	ctx->rq_dispatched[op_is_sync(op)]++;
227
}
228
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229

230 231
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
232 233 234 235
{
	struct request *rq;
	unsigned int tag;

236
	tag = blk_mq_get_tag(data);
237
	if (tag != BLK_MQ_TAG_FAIL) {
238 239 240
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
241

242 243 244 245
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
246 247 248 249
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
250 251
			rq->tag = tag;
			rq->internal_tag = -1;
252
			data->hctx->tags->rqs[rq->tag] = rq;
253 254
		}

255
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 257 258 259 260
		return rq;
	}

	return NULL;
}
261
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262

263 264
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
265
{
266
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
267
	struct request *rq;
268
	int ret;
269

270
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 272
	if (ret)
		return ERR_PTR(ret);
273

274
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275

276 277 278 279
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
280
		return ERR_PTR(-EWOULDBLOCK);
281 282 283 284

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288

M
Ming Lin 已提交
289 290 291
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
292
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
293
	struct request *rq;
294
	unsigned int cpu;
M
Ming Lin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

313 314 315 316
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
317 318 319 320
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
321
	}
322 323
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
324

325
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326 327

	blk_queue_exit(q);
328 329 330 331 332

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
333 334 335
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

336 337
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
338
{
339
	const int sched_tag = rq->internal_tag;
340 341
	struct request_queue *q = rq->q;

342
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
343
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
344 345

	wbt_done(q->rq_wb, &rq->issue_stat);
346
	rq->rq_flags = 0;
347

348
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350 351 352
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
353
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
354
	blk_mq_sched_restart(hctx);
355
	blk_queue_exit(q);
356 357
}

358
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359
				     struct request *rq)
360 361 362 363
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
364 365 366 367 368 369
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370
}
O
Omar Sandoval 已提交
371
EXPORT_SYMBOL_GPL(blk_mq_finish_request);
372 373 374

void blk_mq_free_request(struct request *rq)
{
375
	blk_mq_sched_put_request(rq);
376
}
J
Jens Axboe 已提交
377
EXPORT_SYMBOL_GPL(blk_mq_free_request);
378

379
inline void __blk_mq_end_request(struct request *rq, int error)
380
{
M
Ming Lei 已提交
381 382
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
383
	if (rq->end_io) {
J
Jens Axboe 已提交
384
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
385
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
386 387 388
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
389
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
390
	}
391
}
392
EXPORT_SYMBOL(__blk_mq_end_request);
393

394
void blk_mq_end_request(struct request *rq, int error)
395 396 397
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
398
	__blk_mq_end_request(rq, error);
399
}
400
EXPORT_SYMBOL(blk_mq_end_request);
401

402
static void __blk_mq_complete_request_remote(void *data)
403
{
404
	struct request *rq = data;
405

406
	rq->q->softirq_done_fn(rq);
407 408
}

409
static void blk_mq_ipi_complete_request(struct request *rq)
410 411
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
412
	bool shared = false;
413 414
	int cpu;

C
Christoph Hellwig 已提交
415
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416 417 418
		rq->q->softirq_done_fn(rq);
		return;
	}
419 420

	cpu = get_cpu();
C
Christoph Hellwig 已提交
421 422 423 424
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425
		rq->csd.func = __blk_mq_complete_request_remote;
426 427
		rq->csd.info = rq;
		rq->csd.flags = 0;
428
		smp_call_function_single_async(ctx->cpu, &rq->csd);
429
	} else {
430
		rq->q->softirq_done_fn(rq);
431
	}
432 433
	put_cpu();
}
434

435 436 437
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
438 439
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
440 441 442
	}
}

443
static void __blk_mq_complete_request(struct request *rq)
444 445 446
{
	struct request_queue *q = rq->q;

447 448 449
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

450 451
	blk_mq_stat_add(rq);

452
	if (!q->softirq_done_fn)
453
		blk_mq_end_request(rq, rq->errors);
454 455 456 457
	else
		blk_mq_ipi_complete_request(rq);
}

458 459 460 461 462 463 464 465
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
466
void blk_mq_complete_request(struct request *rq, int error)
467
{
468 469 470
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
471
		return;
472 473
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
474
		__blk_mq_complete_request(rq);
475
	}
476 477
}
EXPORT_SYMBOL(blk_mq_complete_request);
478

479 480 481 482 483 484
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

485
void blk_mq_start_request(struct request *rq)
486 487 488
{
	struct request_queue *q = rq->q;

489 490
	blk_mq_sched_started_request(rq);

491 492
	trace_block_rq_issue(q, rq);

493
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
495
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
496
		wbt_issue(q->rq_wb, &rq->issue_stat);
497 498
	}

499
	blk_add_timer(rq);
500

501 502 503 504 505 506
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

507 508 509 510 511 512
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
513 514 515 516
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517 518 519 520 521 522 523 524 525

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
526
}
527
EXPORT_SYMBOL(blk_mq_start_request);
528

529 530
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
531
 * flag isn't set yet, so there may be race with timeout handler,
532 533 534 535 536 537
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
538
static void __blk_mq_requeue_request(struct request *rq)
539 540 541 542
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
543
	wbt_requeue(q->rq_wb, &rq->issue_stat);
544
	blk_mq_sched_requeue_request(rq);
545

546 547 548 549
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
550 551
}

552
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
553 554 555 556
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
557
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
558 559 560
}
EXPORT_SYMBOL(blk_mq_requeue_request);

561 562 563
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
564
		container_of(work, struct request_queue, requeue_work.work);
565 566 567 568 569 570 571 572 573
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
574
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
575 576
			continue;

577
		rq->rq_flags &= ~RQF_SOFTBARRIER;
578
		list_del_init(&rq->queuelist);
579
		blk_mq_sched_insert_request(rq, true, false, false, true);
580 581 582 583 584
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
585
		blk_mq_sched_insert_request(rq, false, false, false, true);
586 587
	}

588
	blk_mq_run_hw_queues(q, false);
589 590
}

591 592
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
593 594 595 596 597 598 599 600
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
601
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
602 603 604

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
605
		rq->rq_flags |= RQF_SOFTBARRIER;
606 607 608 609 610
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
611 612 613

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
614 615 616 617 618
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
619
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
620 621 622
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

623 624 625 626 627 628 629 630
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

651 652
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
653 654
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
655
		return tags->rqs[tag];
656
	}
657 658

	return NULL;
659 660 661
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

662
struct blk_mq_timeout_data {
663 664
	unsigned long next;
	unsigned int next_set;
665 666
};

667
void blk_mq_rq_timed_out(struct request *req, bool reserved)
668
{
J
Jens Axboe 已提交
669
	const struct blk_mq_ops *ops = req->q->mq_ops;
670
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
671 672 673 674 675 676 677

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
678
	 * both flags will get cleared. So check here again, and ignore
679 680
	 * a timeout event with a request that isn't active.
	 */
681 682
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
683

684
	if (ops->timeout)
685
		ret = ops->timeout(req, reserved);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
701
}
702

703 704 705 706
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
707

708
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
709
		return;
710

711 712 713 714 715 716 717 718 719 720 721 722 723
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
724 725
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
726
			blk_mq_rq_timed_out(rq, reserved);
727 728 729 730
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
731 732
}

733
static void blk_mq_timeout_work(struct work_struct *work)
734
{
735 736
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
737 738 739 740 741
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
742

743 744 745 746 747 748 749 750 751
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
752
	 * blk_freeze_queue_start, and the moment the last request is
753 754 755 756
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
757 758
		return;

759
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
760

761 762 763
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
764
	} else {
765 766
		struct blk_mq_hw_ctx *hctx;

767 768 769 770 771
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
772
	}
773
	blk_queue_exit(q);
774 775 776 777 778 779 780 781 782 783 784 785 786 787
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
788
		bool merged = false;
789 790 791 792 793 794 795

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

796 797 798 799
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
800
			break;
801 802 803
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
804
			break;
805 806
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
807
			break;
808 809
		default:
			continue;
810
		}
811 812 813 814

		if (merged)
			ctx->rq_merged++;
		return merged;
815 816 817 818 819
	}

	return false;
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

838 839 840 841
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
842
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
843
{
844 845 846 847
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
848

849
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
850
}
851
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
852

853 854 855 856
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
857

858
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
859 860
}

861 862
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
863 864 865 866 867 868 869
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

870 871
	if (rq->tag != -1)
		goto done;
872

873 874 875
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

876 877
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
878 879 880 881
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
882 883 884
		data.hctx->tags->rqs[rq->tag] = rq;
	}

885 886 887 888
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
889 890
}

891 892
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
893 894 895 896 897 898 899 900 901 902
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

985
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
986
{
987
	struct blk_mq_hw_ctx *hctx;
988
	struct request *rq;
989
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
990

991 992 993
	if (list_empty(list))
		return false;

994 995 996
	/*
	 * Now process all the entries, sending them to the driver.
	 */
997
	errors = queued = 0;
998
	do {
999
		struct blk_mq_queue_data bd;
1000

1001
		rq = list_first_entry(list, struct request, queuelist);
1002 1003 1004
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1005 1006

			/*
1007 1008
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1009
			 */
1010 1011 1012 1013 1014 1015 1016 1017 1018
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1019
				break;
1020
		}
1021

1022 1023
		list_del_init(&rq->queuelist);

1024
		bd.rq = rq;
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1038 1039

		ret = q->mq_ops->queue_rq(hctx, &bd);
1040 1041 1042
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1043
			break;
1044
		case BLK_MQ_RQ_QUEUE_BUSY:
1045
			blk_mq_put_driver_tag_hctx(hctx, rq);
1046
			list_add(&rq->queuelist, list);
1047
			__blk_mq_requeue_request(rq);
1048 1049 1050 1051
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1052
			errors++;
1053
			rq->errors = -EIO;
1054
			blk_mq_end_request(rq, rq->errors);
1055 1056 1057 1058 1059
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1060
	} while (!list_empty(list));
1061

1062
	hctx->dispatched[queued_to_index(queued)]++;
1063 1064 1065 1066 1067

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1068
	if (!list_empty(list)) {
1069
		/*
1070 1071
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1072 1073 1074 1075
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1076
		spin_lock(&hctx->lock);
1077
		list_splice_init(list, &hctx->dispatch);
1078
		spin_unlock(&hctx->lock);
1079

1080
		/*
1081 1082 1083
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1084
		 *
1085 1086 1087 1088
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1089
		 *
1090 1091 1092 1093 1094 1095 1096 1097 1098
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
		 *   and dm-rq.
1099
		 */
1100 1101
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1102
			blk_mq_run_hw_queue(hctx, true);
1103
	}
1104

1105
	return (queued + errors) != 0;
1106 1107
}

1108 1109 1110 1111 1112 1113 1114 1115 1116
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1117
		blk_mq_sched_dispatch_requests(hctx);
1118 1119
		rcu_read_unlock();
	} else {
1120 1121
		might_sleep();

1122
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1123
		blk_mq_sched_dispatch_requests(hctx);
1124 1125 1126 1127
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1128 1129 1130 1131 1132 1133 1134 1135
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1136 1137
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1138 1139

	if (--hctx->next_cpu_batch <= 0) {
1140
		int next_cpu;
1141 1142 1143 1144 1145 1146 1147 1148 1149

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1150
	return hctx->next_cpu;
1151 1152
}

1153 1154
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1155
{
1156 1157
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1158 1159
		return;

1160
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1161 1162
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1163
			__blk_mq_run_hw_queue(hctx);
1164
			put_cpu();
1165 1166
			return;
		}
1167

1168
		put_cpu();
1169
	}
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	if (msecs == 0)
		kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work);
	else
		kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
						 &hctx->delayed_run_work,
						 msecs_to_jiffies(msecs));
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1189
}
O
Omar Sandoval 已提交
1190
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1191

1192
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1193 1194 1195 1196 1197
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1198
		if (!blk_mq_hctx_has_pending(hctx) ||
1199
		    blk_mq_hctx_stopped(hctx))
1200 1201
			continue;

1202
		blk_mq_run_hw_queue(hctx, async);
1203 1204
	}
}
1205
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1227 1228
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1229
	cancel_work(&hctx->run_work);
1230
	cancel_delayed_work(&hctx->delay_work);
1231 1232 1233 1234
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1245 1246 1247
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1248

1249
	blk_mq_run_hw_queue(hctx, false);
1250 1251 1252
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1273
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1274 1275 1276 1277
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1278 1279
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1280 1281 1282
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1283
static void blk_mq_run_work_fn(struct work_struct *work)
1284 1285 1286
{
	struct blk_mq_hw_ctx *hctx;

1287
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1288

1289 1290 1291
	__blk_mq_run_hw_queue(hctx);
}

1292 1293 1294 1295 1296 1297 1298 1299 1300
static void blk_mq_delayed_run_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);

	__blk_mq_run_hw_queue(hctx);
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1313 1314
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1315

1316
	blk_mq_stop_hw_queue(hctx);
1317 1318
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1319 1320 1321
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1322 1323 1324
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1325
{
J
Jens Axboe 已提交
1326 1327
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1328 1329
	trace_block_rq_insert(hctx->queue, rq);

1330 1331 1332 1333
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1334
}
1335

1336 1337
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1338 1339 1340
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1341
	__blk_mq_insert_req_list(hctx, rq, at_head);
1342 1343 1344
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1345 1346
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1358
		BUG_ON(rq->mq_ctx != ctx);
1359
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1360
		__blk_mq_insert_req_list(hctx, rq, false);
1361
	}
1362
	blk_mq_hctx_mark_pending(hctx, ctx);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1399 1400 1401 1402
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1419 1420 1421
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1422 1423 1424 1425 1426 1427
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1428

1429
	blk_account_io_start(rq, true);
1430 1431
}

1432 1433 1434 1435 1436 1437
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1438 1439 1440
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1441
{
1442
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1443 1444 1445 1446 1447 1448 1449
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1450 1451
		struct request_queue *q = hctx->queue;

1452 1453 1454 1455 1456
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1457

1458
		spin_unlock(&ctx->lock);
1459
		__blk_mq_finish_request(hctx, ctx, rq);
1460
		return true;
1461
	}
1462
}
1463

1464 1465
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1466 1467 1468 1469
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1470 1471
}

1472
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1473
				      bool may_sleep)
1474 1475 1476 1477
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1478
		.last = true,
1479
	};
1480 1481 1482
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1483

1484
	if (q->elevator)
1485 1486
		goto insert;

1487 1488 1489 1490 1491
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1492 1493 1494 1495 1496 1497
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1498 1499
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1500
		return;
1501
	}
1502

1503 1504 1505 1506
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1507
		return;
1508
	}
1509

1510
	__blk_mq_requeue_request(rq);
1511
insert:
1512
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1513 1514
}

1515 1516 1517 1518 1519 1520 1521 1522
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
1523 1524 1525 1526 1527
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1528 1529 1530 1531 1532
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1533
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1534
{
1535
	const int is_sync = op_is_sync(bio->bi_opf);
1536
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1537
	struct blk_mq_alloc_data data = { .flags = 0 };
1538
	struct request *rq;
1539
	unsigned int request_count = 0;
1540
	struct blk_plug *plug;
1541
	struct request *same_queue_rq = NULL;
1542
	blk_qc_t cookie;
J
Jens Axboe 已提交
1543
	unsigned int wb_acct;
1544 1545 1546 1547

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1548
		bio_io_error(bio);
1549
		return BLK_QC_T_NONE;
1550 1551
	}

1552 1553
	blk_queue_split(q, &bio, q->bio_split);

1554 1555 1556
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1557

1558 1559 1560
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1561 1562
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1563 1564 1565
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1566 1567
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1568
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1569 1570 1571
	}

	wbt_track(&rq->issue_stat, wb_acct);
1572

1573
	cookie = request_to_qc_t(data.hctx, rq);
1574

1575
	plug = current->plug;
1576 1577
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1578 1579 1580 1581 1582 1583 1584 1585
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
1611
	} else if (plug && !blk_queue_nomerges(q)) {
1612 1613 1614
		blk_mq_bio_to_request(rq, bio);

		/*
1615
		 * We do limited plugging. If the bio can be merged, do that.
1616 1617
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1618 1619
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1620
		 */
1621 1622 1623 1624 1625 1626
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1627 1628
		blk_mq_put_ctx(data.ctx);

1629 1630 1631
		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1632 1633

		return cookie;
1634
	} else if (q->nr_hw_queues > 1 && is_sync) {
1635
		blk_mq_put_ctx(data.ctx);
1636 1637
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1638
		return cookie;
1639
	} else if (q->elevator) {
1640
		blk_mq_bio_to_request(rq, bio);
1641
		blk_mq_sched_insert_request(rq, false, true, true, true);
1642
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1643 1644
		blk_mq_run_hw_queue(data.hctx, true);

1645
	blk_mq_put_ctx(data.ctx);
1646
	return cookie;
1647 1648
}

1649 1650
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1651
{
1652
	struct page *page;
1653

1654
	if (tags->rqs && set->ops->exit_request) {
1655
		int i;
1656

1657
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1658 1659 1660
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1661
				continue;
J
Jens Axboe 已提交
1662
			set->ops->exit_request(set->driver_data, rq,
1663
						hctx_idx, i);
J
Jens Axboe 已提交
1664
			tags->static_rqs[i] = NULL;
1665
		}
1666 1667
	}

1668 1669
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1670
		list_del_init(&page->lru);
1671 1672 1673 1674 1675
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1676 1677
		__free_pages(page, page->private);
	}
1678
}
1679

1680 1681
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1682
	kfree(tags->rqs);
1683
	tags->rqs = NULL;
J
Jens Axboe 已提交
1684 1685
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1686

1687
	blk_mq_free_tags(tags);
1688 1689
}

1690 1691 1692 1693
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1694
{
1695
	struct blk_mq_tags *tags;
1696
	int node;
1697

1698 1699 1700 1701 1702
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1703
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1704 1705
	if (!tags)
		return NULL;
1706

1707
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1708
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1709
				 node);
1710 1711 1712 1713
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1714

J
Jens Axboe 已提交
1715 1716
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1717
				 node);
J
Jens Axboe 已提交
1718 1719 1720 1721 1722 1723
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1737 1738 1739 1740 1741
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1742 1743 1744

	INIT_LIST_HEAD(&tags->page_list);

1745 1746 1747 1748
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1749
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1750
				cache_line_size());
1751
	left = rq_size * depth;
1752

1753
	for (i = 0; i < depth; ) {
1754 1755 1756 1757 1758
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1759
		while (this_order && left < order_to_size(this_order - 1))
1760 1761 1762
			this_order--;

		do {
1763
			page = alloc_pages_node(node,
1764
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1765
				this_order);
1766 1767 1768 1769 1770 1771 1772 1773 1774
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1775
			goto fail;
1776 1777

		page->private = this_order;
1778
		list_add_tail(&page->lru, &tags->page_list);
1779 1780

		p = page_address(page);
1781 1782 1783 1784
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1785
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1786
		entries_per_page = order_to_size(this_order) / rq_size;
1787
		to_do = min(entries_per_page, depth - i);
1788 1789
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1790 1791 1792
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1793 1794
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1795
						rq, hctx_idx, i,
1796
						node)) {
J
Jens Axboe 已提交
1797
					tags->static_rqs[i] = NULL;
1798
					goto fail;
1799
				}
1800 1801
			}

1802 1803 1804 1805
			p += rq_size;
			i++;
		}
	}
1806
	return 0;
1807

1808
fail:
1809 1810
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1811 1812
}

J
Jens Axboe 已提交
1813 1814 1815 1816 1817
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1818
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1819
{
1820
	struct blk_mq_hw_ctx *hctx;
1821 1822 1823
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1824
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1825
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1826 1827 1828 1829 1830 1831 1832 1833 1834

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1835
		return 0;
1836

J
Jens Axboe 已提交
1837 1838 1839
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1840 1841

	blk_mq_run_hw_queue(hctx, true);
1842
	return 0;
1843 1844
}

1845
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1846
{
1847 1848
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1849 1850
}

1851
/* hctx->ctxs will be freed in queue's release handler */
1852 1853 1854 1855
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1856 1857
	unsigned flush_start_tag = set->queue_depth;

1858 1859
	blk_mq_tag_idle(hctx);

1860 1861 1862 1863 1864
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1865 1866
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1867 1868 1869
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1870 1871 1872
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1873
	blk_mq_remove_cpuhp(hctx);
1874
	blk_free_flush_queue(hctx->fq);
1875
	sbitmap_free(&hctx->ctx_map);
1876 1877
}

M
Ming Lei 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1887
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1888 1889 1890
	}
}

1891 1892 1893
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1894
{
1895
	int node;
1896
	unsigned flush_start_tag = set->queue_depth;
1897 1898 1899 1900 1901

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1902
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1903
	INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1904 1905 1906 1907 1908
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1909
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1910

1911
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1912 1913

	hctx->tags = set->tags[hctx_idx];
1914 1915

	/*
1916 1917
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1918
	 */
1919 1920 1921 1922
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1923

1924 1925
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1926
		goto free_ctxs;
1927

1928
	hctx->nr_ctx = 0;
1929

1930 1931 1932
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1933

1934 1935 1936
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1937 1938
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1939
		goto sched_exit_hctx;
1940

1941 1942 1943 1944 1945
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1946

1947 1948 1949
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1950
	return 0;
1951

1952 1953
 free_fq:
	kfree(hctx->fq);
1954 1955
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1956 1957 1958
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1959
 free_bitmap:
1960
	sbitmap_free(&hctx->ctx_map);
1961 1962 1963
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1964
	blk_mq_remove_cpuhp(hctx);
1965 1966
	return -1;
}
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1986
		hctx = blk_mq_map_queue(q, i);
1987

1988 1989 1990 1991 1992
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1993
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1994 1995 1996
	}
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2019 2020 2021 2022 2023
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2024 2025
}

2026 2027
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2028
{
2029
	unsigned int i, hctx_idx;
2030 2031
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2032
	struct blk_mq_tag_set *set = q->tag_set;
2033

2034 2035 2036 2037 2038
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2039
	queue_for_each_hw_ctx(q, hctx, i) {
2040
		cpumask_clear(hctx->cpumask);
2041 2042 2043 2044 2045 2046
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2047
	for_each_possible_cpu(i) {
2048
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2049
		if (!cpumask_test_cpu(i, online_mask))
2050 2051
			continue;

2052 2053
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2054 2055
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2056 2057 2058 2059 2060 2061
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2062
			q->mq_map[i] = 0;
2063 2064
		}

2065
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2066
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2067

2068
		cpumask_set_cpu(i, hctx->cpumask);
2069 2070 2071
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2072

2073 2074
	mutex_unlock(&q->sysfs_lock);

2075
	queue_for_each_hw_ctx(q, hctx, i) {
2076
		/*
2077 2078
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2079 2080
		 */
		if (!hctx->nr_ctx) {
2081 2082 2083 2084
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2085 2086 2087
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2088
			hctx->tags = NULL;
2089 2090 2091
			continue;
		}

M
Ming Lei 已提交
2092 2093 2094
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2095 2096 2097 2098 2099
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2100
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2101

2102 2103 2104
		/*
		 * Initialize batch roundrobin counts
		 */
2105 2106 2107
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2108 2109
}

2110
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2111 2112 2113 2114
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2126

2127 2128
	lockdep_assert_held(&set->tag_list_lock);

2129 2130
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2131
		queue_set_hctx_shared(q, shared);
2132 2133 2134 2135 2136 2137 2138 2139 2140
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2141 2142
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2143 2144 2145 2146 2147 2148
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2149
	mutex_unlock(&set->tag_list_lock);
2150 2151

	synchronize_rcu();
2152 2153 2154 2155 2156 2157 2158 2159
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2160 2161 2162 2163 2164 2165 2166 2167 2168

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2169
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2170

2171 2172 2173
	mutex_unlock(&set->tag_list_lock);
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2186 2187 2188
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2189
		kobject_put(&hctx->kobj);
2190
	}
2191

2192 2193
	q->mq_map = NULL;

2194 2195
	kfree(q->queue_hw_ctx);

2196 2197 2198 2199 2200 2201
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2202 2203 2204
	free_percpu(q->queue_ctx);
}

2205
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2221 2222
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2223
{
K
Keith Busch 已提交
2224 2225
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2226

K
Keith Busch 已提交
2227
	blk_mq_sysfs_unregister(q);
2228
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2229
		int node;
2230

K
Keith Busch 已提交
2231 2232 2233 2234
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2235 2236
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2237
		if (!hctxs[i])
K
Keith Busch 已提交
2238
			break;
2239

2240
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2241 2242 2243 2244 2245
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2246

2247
		atomic_set(&hctxs[i]->nr_active, 0);
2248
		hctxs[i]->numa_node = node;
2249
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2250 2251 2252 2253 2254 2255 2256 2257

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2258
	}
K
Keith Busch 已提交
2259 2260 2261 2262
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2263 2264
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2278 2279 2280
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2281 2282 2283 2284 2285
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_stat_rq_ddir, 2, q);
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2286 2287
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2288
		goto err_exit;
K
Keith Busch 已提交
2289

2290 2291 2292
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2293 2294 2295 2296 2297
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2298
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2299 2300 2301 2302

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2303

2304
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2305
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2306 2307 2308

	q->nr_queues = nr_cpu_ids;

2309
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2310

2311 2312 2313
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2314 2315
	q->sg_reserved_size = INT_MAX;

2316
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2317 2318 2319
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2320
	blk_queue_make_request(q, blk_mq_make_request);
2321

2322 2323 2324 2325 2326
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2327 2328 2329 2330 2331
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2332 2333
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2334

2335
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2336

2337
	get_online_cpus();
2338 2339
	mutex_lock(&all_q_mutex);

2340
	list_add_tail(&q->all_q_node, &all_q_list);
2341
	blk_mq_add_queue_tag_set(set, q);
2342
	blk_mq_map_swqueue(q, cpu_online_mask);
2343

2344
	mutex_unlock(&all_q_mutex);
2345
	put_online_cpus();
2346

2347 2348 2349 2350 2351 2352 2353 2354
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2355
	return q;
2356

2357
err_hctxs:
K
Keith Busch 已提交
2358
	kfree(q->queue_hw_ctx);
2359
err_percpu:
K
Keith Busch 已提交
2360
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2361 2362
err_exit:
	q->mq_ops = NULL;
2363 2364
	return ERR_PTR(-ENOMEM);
}
2365
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2366 2367 2368

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2369
	struct blk_mq_tag_set	*set = q->tag_set;
2370

2371 2372 2373 2374
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2375 2376
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2377
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2378 2379 2380
}

/* Basically redo blk_mq_init_queue with queue frozen */
2381 2382
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2383
{
2384
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2385

2386 2387
	blk_mq_sysfs_unregister(q);

2388 2389 2390 2391 2392 2393
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2394
	blk_mq_map_swqueue(q, online_mask);
2395

2396
	blk_mq_sysfs_register(q);
2397 2398
}

2399 2400 2401 2402 2403 2404 2405 2406
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2407 2408 2409 2410
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2411 2412 2413 2414 2415 2416 2417 2418
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2419
		blk_freeze_queue_start(q);
2420
	list_for_each_entry(q, &all_q_list, all_q_node)
2421 2422
		blk_mq_freeze_queue_wait(q);

2423
	list_for_each_entry(q, &all_q_list, all_q_node)
2424
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2425 2426 2427 2428

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2429
	mutex_unlock(&all_q_mutex);
2430 2431 2432 2433
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2434
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2450 2451 2452 2453
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2454 2455 2456 2457 2458 2459 2460
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2461 2462
}

2463 2464 2465 2466
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2467 2468
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2469 2470 2471 2472 2473 2474
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2475
		blk_mq_free_rq_map(set->tags[i]);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2515 2516 2517 2518 2519 2520 2521 2522
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2523 2524 2525 2526 2527 2528
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2529 2530
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2531 2532
	int ret;

B
Bart Van Assche 已提交
2533 2534
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2535 2536
	if (!set->nr_hw_queues)
		return -EINVAL;
2537
	if (!set->queue_depth)
2538 2539 2540 2541
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2542
	if (!set->ops->queue_rq)
2543 2544
		return -EINVAL;

2545 2546 2547 2548 2549
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2550

2551 2552 2553 2554 2555 2556 2557 2558 2559
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2560 2561 2562 2563 2564
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2565

K
Keith Busch 已提交
2566
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2567 2568
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2569
		return -ENOMEM;
2570

2571 2572 2573
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2574 2575 2576
	if (!set->mq_map)
		goto out_free_tags;

2577
	ret = blk_mq_update_queue_map(set);
2578 2579 2580 2581 2582
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2583
		goto out_free_mq_map;
2584

2585 2586 2587
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2588
	return 0;
2589 2590 2591 2592 2593

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2594 2595
	kfree(set->tags);
	set->tags = NULL;
2596
	return ret;
2597 2598 2599 2600 2601 2602 2603
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2604 2605
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2606

2607 2608 2609
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2610
	kfree(set->tags);
2611
	set->tags = NULL;
2612 2613 2614
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2615 2616 2617 2618 2619 2620
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2621
	if (!set)
2622 2623
		return -EINVAL;

2624 2625 2626
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2627 2628
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2629 2630
		if (!hctx->tags)
			continue;
2631 2632 2633 2634
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2635 2636 2637 2638 2639 2640 2641 2642
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2643 2644 2645 2646 2647 2648 2649
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2650 2651 2652
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2653 2654 2655
	return ret;
}

K
Keith Busch 已提交
2656 2657 2658 2659
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

2660 2661
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2671
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;

	if (cb->stat[READ].nr_samples)
		q->poll_stat[READ] = cb->stat[READ];
	if (cb->stat[WRITE].nr_samples)
		q->poll_stat[WRITE] = cb->stat[WRITE];
}

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2725
	if (!blk_poll_stats_enable(q))
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
2736 2737 2738 2739
	if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
		ret = (q->poll_stat[READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
		ret = (q->poll_stat[WRITE].mean + 1) / 2;
2740 2741 2742 2743

	return ret;
}

2744
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2745
				     struct blk_mq_hw_ctx *hctx,
2746 2747 2748 2749
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2750
	unsigned int nsecs;
2751 2752
	ktime_t kt;

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2771 2772 2773 2774 2775 2776 2777 2778
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2779
	kt = nsecs;
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2802 2803 2804 2805 2806
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2807 2808 2809 2810 2811 2812 2813
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2814
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2815 2816
		return true;

J
Jens Axboe 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2860 2861 2862 2863
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2864 2865 2866 2867 2868

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2879 2880
static int __init blk_mq_init(void)
{
2881 2882
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2883

2884 2885 2886
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2887 2888 2889
	return 0;
}
subsys_initcall(blk_mq_init);