blk-mq.c 74.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98 99 100 101 102 103 104 105 106
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
107 108 109 110 111 112 113
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

114
	inflight[0] = inflight[1] = 0;
115 116 117
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139
	int freeze_depth;
140

141 142
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
143
		percpu_ref_kill(&q->q_usage_counter);
144 145
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
146
	}
147
}
148
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149

150
void blk_mq_freeze_queue_wait(struct request_queue *q)
151
{
152
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155

156 157 158 159 160 161 162 163
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164

165 166 167 168
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
169
void blk_freeze_queue(struct request_queue *q)
170
{
171 172 173 174 175 176 177
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
178
	blk_freeze_queue_start(q);
179 180
	if (!q->mq_ops)
		blk_drain_queue(q);
181 182
	blk_mq_freeze_queue_wait(q);
}
183 184 185 186 187 188 189 190 191

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193

194
void blk_mq_unfreeze_queue(struct request_queue *q)
195
{
196
	int freeze_depth;
197

198 199 200
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
201
		percpu_ref_reinit(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
}
205
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206

207 208 209 210 211 212
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
213
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 215 216
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

217
/**
218
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 220 221
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
222 223 224
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
225 226 227 228 229 230 231
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

232
	blk_mq_quiesce_queue_nowait(q);
233

234 235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
236
			synchronize_srcu(hctx->srcu);
237 238 239 240 241 242 243 244
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

245 246 247 248 249 250 251 252 253
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
254
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255

256 257
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
258 259 260
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

261 262 263 264 265 266 267 268 269 270
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

271 272 273 274 275 276
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

277 278
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282
	req_flags_t rq_flags = 0;
283

284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
289
			rq_flags = RQF_MQ_INFLIGHT;
290 291 292 293 294 295 296
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

297
	/* csd/requeue_work/fifo_time is initialized before use */
298 299
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
300
	rq->rq_flags = rq_flags;
301
	rq->cpu = -1;
302
	rq->cmd_flags = op;
303 304
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
305
	if (blk_queue_io_stat(data->q))
306
		rq->rq_flags |= RQF_IO_STAT;
307
	INIT_LIST_HEAD(&rq->queuelist);
308 309 310 311
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
312
	rq->start_time_ns = ktime_get_ns();
313
	rq->io_start_time_ns = 0;
314 315 316 317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
321
	rq->__deadline = 0;
322 323

	INIT_LIST_HEAD(&rq->timeout_list);
324 325
	rq->timeout = 0;

326 327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

330 331 332 333
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

334
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
335
	refcount_set(&rq->ref, 1);
336
	return rq;
337 338
}

339 340 341 342 343 344
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
345
	unsigned int tag;
346
	bool put_ctx_on_error = false;
347 348 349

	blk_queue_enter_live(q);
	data->q = q;
350 351 352 353
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
354 355
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 357
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
358 359 360 361 362 363

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
364 365
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
366
		 */
367 368
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
369
			e->type->ops.mq.limit_depth(op, data);
370 371
	}

372 373
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
374 375
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
376 377
			data->ctx = NULL;
		}
378 379
		blk_queue_exit(q);
		return NULL;
380 381
	}

382
	rq = blk_mq_rq_ctx_init(data, tag, op);
383 384
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
385
		if (e && e->type->ops.mq.prepare_request) {
386 387 388
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

389 390
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
391
		}
392 393 394
	}
	data->hctx->queued++;
	return rq;
395 396
}

397
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398
		blk_mq_req_flags_t flags)
399
{
400
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
401
	struct request *rq;
402
	int ret;
403

404
	ret = blk_queue_enter(q, flags);
405 406
	if (ret)
		return ERR_PTR(ret);
407

408
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409
	blk_queue_exit(q);
410

411
	if (!rq)
412
		return ERR_PTR(-EWOULDBLOCK);
413

414 415
	blk_mq_put_ctx(alloc_data.ctx);

416 417 418
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
419 420
	return rq;
}
421
EXPORT_SYMBOL(blk_mq_alloc_request);
422

423
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
425
{
426
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
427
	struct request *rq;
428
	unsigned int cpu;
M
Ming Lin 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

443
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
444 445 446
	if (ret)
		return ERR_PTR(ret);

447 448 449 450
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
451 452 453 454
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
455
	}
456
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
458

459
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460
	blk_queue_exit(q);
461

462 463 464 465
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
466 467 468
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

484
void blk_mq_free_request(struct request *rq)
485 486
{
	struct request_queue *q = rq->q;
487 488 489 490
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

491
	if (rq->rq_flags & RQF_ELVPRIV) {
492 493 494 495 496 497 498
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
499

500
	ctx->rq_completed[rq_is_sync(rq)]++;
501
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
502
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
503

504 505 506
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

507
	wbt_done(q->rq_wb, rq);
508

S
Shaohua Li 已提交
509 510 511
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

K
Keith Busch 已提交
512 513 514
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
515
}
J
Jens Axboe 已提交
516
EXPORT_SYMBOL_GPL(blk_mq_free_request);
517

518
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519
{
520 521
	u64 now = ktime_get_ns();

522 523
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
524
		blk_stat_add(rq, now);
525 526
	}

527
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
528

C
Christoph Hellwig 已提交
529
	if (rq->end_io) {
530
		wbt_done(rq->q->rq_wb, rq);
531
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
532 533 534
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
535
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
536
	}
537
}
538
EXPORT_SYMBOL(__blk_mq_end_request);
539

540
void blk_mq_end_request(struct request *rq, blk_status_t error)
541 542 543
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
544
	__blk_mq_end_request(rq, error);
545
}
546
EXPORT_SYMBOL(blk_mq_end_request);
547

548
static void __blk_mq_complete_request_remote(void *data)
549
{
550
	struct request *rq = data;
551

552
	rq->q->softirq_done_fn(rq);
553 554
}

555
static void __blk_mq_complete_request(struct request *rq)
556 557
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
558
	bool shared = false;
559 560
	int cpu;

K
Keith Busch 已提交
561 562 563
	if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) !=
			MQ_RQ_IN_FLIGHT)
		return;
564

565 566 567
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
568
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 570 571
		rq->q->softirq_done_fn(rq);
		return;
	}
572 573

	cpu = get_cpu();
C
Christoph Hellwig 已提交
574 575 576 577
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578
		rq->csd.func = __blk_mq_complete_request_remote;
579 580
		rq->csd.info = rq;
		rq->csd.flags = 0;
581
		smp_call_function_single_async(ctx->cpu, &rq->csd);
582
	} else {
583
		rq->q->softirq_done_fn(rq);
584
	}
585 586
	put_cpu();
}
587

588
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589
	__releases(hctx->srcu)
590 591 592 593
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
594
		srcu_read_unlock(hctx->srcu, srcu_idx);
595 596 597
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598
	__acquires(hctx->srcu)
599
{
600 601 602
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
603
		rcu_read_lock();
604
	} else
605
		*srcu_idx = srcu_read_lock(hctx->srcu);
606 607
}

608 609 610 611 612 613 614 615
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
616
void blk_mq_complete_request(struct request *rq)
617
{
K
Keith Busch 已提交
618
	if (unlikely(blk_should_fake_timeout(rq->q)))
619
		return;
K
Keith Busch 已提交
620
	__blk_mq_complete_request(rq);
621 622
}
EXPORT_SYMBOL(blk_mq_complete_request);
623

624 625
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
626
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 628 629
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

630
void blk_mq_start_request(struct request *rq)
631 632 633
{
	struct request_queue *q = rq->q;

634 635
	blk_mq_sched_started_request(rq);

636 637
	trace_block_rq_issue(q, rq);

638
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 640 641 642
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
643
		rq->rq_flags |= RQF_STATS;
644
		wbt_issue(q->rq_wb, rq);
645 646
	}

647
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648

649
	blk_add_timer(rq);
K
Keith Busch 已提交
650
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 652 653 654 655 656 657 658 659

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
660
}
661
EXPORT_SYMBOL(blk_mq_start_request);
662

663
static void __blk_mq_requeue_request(struct request *rq)
664 665 666
{
	struct request_queue *q = rq->q;

667 668
	blk_mq_put_driver_tag(rq);

669
	trace_block_rq_requeue(q, rq);
670
	wbt_requeue(q->rq_wb, rq);
671

K
Keith Busch 已提交
672 673
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674
		rq->rq_flags &= ~RQF_TIMED_OUT;
675 676 677
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
678 679
}

680
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 682 683
{
	__blk_mq_requeue_request(rq);

684 685 686
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

687
	BUG_ON(blk_queued_rq(rq));
688
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 690 691
}
EXPORT_SYMBOL(blk_mq_requeue_request);

692 693 694
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
695
		container_of(work, struct request_queue, requeue_work.work);
696 697 698
	LIST_HEAD(rq_list);
	struct request *rq, *next;

699
	spin_lock_irq(&q->requeue_lock);
700
	list_splice_init(&q->requeue_list, &rq_list);
701
	spin_unlock_irq(&q->requeue_lock);
702 703

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
705 706
			continue;

707
		rq->rq_flags &= ~RQF_SOFTBARRIER;
708
		list_del_init(&rq->queuelist);
709
		blk_mq_sched_insert_request(rq, true, false, false);
710 711 712 713 714
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
715
		blk_mq_sched_insert_request(rq, false, false, false);
716 717
	}

718
	blk_mq_run_hw_queues(q, false);
719 720
}

721 722
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
723 724 725 726 727 728
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
729
	 * request head insertion from the workqueue.
730
	 */
731
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
732 733 734

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
735
		rq->rq_flags |= RQF_SOFTBARRIER;
736 737 738 739 740
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
741 742 743

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
744 745 746 747 748
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
749
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
750 751 752
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

753 754 755
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
756 757
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
758 759 760
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

761 762
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
763 764
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
765
		return tags->rqs[tag];
766
	}
767 768

	return NULL;
769 770 771
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

772
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
773
{
774
	req->rq_flags |= RQF_TIMED_OUT;
775 776 777 778 779 780 781
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
782
	}
783 784

	blk_add_timer(req);
785
}
786

K
Keith Busch 已提交
787
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
788
{
K
Keith Busch 已提交
789
	unsigned long deadline;
790

K
Keith Busch 已提交
791 792
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
793 794
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
795

K
Keith Busch 已提交
796 797 798
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
799

K
Keith Busch 已提交
800 801 802 803 804
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
805 806
}

K
Keith Busch 已提交
807
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808 809
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

831
	/*
K
Keith Busch 已提交
832 833 834 835
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
836
	 */
K
Keith Busch 已提交
837
	if (blk_mq_req_expired(rq, next))
838
		blk_mq_rq_timed_out(rq, reserved);
K
Keith Busch 已提交
839 840
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
841 842
}

843
static void blk_mq_timeout_work(struct work_struct *work)
844
{
845 846
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
847
	unsigned long next = 0;
848
	struct blk_mq_hw_ctx *hctx;
849
	int i;
850

851 852 853 854 855 856 857 858 859
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
860
	 * blk_freeze_queue_start, and the moment the last request is
861 862 863 864
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
865 866
		return;

K
Keith Busch 已提交
867
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
868

K
Keith Busch 已提交
869 870
	if (next != 0) {
		mod_timer(&q->timeout, next);
871
	} else {
872 873 874 875 876 877
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
878 879 880 881 882
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
883
	}
884
	blk_queue_exit(q);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
900
	sbitmap_clear_bit(sb, bitnr);
901 902 903 904
	spin_unlock(&ctx->lock);
	return true;
}

905 906 907 908
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
909
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910
{
911 912 913 914
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
915

916
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917
}
918
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919

920 921 922 923 924 925 926 927 928 929 930 931 932
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
933
	if (!list_empty(&ctx->rq_list)) {
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

959 960 961 962
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
963

964
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 966
}

967 968
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
969 970 971 972 973 974 975
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

976 977
	might_sleep_if(wait);

978 979
	if (rq->tag != -1)
		goto done;
980

981 982 983
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

984 985
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
986 987 988 989
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
990 991 992
		data.hctx->tags->rqs[rq->tag] = rq;
	}

993 994 995 996
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
997 998
}

999 1000
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1001 1002 1003 1004 1005
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1006
	list_del_init(&wait->entry);
1007 1008 1009 1010
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1011 1012
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013 1014
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1015 1016 1017 1018
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1019
{
1020
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1021
	struct sbq_wait_state *ws;
1022 1023
	wait_queue_entry_t *wait;
	bool ret;
1024

1025
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1026 1027 1028
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1038 1039
	}

1040 1041 1042 1043 1044 1045 1046 1047
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1048 1049
	}

1050 1051 1052
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1053
	/*
1054 1055 1056
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1057
	 */
1058
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1059
	if (!ret) {
1060
		spin_unlock(&this_hctx->lock);
1061
		return false;
1062
	}
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1074 1075
}

1076 1077
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1078
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1079
			     bool got_budget)
1080
{
1081
	struct blk_mq_hw_ctx *hctx;
1082
	struct request *rq, *nxt;
1083
	bool no_tag = false;
1084
	int errors, queued;
1085
	blk_status_t ret = BLK_STS_OK;
1086

1087 1088 1089
	if (list_empty(list))
		return false;

1090 1091
	WARN_ON(!list_is_singular(list) && got_budget);

1092 1093 1094
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1095
	errors = queued = 0;
1096
	do {
1097
		struct blk_mq_queue_data bd;
1098

1099
		rq = list_first_entry(list, struct request, queuelist);
1100 1101 1102 1103 1104 1105

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1106
			/*
1107
			 * The initial allocation attempt failed, so we need to
1108 1109 1110 1111
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1112
			 */
1113
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1114
				blk_mq_put_dispatch_budget(hctx);
1115 1116 1117 1118 1119 1120
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1121 1122 1123 1124
				break;
			}
		}

1125 1126
		list_del_init(&rq->queuelist);

1127
		bd.rq = rq;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1139 1140

		ret = q->mq_ops->queue_rq(hctx, &bd);
1141
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1142 1143
			/*
			 * If an I/O scheduler has been configured and we got a
1144 1145
			 * driver tag for the next request already, free it
			 * again.
1146 1147 1148 1149 1150
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1151
			list_add(&rq->queuelist, list);
1152
			__blk_mq_requeue_request(rq);
1153
			break;
1154 1155 1156
		}

		if (unlikely(ret != BLK_STS_OK)) {
1157
			errors++;
1158
			blk_mq_end_request(rq, BLK_STS_IOERR);
1159
			continue;
1160 1161
		}

1162
		queued++;
1163
	} while (!list_empty(list));
1164

1165
	hctx->dispatched[queued_to_index(queued)]++;
1166 1167 1168 1169 1170

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1171
	if (!list_empty(list)) {
1172 1173
		bool needs_restart;

1174
		spin_lock(&hctx->lock);
1175
		list_splice_init(list, &hctx->dispatch);
1176
		spin_unlock(&hctx->lock);
1177

1178
		/*
1179 1180 1181
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1182
		 *
1183 1184 1185 1186
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1187
		 *
1188 1189 1190 1191 1192 1193 1194
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1195
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1196
		 *   and dm-rq.
1197 1198 1199 1200
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1201
		 */
1202 1203
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1204
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1205
			blk_mq_run_hw_queue(hctx, true);
1206 1207
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1208
	}
1209

1210
	return (queued + errors) != 0;
1211 1212
}

1213 1214 1215 1216
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1217 1218 1219
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1233
	 */
1234 1235 1236 1237 1238 1239 1240
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1241

1242 1243 1244 1245 1246 1247
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1248
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1249

1250 1251 1252
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1253 1254
}

1255 1256 1257 1258 1259 1260 1261 1262 1263
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1264 1265 1266 1267 1268 1269 1270 1271
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1272
	bool tried = false;
1273
	int next_cpu = hctx->next_cpu;
1274

1275 1276
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1277 1278

	if (--hctx->next_cpu_batch <= 0) {
1279
select_cpu:
1280
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1281
				cpu_online_mask);
1282
		if (next_cpu >= nr_cpu_ids)
1283
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1284 1285 1286
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1287 1288 1289 1290
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1291
	if (!cpu_online(next_cpu)) {
1292 1293 1294 1295 1296 1297 1298 1299 1300
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1301
		hctx->next_cpu = next_cpu;
1302 1303 1304
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1305 1306 1307

	hctx->next_cpu = next_cpu;
	return next_cpu;
1308 1309
}

1310 1311
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1312
{
1313
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1314 1315
		return;

1316
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1317 1318
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1319
			__blk_mq_run_hw_queue(hctx);
1320
			put_cpu();
1321 1322
			return;
		}
1323

1324
		put_cpu();
1325
	}
1326

1327 1328
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1329 1330 1331 1332 1333 1334 1335 1336
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1337
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1338
{
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1350 1351 1352 1353
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1354 1355

	if (need_run) {
1356 1357 1358 1359 1360
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1361
}
O
Omar Sandoval 已提交
1362
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1363

1364
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1365 1366 1367 1368 1369
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1370
		if (blk_mq_hctx_stopped(hctx))
1371 1372
			continue;

1373
		blk_mq_run_hw_queue(hctx, async);
1374 1375
	}
}
1376
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1377

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1398 1399 1400
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1401
 * BLK_STS_RESOURCE is usually returned.
1402 1403 1404 1405 1406
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1407 1408
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1409
	cancel_delayed_work(&hctx->run_work);
1410

1411
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1412
}
1413
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1414

1415 1416 1417
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1418
 * BLK_STS_RESOURCE is usually returned.
1419 1420 1421 1422 1423
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1424 1425
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1426 1427 1428 1429 1430
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1431 1432 1433
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1434 1435 1436
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1437

1438
	blk_mq_run_hw_queue(hctx, false);
1439 1440 1441
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1462
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1463 1464 1465 1466
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1467 1468
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1469 1470 1471
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1472
static void blk_mq_run_work_fn(struct work_struct *work)
1473 1474 1475
{
	struct blk_mq_hw_ctx *hctx;

1476
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1477

1478
	/*
M
Ming Lei 已提交
1479
	 * If we are stopped, don't run the queue.
1480
	 */
M
Ming Lei 已提交
1481
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1482
		return;
1483 1484 1485 1486

	__blk_mq_run_hw_queue(hctx);
}

1487 1488 1489
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1490
{
J
Jens Axboe 已提交
1491 1492
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1493 1494
	lockdep_assert_held(&ctx->lock);

1495 1496
	trace_block_rq_insert(hctx->queue, rq);

1497 1498 1499 1500
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1501
}
1502

1503 1504
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1505 1506 1507
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1508 1509
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1510
	__blk_mq_insert_req_list(hctx, rq, at_head);
1511 1512 1513
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1514 1515 1516 1517
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1518
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1519 1520 1521 1522 1523 1524 1525 1526
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1527 1528
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1529 1530
}

1531 1532
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1544
		BUG_ON(rq->mq_ctx != ctx);
1545
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1546
		__blk_mq_insert_req_list(hctx, rq, false);
1547
	}
1548
	blk_mq_hctx_mark_pending(hctx, ctx);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1585 1586 1587 1588
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1605 1606 1607
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1608 1609 1610 1611 1612
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1613
	blk_init_request_from_bio(rq, bio);
1614

S
Shaohua Li 已提交
1615 1616
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1617
	blk_account_io_start(rq, true);
1618 1619
}

1620 1621
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1622 1623 1624 1625
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1626 1627
}

1628 1629 1630
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1631 1632 1633 1634
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1635
		.last = true,
1636
	};
1637
	blk_qc_t new_cookie;
1638
	blk_status_t ret;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1653
	case BLK_STS_DEV_RESOURCE:
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1666 1667
						blk_qc_t *cookie,
						bool bypass_insert)
1668 1669
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1670 1671
	bool run_queue = true;

1672 1673 1674 1675
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1676
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1677 1678
	 * and avoid driver to try to dispatch again.
	 */
1679
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1680
		run_queue = false;
1681
		bypass_insert = false;
M
Ming Lei 已提交
1682 1683
		goto insert;
	}
1684

1685
	if (q->elevator && !bypass_insert)
1686 1687
		goto insert;

1688
	if (!blk_mq_get_dispatch_budget(hctx))
1689 1690
		goto insert;

1691 1692
	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
		blk_mq_put_dispatch_budget(hctx);
1693
		goto insert;
1694
	}
1695

1696
	return __blk_mq_issue_directly(hctx, rq, cookie);
1697
insert:
1698 1699
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1700

1701
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1702
	return BLK_STS_OK;
1703 1704
}

1705 1706 1707
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1708
	blk_status_t ret;
1709
	int srcu_idx;
1710

1711
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1712

1713
	hctx_lock(hctx, &srcu_idx);
1714

1715
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1716
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1717
		blk_mq_sched_insert_request(rq, false, true, false);
1718 1719 1720
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1721
	hctx_unlock(hctx, srcu_idx);
1722 1723
}

1724
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1737 1738
}

1739
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1740
{
1741
	const int is_sync = op_is_sync(bio->bi_opf);
1742
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1743
	struct blk_mq_alloc_data data = { .flags = 0 };
1744
	struct request *rq;
1745
	unsigned int request_count = 0;
1746
	struct blk_plug *plug;
1747
	struct request *same_queue_rq = NULL;
1748
	blk_qc_t cookie;
J
Jens Axboe 已提交
1749
	unsigned int wb_acct;
1750 1751 1752

	blk_queue_bounce(q, &bio);

1753
	blk_queue_split(q, &bio);
1754

1755
	if (!bio_integrity_prep(bio))
1756
		return BLK_QC_T_NONE;
1757

1758 1759 1760
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1761

1762 1763 1764
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1765 1766
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1767 1768
	trace_block_getrq(q, bio, bio->bi_opf);

1769
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1770 1771
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1772 1773
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1774
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1775 1776
	}

1777
	wbt_track(rq, wb_acct);
1778

1779
	cookie = request_to_qc_t(data.hctx, rq);
1780

1781
	plug = current->plug;
1782
	if (unlikely(is_flush_fua)) {
1783
		blk_mq_put_ctx(data.ctx);
1784
		blk_mq_bio_to_request(rq, bio);
1785 1786 1787 1788

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1789
	} else if (plug && q->nr_hw_queues == 1) {
1790 1791
		struct request *last = NULL;

1792
		blk_mq_put_ctx(data.ctx);
1793
		blk_mq_bio_to_request(rq, bio);
1794 1795 1796 1797 1798 1799 1800

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1801 1802 1803
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1804
		if (!request_count)
1805
			trace_block_plug(q);
1806 1807
		else
			last = list_entry_rq(plug->mq_list.prev);
1808

1809 1810
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1811 1812
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1813
		}
1814

1815
		list_add_tail(&rq->queuelist, &plug->mq_list);
1816
	} else if (plug && !blk_queue_nomerges(q)) {
1817
		blk_mq_bio_to_request(rq, bio);
1818 1819

		/*
1820
		 * We do limited plugging. If the bio can be merged, do that.
1821 1822
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1823 1824
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1825
		 */
1826 1827 1828 1829 1830 1831
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1832 1833
		blk_mq_put_ctx(data.ctx);

1834 1835 1836
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1837 1838
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1839
		}
1840
	} else if (q->nr_hw_queues > 1 && is_sync) {
1841
		blk_mq_put_ctx(data.ctx);
1842 1843
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1844
	} else {
1845
		blk_mq_put_ctx(data.ctx);
1846
		blk_mq_bio_to_request(rq, bio);
1847
		blk_mq_sched_insert_request(rq, false, true, true);
1848
	}
1849

1850
	return cookie;
1851 1852
}

1853 1854
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1855
{
1856
	struct page *page;
1857

1858
	if (tags->rqs && set->ops->exit_request) {
1859
		int i;
1860

1861
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1862 1863 1864
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1865
				continue;
1866
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1867
			tags->static_rqs[i] = NULL;
1868
		}
1869 1870
	}

1871 1872
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1873
		list_del_init(&page->lru);
1874 1875 1876 1877 1878
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1879 1880
		__free_pages(page, page->private);
	}
1881
}
1882

1883 1884
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1885
	kfree(tags->rqs);
1886
	tags->rqs = NULL;
J
Jens Axboe 已提交
1887 1888
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1889

1890
	blk_mq_free_tags(tags);
1891 1892
}

1893 1894 1895 1896
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1897
{
1898
	struct blk_mq_tags *tags;
1899
	int node;
1900

1901 1902 1903 1904 1905
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1906
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1907 1908
	if (!tags)
		return NULL;
1909

1910
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1911
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1912
				 node);
1913 1914 1915 1916
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1917

J
Jens Axboe 已提交
1918 1919
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1920
				 node);
J
Jens Axboe 已提交
1921 1922 1923 1924 1925 1926
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1927 1928 1929 1930 1931 1932 1933 1934
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
1946
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1947 1948 1949
	return 0;
}

1950 1951 1952 1953 1954
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1955 1956 1957 1958 1959
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1960 1961 1962

	INIT_LIST_HEAD(&tags->page_list);

1963 1964 1965 1966
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1967
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1968
				cache_line_size());
1969
	left = rq_size * depth;
1970

1971
	for (i = 0; i < depth; ) {
1972 1973 1974 1975 1976
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1977
		while (this_order && left < order_to_size(this_order - 1))
1978 1979 1980
			this_order--;

		do {
1981
			page = alloc_pages_node(node,
1982
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1983
				this_order);
1984 1985 1986 1987 1988 1989 1990 1991 1992
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1993
			goto fail;
1994 1995

		page->private = this_order;
1996
		list_add_tail(&page->lru, &tags->page_list);
1997 1998

		p = page_address(page);
1999 2000 2001 2002
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2003
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2004
		entries_per_page = order_to_size(this_order) / rq_size;
2005
		to_do = min(entries_per_page, depth - i);
2006 2007
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2008 2009 2010
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2011 2012 2013
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2014 2015
			}

2016 2017 2018 2019
			p += rq_size;
			i++;
		}
	}
2020
	return 0;
2021

2022
fail:
2023 2024
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2025 2026
}

J
Jens Axboe 已提交
2027 2028 2029 2030 2031
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2032
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2033
{
2034
	struct blk_mq_hw_ctx *hctx;
2035 2036 2037
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2038
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2039
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2040 2041 2042 2043 2044 2045 2046 2047 2048

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2049
		return 0;
2050

J
Jens Axboe 已提交
2051 2052 2053
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2054 2055

	blk_mq_run_hw_queue(hctx, true);
2056
	return 0;
2057 2058
}

2059
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2060
{
2061 2062
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2063 2064
}

2065
/* hctx->ctxs will be freed in queue's release handler */
2066 2067 2068 2069
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2070 2071
	blk_mq_debugfs_unregister_hctx(hctx);

2072 2073
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2074

2075
	if (set->ops->exit_request)
2076
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2077

2078 2079
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2080 2081 2082
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2083
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2084
		cleanup_srcu_struct(hctx->srcu);
2085

2086
	blk_mq_remove_cpuhp(hctx);
2087
	blk_free_flush_queue(hctx->fq);
2088
	sbitmap_free(&hctx->ctx_map);
2089 2090
}

M
Ming Lei 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2100
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2101 2102 2103
	}
}

2104 2105 2106
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2107
{
2108 2109 2110 2111 2112 2113
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2114
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2115 2116 2117
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2118
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2119

2120
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2121 2122

	hctx->tags = set->tags[hctx_idx];
2123 2124

	/*
2125 2126
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2127
	 */
2128
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2129 2130 2131
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2132

2133 2134
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2135
		goto free_ctxs;
2136

2137
	hctx->nr_ctx = 0;
2138

2139 2140 2141
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2142 2143 2144
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2145

2146 2147 2148
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2149 2150
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2151
		goto sched_exit_hctx;
2152

2153
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2154
		goto free_fq;
2155

2156
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2157
		init_srcu_struct(hctx->srcu);
2158

2159 2160
	blk_mq_debugfs_register_hctx(q, hctx);

2161
	return 0;
2162

2163 2164
 free_fq:
	kfree(hctx->fq);
2165 2166
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2167 2168 2169
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2170
 free_bitmap:
2171
	sbitmap_free(&hctx->ctx_map);
2172 2173 2174
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2175
	blk_mq_remove_cpuhp(hctx);
2176 2177
	return -1;
}
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2197
		hctx = blk_mq_map_queue(q, i);
2198
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2199
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2200 2201 2202
	}
}

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2225 2226 2227 2228 2229
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2230 2231
}

2232
static void blk_mq_map_swqueue(struct request_queue *q)
2233
{
2234
	unsigned int i, hctx_idx;
2235 2236
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2237
	struct blk_mq_tag_set *set = q->tag_set;
2238

2239 2240 2241 2242 2243
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2244
	queue_for_each_hw_ctx(q, hctx, i) {
2245
		cpumask_clear(hctx->cpumask);
2246
		hctx->nr_ctx = 0;
2247
		hctx->dispatch_from = NULL;
2248 2249 2250
	}

	/*
2251
	 * Map software to hardware queues.
2252 2253
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2254
	 */
2255
	for_each_possible_cpu(i) {
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2269
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2270
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2271

2272
		cpumask_set_cpu(i, hctx->cpumask);
2273 2274 2275
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2276

2277 2278
	mutex_unlock(&q->sysfs_lock);

2279
	queue_for_each_hw_ctx(q, hctx, i) {
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2295

M
Ming Lei 已提交
2296 2297 2298
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2299 2300 2301 2302 2303
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2304
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2305

2306 2307 2308
		/*
		 * Initialize batch roundrobin counts
		 */
2309
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2310 2311
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2312 2313
}

2314 2315 2316 2317
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2318
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2319 2320 2321 2322
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2323
	queue_for_each_hw_ctx(q, hctx, i) {
2324 2325 2326
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2327
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2328 2329 2330
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2331
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2332
		}
2333 2334 2335
	}
}

2336 2337
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2338 2339
{
	struct request_queue *q;
2340

2341 2342
	lockdep_assert_held(&set->tag_list_lock);

2343 2344
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2345
		queue_set_hctx_shared(q, shared);
2346 2347 2348 2349 2350 2351 2352 2353 2354
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2355
	list_del_rcu(&q->tag_set_list);
2356 2357 2358 2359 2360 2361
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2362
	mutex_unlock(&set->tag_list_lock);
2363
	synchronize_rcu();
2364
	INIT_LIST_HEAD(&q->tag_set_list);
2365 2366 2367 2368 2369 2370 2371 2372
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2373

2374 2375 2376 2377 2378
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2379 2380 2381 2382 2383 2384
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2385
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2386

2387 2388 2389
	mutex_unlock(&set->tag_list_lock);
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2402 2403 2404
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2405
		kobject_put(&hctx->kobj);
2406
	}
2407

2408 2409
	q->mq_map = NULL;

2410 2411
	kfree(q->queue_hw_ctx);

2412 2413 2414 2415 2416 2417
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2418 2419 2420
	free_percpu(q->queue_ctx);
}

2421
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2422 2423 2424
{
	struct request_queue *uninit_q, *q;

2425
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2437 2438 2439 2440
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2441
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2442 2443 2444 2445 2446 2447 2448 2449 2450
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2451 2452
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2453
{
K
Keith Busch 已提交
2454 2455
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2456

K
Keith Busch 已提交
2457
	blk_mq_sysfs_unregister(q);
2458 2459 2460

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2461
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2462
		int node;
2463

K
Keith Busch 已提交
2464 2465 2466 2467
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2468
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2469
					GFP_KERNEL, node);
2470
		if (!hctxs[i])
K
Keith Busch 已提交
2471
			break;
2472

2473
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2474 2475 2476 2477 2478
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2479

2480
		atomic_set(&hctxs[i]->nr_active, 0);
2481
		hctxs[i]->numa_node = node;
2482
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2483 2484 2485 2486 2487 2488 2489 2490

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2491
	}
K
Keith Busch 已提交
2492 2493 2494 2495
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2496 2497
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2498 2499 2500 2501 2502 2503 2504
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2505
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2506 2507 2508 2509 2510 2511
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2512 2513 2514
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2515
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2516 2517
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2518 2519 2520
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2521 2522
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2523
		goto err_exit;
K
Keith Busch 已提交
2524

2525 2526 2527
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2528 2529 2530 2531 2532
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2533
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2534 2535 2536 2537

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2538

2539
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2540
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2541 2542 2543

	q->nr_queues = nr_cpu_ids;

2544
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2545

2546
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2547
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2548

2549 2550
	q->sg_reserved_size = INT_MAX;

2551
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2552 2553 2554
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2555
	blk_queue_make_request(q, blk_mq_make_request);
2556 2557
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2558

2559 2560 2561 2562 2563
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2564 2565 2566 2567 2568
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2569 2570
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2571

2572
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2573
	blk_mq_add_queue_tag_set(set, q);
2574
	blk_mq_map_swqueue(q);
2575

2576 2577 2578
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2579
		ret = elevator_init_mq(q);
2580 2581 2582 2583
		if (ret)
			return ERR_PTR(ret);
	}

2584
	return q;
2585

2586
err_hctxs:
K
Keith Busch 已提交
2587
	kfree(q->queue_hw_ctx);
2588
err_percpu:
K
Keith Busch 已提交
2589
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2590 2591
err_exit:
	q->mq_ops = NULL;
2592 2593
	return ERR_PTR(-ENOMEM);
}
2594
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2595 2596 2597

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2598
	struct blk_mq_tag_set	*set = q->tag_set;
2599

2600
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2601
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2602 2603 2604
}

/* Basically redo blk_mq_init_queue with queue frozen */
2605
static void blk_mq_queue_reinit(struct request_queue *q)
2606
{
2607
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2608

2609
	blk_mq_debugfs_unregister_hctxs(q);
2610 2611
	blk_mq_sysfs_unregister(q);

2612 2613
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2614 2615
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2616
	 */
2617
	blk_mq_map_swqueue(q);
2618

2619
	blk_mq_sysfs_register(q);
2620
	blk_mq_debugfs_register_hctxs(q);
2621 2622
}

2623 2624 2625 2626
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2627 2628
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2629 2630 2631 2632 2633 2634
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2635
		blk_mq_free_rq_map(set->tags[i]);
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2675 2676
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2696
		return set->ops->map_queues(set);
2697
	} else
2698 2699 2700
		return blk_mq_map_queues(set);
}

2701 2702 2703 2704 2705 2706
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2707 2708
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2709 2710
	int ret;

B
Bart Van Assche 已提交
2711 2712
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2713 2714
	if (!set->nr_hw_queues)
		return -EINVAL;
2715
	if (!set->queue_depth)
2716 2717 2718 2719
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2720
	if (!set->ops->queue_rq)
2721 2722
		return -EINVAL;

2723 2724 2725
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2726 2727 2728 2729 2730
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2731

2732 2733 2734 2735 2736 2737 2738 2739 2740
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2741 2742 2743 2744 2745
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2746

K
Keith Busch 已提交
2747
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2748 2749
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2750
		return -ENOMEM;
2751

2752 2753 2754
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2755 2756 2757
	if (!set->mq_map)
		goto out_free_tags;

2758
	ret = blk_mq_update_queue_map(set);
2759 2760 2761 2762 2763
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2764
		goto out_free_mq_map;
2765

2766 2767 2768
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2769
	return 0;
2770 2771 2772 2773 2774

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2775 2776
	kfree(set->tags);
	set->tags = NULL;
2777
	return ret;
2778 2779 2780 2781 2782 2783 2784
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2785 2786
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2787

2788 2789 2790
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2791
	kfree(set->tags);
2792
	set->tags = NULL;
2793 2794 2795
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2796 2797 2798 2799 2800 2801
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2802
	if (!set)
2803 2804
		return -EINVAL;

2805
	blk_mq_freeze_queue(q);
2806
	blk_mq_quiesce_queue(q);
2807

2808 2809
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2810 2811
		if (!hctx->tags)
			continue;
2812 2813 2814 2815
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2816
		if (!hctx->sched_tags) {
2817
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2818 2819 2820 2821 2822
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2823 2824 2825 2826 2827 2828 2829
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2830
	blk_mq_unquiesce_queue(q);
2831 2832
	blk_mq_unfreeze_queue(q);

2833 2834 2835
	return ret;
}

2836 2837
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2838 2839 2840
{
	struct request_queue *q;

2841 2842
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2852
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2853 2854
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2855
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2856 2857 2858 2859 2860
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2861 2862 2863 2864 2865 2866 2867

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2868 2869
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2870 2871 2872 2873
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2874
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2896
	int bucket;
2897

2898 2899 2900 2901
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2902 2903
}

2904 2905 2906 2907 2908
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2909
	int bucket;
2910 2911 2912 2913 2914

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2915
	if (!blk_poll_stats_enable(q))
2916 2917 2918 2919 2920 2921 2922 2923
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2924 2925
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2926
	 */
2927 2928 2929 2930 2931 2932
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2933 2934 2935 2936

	return ret;
}

2937
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2938
				     struct blk_mq_hw_ctx *hctx,
2939 2940 2941 2942
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2943
	unsigned int nsecs;
2944 2945
	ktime_t kt;

J
Jens Axboe 已提交
2946
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2964 2965
		return false;

J
Jens Axboe 已提交
2966
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2967 2968 2969 2970 2971

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2972
	kt = nsecs;
2973 2974 2975 2976 2977 2978 2979

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
2980
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2995 2996 2997 2998 2999
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3000 3001 3002 3003 3004 3005 3006
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3007
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3008 3009
		return true;

J
Jens Axboe 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3035
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3036 3037 3038
	return false;
}

3039
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3040 3041 3042 3043
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3044
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3045 3046 3047
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3048 3049
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3050
	else {
3051
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3052 3053 3054 3055 3056 3057 3058 3059 3060
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3061 3062 3063 3064

	return __blk_mq_poll(hctx, rq);
}

3065 3066
static int __init blk_mq_init(void)
{
3067 3068
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3069 3070 3071
	return 0;
}
subsys_initcall(blk_mq_init);