blk-mq.c 69.6 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46

47 48 49 50
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
51
	ddir = rq_data_dir(rq);
52 53 54 55 56 57 58 59 60 61 62 63
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

64 65 66
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
67
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68
{
69 70 71
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
72 73
}

74 75 76 77 78 79
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
80 81
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 83 84 85 86
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
87
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 89
}

90
void blk_freeze_queue_start(struct request_queue *q)
91
{
92
	int freeze_depth;
93

94 95
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
96
		percpu_ref_kill(&q->q_usage_counter);
97
		blk_mq_run_hw_queues(q, false);
98
	}
99
}
100
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101

102
void blk_mq_freeze_queue_wait(struct request_queue *q)
103
{
104
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105
}
106
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107

108 109 110 111 112 113 114 115
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116

117 118 119 120
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
121
void blk_freeze_queue(struct request_queue *q)
122
{
123 124 125 126 127 128 129
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
130
	blk_freeze_queue_start(q);
131 132
	blk_mq_freeze_queue_wait(q);
}
133 134 135 136 137 138 139 140 141

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
142
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143

144
void blk_mq_unfreeze_queue(struct request_queue *q)
145
{
146
	int freeze_depth;
147

148 149 150
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
151
		percpu_ref_reinit(&q->q_usage_counter);
152
		wake_up_all(&q->mq_freeze_wq);
153
	}
154
}
155
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

171
	__blk_mq_stop_hw_queues(q, true);
172 173 174 175 176 177 178 179 180 181 182 183

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

184 185 186 187 188 189 190 191
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
192 193 194 195 196 197 198

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
199 200
}

201 202 203 204 205 206
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

207 208
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
		struct request *rq, unsigned int op)
209
{
210 211 212
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
213
	rq->mq_ctx = ctx;
214
	rq->cmd_flags = op;
215 216
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
217 218 219 220 221 222
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
223
	rq->start_time = jiffies;
224 225
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
226
	set_start_time_ns(rq);
227 228 229 230 231 232 233 234 235 236 237
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
238 239
	rq->timeout = 0;

240 241 242 243
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

244
	ctx->rq_dispatched[op_is_sync(op)]++;
245 246
}

247 248
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
249 250 251 252
{
	struct request *rq;
	unsigned int tag;

253
	tag = blk_mq_get_tag(data);
254
	if (tag != BLK_MQ_TAG_FAIL) {
255 256 257
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
258

259 260 261 262
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
263 264 265 266
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
267 268
			rq->tag = tag;
			rq->internal_tag = -1;
269
			data->hctx->tags->rqs[rq->tag] = rq;
270 271
		}

272
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
273 274 275 276 277
		return rq;
	}

	return NULL;
}
278
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
		if (!op_is_flush(op) && e->type->ops.mq.get_request) {
			rq = e->type->ops.mq.get_request(q, op, data);
			if (rq)
				rq->rq_flags |= RQF_QUEUED;
		} else
			rq = __blk_mq_alloc_request(data, op);
	} else {
		rq = __blk_mq_alloc_request(data, op);
	}

	if (rq) {
		if (!op_is_flush(op)) {
			rq->elv.icq = NULL;
			if (e && e->type->icq_cache)
				blk_mq_sched_assign_ioc(q, rq, bio);
		}
		data->hctx->queued++;
		return rq;
	}

	blk_queue_exit(q);
	return NULL;
}

325 326
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
327
{
328
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
329
	struct request *rq;
330
	int ret;
331

332
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
333 334
	if (ret)
		return ERR_PTR(ret);
335

336
	rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
337

338 339 340 341
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
342
		return ERR_PTR(-EWOULDBLOCK);
343 344 345 346

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
347 348
	return rq;
}
349
EXPORT_SYMBOL(blk_mq_alloc_request);
350

M
Ming Lin 已提交
351 352 353
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
354
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
355
	struct request *rq;
356
	unsigned int cpu;
M
Ming Lin 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

375 376 377 378
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
379 380 381 382
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
383
	}
384 385
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
386

387
	rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
388 389

	blk_queue_exit(q);
390 391 392 393 394

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
395 396 397
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

398
void blk_mq_free_request(struct request *rq)
399 400
{
	struct request_queue *q = rq->q;
401 402 403 404 405 406 407 408 409 410 411 412 413
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

	if (rq->rq_flags & (RQF_ELVPRIV | RQF_QUEUED)) {
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
414

415
	ctx->rq_completed[rq_is_sync(rq)]++;
416
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
417
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
418 419

	wbt_done(q->rq_wb, &rq->issue_stat);
420
	rq->rq_flags = 0;
421

422
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
423
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
424 425 426
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
427
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
428
	blk_mq_sched_restart(hctx);
429
	blk_queue_exit(q);
430
}
J
Jens Axboe 已提交
431
EXPORT_SYMBOL_GPL(blk_mq_free_request);
432

433
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
434
{
M
Ming Lei 已提交
435 436
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
437
	if (rq->end_io) {
J
Jens Axboe 已提交
438
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
439
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
440 441 442
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
443
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
444
	}
445
}
446
EXPORT_SYMBOL(__blk_mq_end_request);
447

448
void blk_mq_end_request(struct request *rq, blk_status_t error)
449 450 451
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
452
	__blk_mq_end_request(rq, error);
453
}
454
EXPORT_SYMBOL(blk_mq_end_request);
455

456
static void __blk_mq_complete_request_remote(void *data)
457
{
458
	struct request *rq = data;
459

460
	rq->q->softirq_done_fn(rq);
461 462
}

463
static void __blk_mq_complete_request(struct request *rq)
464 465
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
466
	bool shared = false;
467 468
	int cpu;

469 470 471 472 473 474 475
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
476
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
477 478 479
		rq->q->softirq_done_fn(rq);
		return;
	}
480 481

	cpu = get_cpu();
C
Christoph Hellwig 已提交
482 483 484 485
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
486
		rq->csd.func = __blk_mq_complete_request_remote;
487 488
		rq->csd.info = rq;
		rq->csd.flags = 0;
489
		smp_call_function_single_async(ctx->cpu, &rq->csd);
490
	} else {
491
		rq->q->softirq_done_fn(rq);
492
	}
493 494
	put_cpu();
}
495 496 497 498 499 500 501 502 503

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
504
void blk_mq_complete_request(struct request *rq)
505
{
506 507 508
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
509
		return;
510
	if (!blk_mark_rq_complete(rq))
511
		__blk_mq_complete_request(rq);
512 513
}
EXPORT_SYMBOL(blk_mq_complete_request);
514

515 516 517 518 519 520
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

521
void blk_mq_start_request(struct request *rq)
522 523 524
{
	struct request_queue *q = rq->q;

525 526
	blk_mq_sched_started_request(rq);

527 528
	trace_block_rq_issue(q, rq);

529
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
530
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
531
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
532
		wbt_issue(q->rq_wb, &rq->issue_stat);
533 534
	}

535
	blk_add_timer(rq);
536

537 538 539 540 541 542
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

543 544 545 546 547 548
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
549 550 551 552
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
553 554 555 556 557 558 559 560 561

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
562
}
563
EXPORT_SYMBOL(blk_mq_start_request);
564

565 566
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
567
 * flag isn't set yet, so there may be race with timeout handler,
568 569 570 571 572 573
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
574
static void __blk_mq_requeue_request(struct request *rq)
575 576 577 578
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
579
	wbt_requeue(q->rq_wb, &rq->issue_stat);
580
	blk_mq_sched_requeue_request(rq);
581

582 583 584 585
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
586 587
}

588
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
589 590 591 592
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
593
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
594 595 596
}
EXPORT_SYMBOL(blk_mq_requeue_request);

597 598 599
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
600
		container_of(work, struct request_queue, requeue_work.work);
601 602 603 604 605 606 607 608 609
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
610
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
611 612
			continue;

613
		rq->rq_flags &= ~RQF_SOFTBARRIER;
614
		list_del_init(&rq->queuelist);
615
		blk_mq_sched_insert_request(rq, true, false, false, true);
616 617 618 619 620
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
621
		blk_mq_sched_insert_request(rq, false, false, false, true);
622 623
	}

624
	blk_mq_run_hw_queues(q, false);
625 626
}

627 628
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
629 630 631 632 633 634 635 636
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
637
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
638 639 640

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
641
		rq->rq_flags |= RQF_SOFTBARRIER;
642 643 644 645 646
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
647 648 649

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
650 651 652 653 654
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
655
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
656 657 658
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

659 660 661 662 663 664 665 666
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

667 668
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
669 670
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
671
		return tags->rqs[tag];
672
	}
673 674

	return NULL;
675 676 677
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

678
struct blk_mq_timeout_data {
679 680
	unsigned long next;
	unsigned int next_set;
681 682
};

683
void blk_mq_rq_timed_out(struct request *req, bool reserved)
684
{
J
Jens Axboe 已提交
685
	const struct blk_mq_ops *ops = req->q->mq_ops;
686
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
687 688 689 690 691 692 693

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
694
	 * both flags will get cleared. So check here again, and ignore
695 696
	 * a timeout event with a request that isn't active.
	 */
697 698
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
699

700
	if (ops->timeout)
701
		ret = ops->timeout(req, reserved);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
717
}
718

719 720 721 722
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
723

724
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
725
		return;
726

727 728 729 730 731 732 733 734 735 736 737 738 739
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
740 741
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
742
			blk_mq_rq_timed_out(rq, reserved);
743 744 745 746
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
747 748
}

749
static void blk_mq_timeout_work(struct work_struct *work)
750
{
751 752
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
753 754 755 756 757
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
758

759 760 761 762 763 764 765 766 767
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
768
	 * blk_freeze_queue_start, and the moment the last request is
769 770 771 772
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
773 774
		return;

775
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
776

777 778 779
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
780
	} else {
781 782
		struct blk_mq_hw_ctx *hctx;

783 784 785 786 787
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
788
	}
789
	blk_queue_exit(q);
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

810 811 812 813
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
814
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
815
{
816 817 818 819
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
820

821
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
822
}
823
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
824

825 826 827 828
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
829

830
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
831 832
}

833 834
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
835 836 837 838 839 840 841
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

842 843
	might_sleep_if(wait);

844 845
	if (rq->tag != -1)
		goto done;
846

847 848 849
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

850 851
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
852 853 854 855
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
856 857 858
		data.hctx->tags->rqs[rq->tag] = rq;
	}

859 860 861 862
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
863 864
}

865 866
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
867 868 869 870 871 872 873 874 875 876
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

959
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
960
{
961
	struct blk_mq_hw_ctx *hctx;
962
	struct request *rq;
963
	int errors, queued;
964

965 966 967
	if (list_empty(list))
		return false;

968 969 970
	/*
	 * Now process all the entries, sending them to the driver.
	 */
971
	errors = queued = 0;
972
	do {
973
		struct blk_mq_queue_data bd;
974
		blk_status_t ret;
975

976
		rq = list_first_entry(list, struct request, queuelist);
977 978 979
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
980 981

			/*
982 983
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
984
			 */
985 986 987 988 989 990 991 992 993
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
994
				break;
995
		}
996

997 998
		list_del_init(&rq->queuelist);

999
		bd.rq = rq;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1013 1014

		ret = q->mq_ops->queue_rq(hctx, &bd);
1015
		if (ret == BLK_STS_RESOURCE) {
1016
			blk_mq_put_driver_tag_hctx(hctx, rq);
1017
			list_add(&rq->queuelist, list);
1018
			__blk_mq_requeue_request(rq);
1019
			break;
1020 1021 1022
		}

		if (unlikely(ret != BLK_STS_OK)) {
1023
			errors++;
1024
			blk_mq_end_request(rq, BLK_STS_IOERR);
1025
			continue;
1026 1027
		}

1028
		queued++;
1029
	} while (!list_empty(list));
1030

1031
	hctx->dispatched[queued_to_index(queued)]++;
1032 1033 1034 1035 1036

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1037
	if (!list_empty(list)) {
1038
		/*
1039 1040
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1041 1042 1043 1044
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1045
		spin_lock(&hctx->lock);
1046
		list_splice_init(list, &hctx->dispatch);
1047
		spin_unlock(&hctx->lock);
1048

1049
		/*
1050 1051 1052
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1053
		 *
1054 1055 1056 1057
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1058
		 *
1059 1060 1061 1062 1063 1064 1065
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1066
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1067
		 *   and dm-rq.
1068
		 */
1069 1070
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1071
			blk_mq_run_hw_queue(hctx, true);
1072
	}
1073

1074
	return (queued + errors) != 0;
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1086
		blk_mq_sched_dispatch_requests(hctx);
1087 1088
		rcu_read_unlock();
	} else {
1089 1090
		might_sleep();

1091
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1092
		blk_mq_sched_dispatch_requests(hctx);
1093 1094 1095 1096
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1097 1098 1099 1100 1101 1102 1103 1104
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1105 1106
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1107 1108

	if (--hctx->next_cpu_batch <= 0) {
1109
		int next_cpu;
1110 1111 1112 1113 1114 1115 1116 1117 1118

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1119
	return hctx->next_cpu;
1120 1121
}

1122 1123
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1124
{
1125 1126
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1127 1128
		return;

1129
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1130 1131
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1132
			__blk_mq_run_hw_queue(hctx);
1133
			put_cpu();
1134 1135
			return;
		}
1136

1137
		put_cpu();
1138
	}
1139

1140 1141 1142
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1154
}
O
Omar Sandoval 已提交
1155
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1156

1157
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1158 1159 1160 1161 1162
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1163
		if (!blk_mq_hctx_has_pending(hctx) ||
1164
		    blk_mq_hctx_stopped(hctx))
1165 1166
			continue;

1167
		blk_mq_run_hw_queue(hctx, async);
1168 1169
	}
}
1170
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1192
static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1193
{
1194 1195 1196 1197 1198
	if (sync)
		cancel_delayed_work_sync(&hctx->run_work);
	else
		cancel_delayed_work(&hctx->run_work);

1199 1200
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
1201 1202 1203 1204 1205

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	__blk_mq_stop_hw_queue(hctx, false);
}
1206 1207
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1208
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1209 1210 1211 1212 1213
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
1214 1215 1216 1217 1218 1219
		__blk_mq_stop_hw_queue(hctx, sync);
}

void blk_mq_stop_hw_queues(struct request_queue *q)
{
	__blk_mq_stop_hw_queues(q, false);
1220 1221 1222
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1223 1224 1225
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1226

1227
	blk_mq_run_hw_queue(hctx, false);
1228 1229 1230
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1251
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1252 1253 1254 1255
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1256 1257
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1258 1259 1260
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1261
static void blk_mq_run_work_fn(struct work_struct *work)
1262 1263 1264
{
	struct blk_mq_hw_ctx *hctx;

1265
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1266

1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1275

1276 1277 1278
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1279 1280 1281 1282

	__blk_mq_run_hw_queue(hctx);
}

1283 1284 1285

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1286 1287
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1288

1289 1290 1291 1292 1293
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1294
	blk_mq_stop_hw_queue(hctx);
1295 1296 1297 1298
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1299 1300 1301
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1302 1303 1304
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1305
{
J
Jens Axboe 已提交
1306 1307
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1308 1309
	trace_block_rq_insert(hctx->queue, rq);

1310 1311 1312 1313
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1314
}
1315

1316 1317
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1318 1319 1320
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1321
	__blk_mq_insert_req_list(hctx, rq, at_head);
1322 1323 1324
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1325 1326
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1338
		BUG_ON(rq->mq_ctx != ctx);
1339
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1340
		__blk_mq_insert_req_list(hctx, rq, false);
1341
	}
1342
	blk_mq_hctx_mark_pending(hctx, ctx);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1379 1380 1381 1382
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1399 1400 1401
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1402 1403 1404 1405 1406
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1407
	blk_init_request_from_bio(rq, bio);
1408

1409
	blk_account_io_start(rq, true);
1410 1411
}

1412 1413 1414 1415 1416 1417
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1418 1419 1420 1421 1422 1423 1424
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1425
}
1426

1427 1428
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1429 1430 1431 1432
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1433 1434
}

M
Ming Lei 已提交
1435 1436 1437
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1438 1439 1440 1441
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1442
		.last = true,
1443
	};
1444
	blk_qc_t new_cookie;
1445
	blk_status_t ret;
M
Ming Lei 已提交
1446 1447 1448 1449 1450 1451
	bool run_queue = true;

	if (blk_mq_hctx_stopped(hctx)) {
		run_queue = false;
		goto insert;
	}
1452

1453
	if (q->elevator)
1454 1455
		goto insert;

M
Ming Lei 已提交
1456
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1457 1458 1459 1460
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1461 1462 1463 1464 1465 1466
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1467 1468
	switch (ret) {
	case BLK_STS_OK:
1469
		*cookie = new_cookie;
1470
		return;
1471 1472 1473 1474
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1475
		*cookie = BLK_QC_T_NONE;
1476
		blk_mq_end_request(rq, ret);
1477
		return;
1478
	}
1479

1480
insert:
M
Ming Lei 已提交
1481
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1482 1483
}

1484 1485 1486 1487 1488
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1489
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1490 1491
		rcu_read_unlock();
	} else {
1492 1493 1494 1495 1496
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
M
Ming Lei 已提交
1497
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1498 1499 1500 1501
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1502
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1503
{
1504
	const int is_sync = op_is_sync(bio->bi_opf);
1505
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1506
	struct blk_mq_alloc_data data = { .flags = 0 };
1507
	struct request *rq;
1508
	unsigned int request_count = 0;
1509
	struct blk_plug *plug;
1510
	struct request *same_queue_rq = NULL;
1511
	blk_qc_t cookie;
J
Jens Axboe 已提交
1512
	unsigned int wb_acct;
1513 1514 1515

	blk_queue_bounce(q, &bio);

1516 1517
	blk_queue_split(q, &bio, q->bio_split);

1518
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1519
		bio_io_error(bio);
1520
		return BLK_QC_T_NONE;
1521 1522
	}

1523 1524 1525
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1526

1527 1528 1529
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1530 1531
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1532 1533
	trace_block_getrq(q, bio, bio->bi_opf);

1534
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1535 1536
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1537
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1538 1539 1540
	}

	wbt_track(&rq->issue_stat, wb_acct);
1541

1542
	cookie = request_to_qc_t(data.hctx, rq);
1543

1544
	plug = current->plug;
1545
	if (unlikely(is_flush_fua)) {
1546
		blk_mq_put_ctx(data.ctx);
1547
		blk_mq_bio_to_request(rq, bio);
1548 1549 1550
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1551
		} else {
1552 1553
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1554
		}
1555
	} else if (plug && q->nr_hw_queues == 1) {
1556 1557
		struct request *last = NULL;

1558
		blk_mq_put_ctx(data.ctx);
1559
		blk_mq_bio_to_request(rq, bio);
1560 1561 1562 1563 1564 1565 1566

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1567 1568 1569
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1570
		if (!request_count)
1571
			trace_block_plug(q);
1572 1573
		else
			last = list_entry_rq(plug->mq_list.prev);
1574

1575 1576
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1577 1578
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1579
		}
1580

1581
		list_add_tail(&rq->queuelist, &plug->mq_list);
1582
	} else if (plug && !blk_queue_nomerges(q)) {
1583
		blk_mq_bio_to_request(rq, bio);
1584 1585

		/*
1586
		 * We do limited plugging. If the bio can be merged, do that.
1587 1588
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1589 1590
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1591
		 */
1592 1593 1594 1595 1596 1597
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1598 1599
		blk_mq_put_ctx(data.ctx);

1600 1601 1602
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1603 1604
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1605
		}
1606
	} else if (q->nr_hw_queues > 1 && is_sync) {
1607
		blk_mq_put_ctx(data.ctx);
1608 1609
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1610
	} else if (q->elevator) {
1611
		blk_mq_put_ctx(data.ctx);
1612
		blk_mq_bio_to_request(rq, bio);
1613
		blk_mq_sched_insert_request(rq, false, true, true, true);
1614
	} else {
1615
		blk_mq_put_ctx(data.ctx);
1616 1617
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1618
		blk_mq_run_hw_queue(data.hctx, true);
1619
	}
1620

1621
	return cookie;
1622 1623
}

1624 1625
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1626
{
1627
	struct page *page;
1628

1629
	if (tags->rqs && set->ops->exit_request) {
1630
		int i;
1631

1632
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1633 1634 1635
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1636
				continue;
1637
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1638
			tags->static_rqs[i] = NULL;
1639
		}
1640 1641
	}

1642 1643
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1644
		list_del_init(&page->lru);
1645 1646 1647 1648 1649
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1650 1651
		__free_pages(page, page->private);
	}
1652
}
1653

1654 1655
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1656
	kfree(tags->rqs);
1657
	tags->rqs = NULL;
J
Jens Axboe 已提交
1658 1659
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1660

1661
	blk_mq_free_tags(tags);
1662 1663
}

1664 1665 1666 1667
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1668
{
1669
	struct blk_mq_tags *tags;
1670
	int node;
1671

1672 1673 1674 1675 1676
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1677
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1678 1679
	if (!tags)
		return NULL;
1680

1681
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1682
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1683
				 node);
1684 1685 1686 1687
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1688

J
Jens Axboe 已提交
1689 1690
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1691
				 node);
J
Jens Axboe 已提交
1692 1693 1694 1695 1696 1697
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1711 1712 1713 1714 1715
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1716 1717 1718

	INIT_LIST_HEAD(&tags->page_list);

1719 1720 1721 1722
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1723
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1724
				cache_line_size());
1725
	left = rq_size * depth;
1726

1727
	for (i = 0; i < depth; ) {
1728 1729 1730 1731 1732
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1733
		while (this_order && left < order_to_size(this_order - 1))
1734 1735 1736
			this_order--;

		do {
1737
			page = alloc_pages_node(node,
1738
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1739
				this_order);
1740 1741 1742 1743 1744 1745 1746 1747 1748
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1749
			goto fail;
1750 1751

		page->private = this_order;
1752
		list_add_tail(&page->lru, &tags->page_list);
1753 1754

		p = page_address(page);
1755 1756 1757 1758
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1759
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1760
		entries_per_page = order_to_size(this_order) / rq_size;
1761
		to_do = min(entries_per_page, depth - i);
1762 1763
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1764 1765 1766
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1767
			if (set->ops->init_request) {
1768
				if (set->ops->init_request(set, rq, hctx_idx,
1769
						node)) {
J
Jens Axboe 已提交
1770
					tags->static_rqs[i] = NULL;
1771
					goto fail;
1772
				}
1773 1774
			}

1775 1776 1777 1778
			p += rq_size;
			i++;
		}
	}
1779
	return 0;
1780

1781
fail:
1782 1783
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1784 1785
}

J
Jens Axboe 已提交
1786 1787 1788 1789 1790
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1791
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1792
{
1793
	struct blk_mq_hw_ctx *hctx;
1794 1795 1796
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1797
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1798
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1799 1800 1801 1802 1803 1804 1805 1806 1807

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1808
		return 0;
1809

J
Jens Axboe 已提交
1810 1811 1812
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1813 1814

	blk_mq_run_hw_queue(hctx, true);
1815
	return 0;
1816 1817
}

1818
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1819
{
1820 1821
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1822 1823
}

1824
/* hctx->ctxs will be freed in queue's release handler */
1825 1826 1827 1828
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1829 1830
	blk_mq_debugfs_unregister_hctx(hctx);

1831 1832
	blk_mq_tag_idle(hctx);

1833
	if (set->ops->exit_request)
1834
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1835

1836 1837
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1838 1839 1840
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1841 1842 1843
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1844
	blk_mq_remove_cpuhp(hctx);
1845
	blk_free_flush_queue(hctx->fq);
1846
	sbitmap_free(&hctx->ctx_map);
1847 1848
}

M
Ming Lei 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1858
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1859 1860 1861
	}
}

1862 1863 1864
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1865
{
1866 1867 1868 1869 1870 1871
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1872
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1873 1874 1875 1876
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1877
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1878

1879
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1880 1881

	hctx->tags = set->tags[hctx_idx];
1882 1883

	/*
1884 1885
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1886
	 */
1887 1888 1889 1890
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1891

1892 1893
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1894
		goto free_ctxs;
1895

1896
	hctx->nr_ctx = 0;
1897

1898 1899 1900
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1901

1902 1903 1904
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1905 1906
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1907
		goto sched_exit_hctx;
1908

1909
	if (set->ops->init_request &&
1910 1911
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1912
		goto free_fq;
1913

1914 1915 1916
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1917 1918
	blk_mq_debugfs_register_hctx(q, hctx);

1919
	return 0;
1920

1921 1922
 free_fq:
	kfree(hctx->fq);
1923 1924
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1925 1926 1927
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1928
 free_bitmap:
1929
	sbitmap_free(&hctx->ctx_map);
1930 1931 1932
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1933
	blk_mq_remove_cpuhp(hctx);
1934 1935
	return -1;
}
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1955
		hctx = blk_mq_map_queue(q, i);
1956

1957 1958 1959 1960 1961
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1962
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1963 1964 1965
	}
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1988 1989 1990 1991 1992
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1993 1994
}

1995 1996
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1997
{
1998
	unsigned int i, hctx_idx;
1999 2000
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2001
	struct blk_mq_tag_set *set = q->tag_set;
2002

2003 2004 2005 2006 2007
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2008
	queue_for_each_hw_ctx(q, hctx, i) {
2009
		cpumask_clear(hctx->cpumask);
2010 2011 2012 2013 2014 2015
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2016
	for_each_possible_cpu(i) {
2017
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2018
		if (!cpumask_test_cpu(i, online_mask))
2019 2020
			continue;

2021 2022
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2023 2024
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2025 2026 2027 2028 2029 2030
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2031
			q->mq_map[i] = 0;
2032 2033
		}

2034
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2035
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2036

2037
		cpumask_set_cpu(i, hctx->cpumask);
2038 2039 2040
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2041

2042 2043
	mutex_unlock(&q->sysfs_lock);

2044
	queue_for_each_hw_ctx(q, hctx, i) {
2045
		/*
2046 2047
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2048 2049
		 */
		if (!hctx->nr_ctx) {
2050 2051 2052 2053
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2054 2055 2056
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2057
			hctx->tags = NULL;
2058 2059 2060
			continue;
		}

M
Ming Lei 已提交
2061 2062 2063
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2064 2065 2066 2067 2068
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2069
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2070

2071 2072 2073
		/*
		 * Initialize batch roundrobin counts
		 */
2074 2075 2076
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2077 2078
}

2079
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2080 2081 2082 2083
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2095

2096 2097
	lockdep_assert_held(&set->tag_list_lock);

2098 2099
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2100
		queue_set_hctx_shared(q, shared);
2101 2102 2103 2104 2105 2106 2107 2108 2109
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2110 2111
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2112 2113 2114 2115 2116 2117
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2118
	mutex_unlock(&set->tag_list_lock);
2119 2120

	synchronize_rcu();
2121 2122 2123 2124 2125 2126 2127 2128
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2129 2130 2131 2132 2133 2134 2135 2136 2137

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2138
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2139

2140 2141 2142
	mutex_unlock(&set->tag_list_lock);
}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2155 2156 2157
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2158
		kobject_put(&hctx->kobj);
2159
	}
2160

2161 2162
	q->mq_map = NULL;

2163 2164
	kfree(q->queue_hw_ctx);

2165 2166 2167 2168 2169 2170
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2171 2172 2173
	free_percpu(q->queue_ctx);
}

2174
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2190 2191
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2192
{
K
Keith Busch 已提交
2193 2194
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2195

K
Keith Busch 已提交
2196
	blk_mq_sysfs_unregister(q);
2197
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2198
		int node;
2199

K
Keith Busch 已提交
2200 2201 2202 2203
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2204 2205
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2206
		if (!hctxs[i])
K
Keith Busch 已提交
2207
			break;
2208

2209
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2210 2211 2212 2213 2214
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2215

2216
		atomic_set(&hctxs[i]->nr_active, 0);
2217
		hctxs[i]->numa_node = node;
2218
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2219 2220 2221 2222 2223 2224 2225 2226

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2227
	}
K
Keith Busch 已提交
2228 2229 2230 2231
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2232 2233
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2247 2248 2249
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2250
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2251 2252
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2253 2254 2255
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2256 2257
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2258
		goto err_exit;
K
Keith Busch 已提交
2259

2260 2261 2262
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2263 2264 2265 2266 2267
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2268
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2269 2270 2271 2272

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2273

2274
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2275
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2276 2277 2278

	q->nr_queues = nr_cpu_ids;

2279
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2280

2281 2282 2283
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2284 2285
	q->sg_reserved_size = INT_MAX;

2286
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2287 2288 2289
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2290
	blk_queue_make_request(q, blk_mq_make_request);
2291

2292 2293 2294 2295 2296
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2297 2298 2299 2300 2301
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2302 2303
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2304

2305
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2306

2307
	get_online_cpus();
2308
	mutex_lock(&all_q_mutex);
2309

2310
	list_add_tail(&q->all_q_node, &all_q_list);
2311
	blk_mq_add_queue_tag_set(set, q);
2312
	blk_mq_map_swqueue(q, cpu_online_mask);
2313

2314
	mutex_unlock(&all_q_mutex);
2315
	put_online_cpus();
2316

2317 2318 2319 2320 2321 2322 2323 2324
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2325
	return q;
2326

2327
err_hctxs:
K
Keith Busch 已提交
2328
	kfree(q->queue_hw_ctx);
2329
err_percpu:
K
Keith Busch 已提交
2330
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2331 2332
err_exit:
	q->mq_ops = NULL;
2333 2334
	return ERR_PTR(-ENOMEM);
}
2335
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2336 2337 2338

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2339
	struct blk_mq_tag_set	*set = q->tag_set;
2340

2341 2342 2343 2344
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2345 2346
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2347
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2348 2349 2350
}

/* Basically redo blk_mq_init_queue with queue frozen */
2351 2352
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2353
{
2354
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2355

2356
	blk_mq_debugfs_unregister_hctxs(q);
2357 2358
	blk_mq_sysfs_unregister(q);

2359 2360 2361 2362 2363 2364
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2365
	blk_mq_map_swqueue(q, online_mask);
2366

2367
	blk_mq_sysfs_register(q);
2368
	blk_mq_debugfs_register_hctxs(q);
2369 2370
}

2371 2372 2373 2374 2375 2376 2377 2378
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2379 2380 2381 2382
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2383 2384 2385 2386 2387 2388 2389 2390
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2391
		blk_freeze_queue_start(q);
2392
	list_for_each_entry(q, &all_q_list, all_q_node)
2393 2394
		blk_mq_freeze_queue_wait(q);

2395
	list_for_each_entry(q, &all_q_list, all_q_node)
2396
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2397 2398 2399 2400

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2401
	mutex_unlock(&all_q_mutex);
2402 2403 2404 2405
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2406
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2422 2423 2424 2425
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2426 2427 2428 2429 2430 2431 2432
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2433 2434
}

2435 2436 2437 2438
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2439 2440
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2441 2442 2443 2444 2445 2446
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2447
		blk_mq_free_rq_map(set->tags[i]);
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2487 2488 2489 2490 2491 2492 2493 2494
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2495 2496 2497 2498 2499 2500
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2501 2502
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2503 2504
	int ret;

B
Bart Van Assche 已提交
2505 2506
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2507 2508
	if (!set->nr_hw_queues)
		return -EINVAL;
2509
	if (!set->queue_depth)
2510 2511 2512 2513
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2514
	if (!set->ops->queue_rq)
2515 2516
		return -EINVAL;

2517 2518 2519 2520 2521
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2522

2523 2524 2525 2526 2527 2528 2529 2530 2531
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2532 2533 2534 2535 2536
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2537

K
Keith Busch 已提交
2538
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2539 2540
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2541
		return -ENOMEM;
2542

2543 2544 2545
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2546 2547 2548
	if (!set->mq_map)
		goto out_free_tags;

2549
	ret = blk_mq_update_queue_map(set);
2550 2551 2552 2553 2554
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2555
		goto out_free_mq_map;
2556

2557 2558 2559
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2560
	return 0;
2561 2562 2563 2564 2565

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2566 2567
	kfree(set->tags);
	set->tags = NULL;
2568
	return ret;
2569 2570 2571 2572 2573 2574 2575
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2576 2577
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2578

2579 2580 2581
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2582
	kfree(set->tags);
2583
	set->tags = NULL;
2584 2585 2586
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2587 2588 2589 2590 2591 2592
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2593
	if (!set)
2594 2595
		return -EINVAL;

2596 2597
	blk_mq_freeze_queue(q);

2598 2599
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2600 2601
		if (!hctx->tags)
			continue;
2602 2603 2604 2605
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2606 2607 2608 2609 2610 2611 2612 2613
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2614 2615 2616 2617 2618 2619 2620
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2621 2622
	blk_mq_unfreeze_queue(q);

2623 2624 2625
	return ret;
}

2626 2627
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2628 2629 2630
{
	struct request_queue *q;

2631 2632
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2642
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2643 2644 2645 2646 2647 2648 2649 2650
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2651 2652 2653 2654 2655 2656 2657

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2658 2659
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2686
	int bucket;
2687

2688 2689 2690 2691
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2692 2693
}

2694 2695 2696 2697 2698
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2699
	int bucket;
2700 2701 2702 2703 2704

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2705
	if (!blk_poll_stats_enable(q))
2706 2707 2708 2709 2710 2711 2712 2713
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2714 2715
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2716
	 */
2717 2718 2719 2720 2721 2722
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2723 2724 2725 2726

	return ret;
}

2727
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2728
				     struct blk_mq_hw_ctx *hctx,
2729 2730 2731 2732
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2733
	unsigned int nsecs;
2734 2735
	ktime_t kt;

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2754 2755 2756 2757 2758 2759 2760 2761
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2762
	kt = nsecs;
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2785 2786 2787 2788 2789
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2790 2791 2792 2793 2794 2795 2796
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2797
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2798 2799
		return true;

J
Jens Axboe 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2843 2844
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2845
	else {
2846
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2847 2848 2849 2850 2851 2852 2853 2854 2855
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2856 2857 2858 2859 2860

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2871 2872
static int __init blk_mq_init(void)
{
2873 2874
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2875

2876 2877 2878
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2879 2880 2881
	return 0;
}
subsys_initcall(blk_mq_init);