blk-mq.c 58.6 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
34 35 36 37 38 39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
43
	return sbitmap_any_bit_set(&hctx->ctx_map);
44 45
}

46 47 48 49 50 51
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
52 53
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
54 55 56 57 58
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
59
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
60 61
}

62
void blk_mq_freeze_queue_start(struct request_queue *q)
63
{
64
	int freeze_depth;
65

66 67
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
68
		percpu_ref_kill(&q->q_usage_counter);
69
		blk_mq_run_hw_queues(q, false);
70
	}
71
}
72
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
73 74 75

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
76
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
77 78
}

79 80 81 82
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
83
void blk_freeze_queue(struct request_queue *q)
84
{
85 86 87 88 89 90 91
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
92 93 94
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
95 96 97 98 99 100 101 102 103

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
104
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
105

106
void blk_mq_unfreeze_queue(struct request_queue *q)
107
{
108
	int freeze_depth;
109

110 111 112
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
113
		percpu_ref_reinit(&q->q_usage_counter);
114
		wake_up_all(&q->mq_freeze_wq);
115
	}
116
}
117
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

146 147 148 149 150 151 152 153
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
154 155 156 157 158 159 160

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
161 162
}

163 164 165 166 167 168
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

169
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
170
			       struct request *rq, unsigned int op)
171
{
172 173 174
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
175
	rq->mq_ctx = ctx;
176
	rq->cmd_flags = op;
177 178
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
179 180 181 182 183 184
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
185
	rq->start_time = jiffies;
186 187
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
188
	set_start_time_ns(rq);
189 190 191 192 193 194 195 196 197 198
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

199 200
	rq->cmd = rq->__cmd;

201 202 203 204 205 206
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
207 208
	rq->timeout = 0;

209 210 211 212
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

213
	ctx->rq_dispatched[op_is_sync(op)]++;
214 215
}

216
static struct request *
217
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
218 219 220 221
{
	struct request *rq;
	unsigned int tag;

222
	tag = blk_mq_get_tag(data);
223
	if (tag != BLK_MQ_TAG_FAIL) {
224
		rq = data->hctx->tags->rqs[tag];
225

226
		if (blk_mq_tag_busy(data->hctx)) {
227
			rq->rq_flags = RQF_MQ_INFLIGHT;
228
			atomic_inc(&data->hctx->nr_active);
229 230 231
		}

		rq->tag = tag;
232
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
233 234 235 236 237 238
		return rq;
	}

	return NULL;
}

239 240
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
241
{
242 243
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
244
	struct request *rq;
245
	struct blk_mq_alloc_data alloc_data;
246
	int ret;
247

248
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
249 250
	if (ret)
		return ERR_PTR(ret);
251

252
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
253
	hctx = blk_mq_map_queue(q, ctx->cpu);
254
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
255
	rq = __blk_mq_alloc_request(&alloc_data, rw);
256
	blk_mq_put_ctx(ctx);
257

K
Keith Busch 已提交
258
	if (!rq) {
259
		blk_queue_exit(q);
260
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
261
	}
262 263 264 265

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
266 267
	return rq;
}
268
EXPORT_SYMBOL(blk_mq_alloc_request);
269

M
Ming Lin 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

295 296 297 298
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
299
	hctx = q->queue_hw_ctx[hctx_idx];
300 301 302 303
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
304 305 306
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
307
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
308
	if (!rq) {
309 310
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
311 312 313
	}

	return rq;
314 315 316 317

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
318 319 320
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

321 322 323 324 325 326
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

327
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
328
		atomic_dec(&hctx->nr_active);
329
	rq->rq_flags = 0;
330

331
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
332
	blk_mq_put_tag(hctx, ctx, tag);
333
	blk_queue_exit(q);
334 335
}

336
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
337 338 339 340 341
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
342 343 344 345 346 347

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
C
Christoph Hellwig 已提交
348
	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
349
}
J
Jens Axboe 已提交
350
EXPORT_SYMBOL_GPL(blk_mq_free_request);
351

352
inline void __blk_mq_end_request(struct request *rq, int error)
353
{
M
Ming Lei 已提交
354 355
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
356
	if (rq->end_io) {
357
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
358 359 360
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
361
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
362
	}
363
}
364
EXPORT_SYMBOL(__blk_mq_end_request);
365

366
void blk_mq_end_request(struct request *rq, int error)
367 368 369
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
370
	__blk_mq_end_request(rq, error);
371
}
372
EXPORT_SYMBOL(blk_mq_end_request);
373

374
static void __blk_mq_complete_request_remote(void *data)
375
{
376
	struct request *rq = data;
377

378
	rq->q->softirq_done_fn(rq);
379 380
}

381
static void blk_mq_ipi_complete_request(struct request *rq)
382 383
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
384
	bool shared = false;
385 386
	int cpu;

C
Christoph Hellwig 已提交
387
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
388 389 390
		rq->q->softirq_done_fn(rq);
		return;
	}
391 392

	cpu = get_cpu();
C
Christoph Hellwig 已提交
393 394 395 396
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
397
		rq->csd.func = __blk_mq_complete_request_remote;
398 399
		rq->csd.info = rq;
		rq->csd.flags = 0;
400
		smp_call_function_single_async(ctx->cpu, &rq->csd);
401
	} else {
402
		rq->q->softirq_done_fn(rq);
403
	}
404 405
	put_cpu();
}
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

422
static void __blk_mq_complete_request(struct request *rq)
423 424 425
{
	struct request_queue *q = rq->q;

426 427
	blk_mq_stat_add(rq);

428
	if (!q->softirq_done_fn)
429
		blk_mq_end_request(rq, rq->errors);
430 431 432 433
	else
		blk_mq_ipi_complete_request(rq);
}

434 435 436 437 438 439 440 441
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
442
void blk_mq_complete_request(struct request *rq, int error)
443
{
444 445 446
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
447
		return;
448 449
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
450
		__blk_mq_complete_request(rq);
451
	}
452 453
}
EXPORT_SYMBOL(blk_mq_complete_request);
454

455 456 457 458 459 460
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

461
void blk_mq_start_request(struct request *rq)
462 463 464 465 466
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
467
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
468 469
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
470

471 472 473 474 475
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
	}

476
	blk_add_timer(rq);
477

478 479 480 481 482 483
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

484 485 486 487 488 489
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
490 491 492 493
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
494 495 496 497 498 499 500 501 502

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
503
}
504
EXPORT_SYMBOL(blk_mq_start_request);
505

506
static void __blk_mq_requeue_request(struct request *rq)
507 508 509 510
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
511

512 513 514 515
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
516 517
}

518
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
519 520 521 522
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
523
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
524 525 526
}
EXPORT_SYMBOL(blk_mq_requeue_request);

527 528 529
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
530
		container_of(work, struct request_queue, requeue_work.work);
531 532 533 534 535 536 537 538 539
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
540
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
541 542
			continue;

543
		rq->rq_flags &= ~RQF_SOFTBARRIER;
544 545 546 547 548 549 550 551 552 553
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

554
	blk_mq_run_hw_queues(q, false);
555 556
}

557 558
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
559 560 561 562 563 564 565 566
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
567
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
568 569 570

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
571
		rq->rq_flags |= RQF_SOFTBARRIER;
572 573 574 575 576
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
577 578 579

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
580 581 582 583 584
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
585
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
586 587 588
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

589 590 591 592 593 594 595 596
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

617 618
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
619 620
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
621
		return tags->rqs[tag];
622
	}
623 624

	return NULL;
625 626 627
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

628
struct blk_mq_timeout_data {
629 630
	unsigned long next;
	unsigned int next_set;
631 632
};

633
void blk_mq_rq_timed_out(struct request *req, bool reserved)
634
{
635 636
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
637 638 639 640 641 642 643 644 645 646

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
647 648
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
649

650
	if (ops->timeout)
651
		ret = ops->timeout(req, reserved);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
667
}
668

669 670 671 672
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
673

674 675 676 677 678
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
679 680 681 682
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
683
		return;
684
	}
685

686 687
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
688
			blk_mq_rq_timed_out(rq, reserved);
689 690 691 692
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
693 694
}

695
static void blk_mq_timeout_work(struct work_struct *work)
696
{
697 698
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
699 700 701 702 703
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
704

705 706 707 708 709 710 711 712 713 714 715 716 717 718
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
719 720
		return;

721
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
722

723 724 725
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
726
	} else {
727 728
		struct blk_mq_hw_ctx *hctx;

729 730 731 732 733
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
734
	}
735
	blk_queue_exit(q);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

795 796 797 798 799 800
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
801 802 803 804
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
805

806
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
807 808
}

809 810 811 812
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
813

814
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
815 816
}

817 818 819 820 821 822
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
823
static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
824 825 826 827
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
828 829
	LIST_HEAD(driver_list);
	struct list_head *dptr;
830
	int queued;
831

832
	if (unlikely(blk_mq_hctx_stopped(hctx)))
833 834 835 836 837 838 839
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
840
	flush_busy_ctxs(hctx, &rq_list);
841 842 843 844 845 846 847 848 849 850 851 852

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

853 854 855 856 857 858
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

859 860 861
	/*
	 * Now process all the entries, sending them to the driver.
	 */
862
	queued = 0;
863
	while (!list_empty(&rq_list)) {
864
		struct blk_mq_queue_data bd;
865 866 867 868 869
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

870 871 872 873 874
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
875 876 877
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
878
			break;
879 880
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
881
			__blk_mq_requeue_request(rq);
882 883 884 885
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
886
			rq->errors = -EIO;
887
			blk_mq_end_request(rq, rq->errors);
888 889 890 891 892
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
893 894 895 896 897 898 899

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
900 901
	}

902
	hctx->dispatched[queued_to_index(queued)]++;
903 904 905 906 907 908 909 910 911

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
912 913 914 915 916 917 918 919 920 921
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
922 923 924
	}
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		blk_mq_process_rq_list(hctx);
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		blk_mq_process_rq_list(hctx);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

943 944 945 946 947 948 949 950
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
951 952
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
953 954

	if (--hctx->next_cpu_batch <= 0) {
955
		int next_cpu;
956 957 958 959 960 961 962 963 964

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

965
	return hctx->next_cpu;
966 967
}

968 969
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
970 971
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
972 973
		return;

974
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
975 976
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
977
			__blk_mq_run_hw_queue(hctx);
978
			put_cpu();
979 980
			return;
		}
981

982
		put_cpu();
983
	}
984

985
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
986 987
}

988
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
989 990 991 992 993 994 995
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
996
		    blk_mq_hctx_stopped(hctx))
997 998
			continue;

999
		blk_mq_run_hw_queue(hctx, async);
1000 1001
	}
}
1002
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1024 1025
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1026
	cancel_work(&hctx->run_work);
1027
	cancel_delayed_work(&hctx->delay_work);
1028 1029 1030 1031
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1042 1043 1044
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1045

1046
	blk_mq_run_hw_queue(hctx, false);
1047 1048 1049
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1060
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1061 1062 1063 1064 1065
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1066
		if (!blk_mq_hctx_stopped(hctx))
1067 1068 1069
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1070
		blk_mq_run_hw_queue(hctx, async);
1071 1072 1073 1074
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1075
static void blk_mq_run_work_fn(struct work_struct *work)
1076 1077 1078
{
	struct blk_mq_hw_ctx *hctx;

1079
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1080

1081 1082 1083
	__blk_mq_run_hw_queue(hctx);
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1096 1097
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1098

1099 1100
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1101 1102 1103
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1104 1105 1106
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1107
{
J
Jens Axboe 已提交
1108 1109
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1110 1111
	trace_block_rq_insert(hctx->queue, rq);

1112 1113 1114 1115
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1116
}
1117

1118 1119 1120 1121 1122
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1123
	__blk_mq_insert_req_list(hctx, rq, at_head);
1124 1125 1126
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1127
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1128
			   bool async)
1129
{
J
Jens Axboe 已提交
1130
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1131
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1132
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1133

1134 1135 1136
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
C
Christoph Hellwig 已提交
1149
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	trace_block_unplug(q, depth, !from_schedule);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1162
		BUG_ON(rq->mq_ctx != ctx);
1163
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1164
		__blk_mq_insert_req_list(hctx, rq, false);
1165
	}
1166
	blk_mq_hctx_mark_pending(hctx, ctx);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1232

1233
	blk_account_io_start(rq, 1);
1234 1235
}

1236 1237 1238 1239 1240 1241
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1242 1243 1244
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1245
{
1246
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1247 1248 1249 1250 1251 1252 1253
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1254 1255
		struct request_queue *q = hctx->queue;

1256 1257 1258 1259 1260
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1261

1262 1263 1264
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1265
	}
1266
}
1267

1268 1269
static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
1270
					  struct blk_mq_alloc_data *data)
1271 1272 1273 1274
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1275

1276
	blk_queue_enter_live(q);
1277
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1278
	hctx = blk_mq_map_queue(q, ctx->cpu);
1279

1280
	trace_block_getrq(q, bio, bio->bi_opf);
1281
	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1282
	rq = __blk_mq_alloc_request(data, bio->bi_opf);
1283

1284
	data->hctx->queued++;
1285 1286 1287
	return rq;
}

1288 1289
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, blk_qc_t *cookie)
1290 1291 1292 1293 1294 1295 1296 1297
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1298
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1299

1300 1301 1302
	if (blk_mq_hctx_stopped(hctx))
		goto insert;

1303 1304 1305 1306 1307 1308
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1309 1310
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1311
		return;
1312
	}
1313

1314 1315 1316 1317 1318 1319
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1320
		return;
1321
	}
1322

1323 1324
insert:
	blk_mq_insert_request(rq, false, true, true);
1325 1326
}

1327 1328 1329 1330 1331
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1332
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1333
{
1334
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1335
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1336
	struct blk_mq_alloc_data data;
1337
	struct request *rq;
1338
	unsigned int request_count = 0, srcu_idx;
1339
	struct blk_plug *plug;
1340
	struct request *same_queue_rq = NULL;
1341
	blk_qc_t cookie;
1342 1343 1344 1345

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1346
		bio_io_error(bio);
1347
		return BLK_QC_T_NONE;
1348 1349
	}

1350 1351
	blk_queue_split(q, &bio, q->bio_split);

1352 1353 1354
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1355

1356 1357
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1358
		return BLK_QC_T_NONE;
1359

1360
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1361 1362 1363 1364 1365 1366 1367

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1368
	plug = current->plug;
1369 1370 1371 1372 1373
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1374 1375 1376
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1377 1378 1379 1380

		blk_mq_bio_to_request(rq, bio);

		/*
1381
		 * We do limited plugging. If the bio can be merged, do that.
1382 1383
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1384
		 */
1385
		if (plug) {
1386 1387
			/*
			 * The plug list might get flushed before this. If that
1388 1389 1390
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1391 1392
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1393
				list_del_init(&old_rq->queuelist);
1394
			}
1395 1396 1397 1398 1399
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1400
			goto done;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
			blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
			blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1411
		goto done;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1425 1426
done:
	return cookie;
1427 1428 1429 1430 1431 1432
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1433
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1434
{
1435
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1436
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1437 1438
	struct blk_plug *plug;
	unsigned int request_count = 0;
1439
	struct blk_mq_alloc_data data;
1440
	struct request *rq;
1441
	blk_qc_t cookie;
1442 1443 1444 1445

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1446
		bio_io_error(bio);
1447
		return BLK_QC_T_NONE;
1448 1449
	}

1450 1451
	blk_queue_split(q, &bio, q->bio_split);

1452 1453 1454 1455 1456
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1457 1458

	rq = blk_mq_map_request(q, bio, &data);
1459
	if (unlikely(!rq))
1460
		return BLK_QC_T_NONE;
1461

1462
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1475 1476
	plug = current->plug;
	if (plug) {
1477 1478
		struct request *last = NULL;

1479
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1480
		if (!request_count)
1481
			trace_block_plug(q);
1482 1483
		else
			last = list_entry_rq(plug->mq_list.prev);
1484 1485 1486

		blk_mq_put_ctx(data.ctx);

1487 1488
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1489 1490
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1491
		}
1492

1493
		list_add_tail(&rq->queuelist, &plug->mq_list);
1494
		return cookie;
1495 1496
	}

1497 1498 1499 1500 1501 1502 1503 1504 1505
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1506 1507
	}

1508
	blk_mq_put_ctx(data.ctx);
1509
	return cookie;
1510 1511
}

1512 1513
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1514
{
1515
	struct page *page;
1516

1517
	if (tags->rqs && set->ops->exit_request) {
1518
		int i;
1519

1520 1521
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1522
				continue;
1523 1524
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1525
			tags->rqs[i] = NULL;
1526
		}
1527 1528
	}

1529 1530
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1531
		list_del_init(&page->lru);
1532 1533 1534 1535 1536
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1537 1538 1539
		__free_pages(page, page->private);
	}

1540
	kfree(tags->rqs);
1541

1542
	blk_mq_free_tags(tags);
1543 1544 1545 1546
}

static size_t order_to_size(unsigned int order)
{
1547
	return (size_t)PAGE_SIZE << order;
1548 1549
}

1550 1551
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1552
{
1553
	struct blk_mq_tags *tags;
1554 1555 1556
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1557
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1558 1559
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1560 1561
	if (!tags)
		return NULL;
1562

1563 1564
	INIT_LIST_HEAD(&tags->page_list);

1565 1566 1567
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1568 1569 1570 1571
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1572 1573 1574 1575 1576

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1577
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1578
				cache_line_size());
1579
	left = rq_size * set->queue_depth;
1580

1581
	for (i = 0; i < set->queue_depth; ) {
1582 1583 1584 1585 1586
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1587
		while (this_order && left < order_to_size(this_order - 1))
1588 1589 1590
			this_order--;

		do {
1591
			page = alloc_pages_node(set->numa_node,
1592
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1593
				this_order);
1594 1595 1596 1597 1598 1599 1600 1601 1602
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1603
			goto fail;
1604 1605

		page->private = this_order;
1606
		list_add_tail(&page->lru, &tags->page_list);
1607 1608

		p = page_address(page);
1609 1610 1611 1612 1613
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1614
		entries_per_page = order_to_size(this_order) / rq_size;
1615
		to_do = min(entries_per_page, set->queue_depth - i);
1616 1617
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1618 1619 1620 1621
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1622 1623
						set->numa_node)) {
					tags->rqs[i] = NULL;
1624
					goto fail;
1625
				}
1626 1627
			}

1628 1629 1630 1631
			p += rq_size;
			i++;
		}
	}
1632
	return tags;
1633

1634 1635 1636
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1637 1638
}

J
Jens Axboe 已提交
1639 1640 1641 1642 1643
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1644
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1645
{
1646
	struct blk_mq_hw_ctx *hctx;
1647 1648 1649
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1650
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1651
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1652 1653 1654 1655 1656 1657 1658 1659 1660

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1661
		return 0;
1662

J
Jens Axboe 已提交
1663 1664 1665
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1666 1667

	blk_mq_run_hw_queue(hctx, true);
1668
	return 0;
1669 1670
}

1671
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1672
{
1673 1674
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1675 1676
}

1677
/* hctx->ctxs will be freed in queue's release handler */
1678 1679 1680 1681
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1682 1683
	unsigned flush_start_tag = set->queue_depth;

1684 1685
	blk_mq_tag_idle(hctx);

1686 1687 1688 1689 1690
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1691 1692 1693
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1694 1695 1696
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1697
	blk_mq_remove_cpuhp(hctx);
1698
	blk_free_flush_queue(hctx->fq);
1699
	sbitmap_free(&hctx->ctx_map);
1700 1701
}

M
Ming Lei 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1711
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1721
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1722 1723 1724
		free_cpumask_var(hctx->cpumask);
}

1725 1726 1727
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1728
{
1729
	int node;
1730
	unsigned flush_start_tag = set->queue_depth;
1731 1732 1733 1734 1735

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1736
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1737 1738 1739 1740 1741
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1742
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1743

1744
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1745 1746

	hctx->tags = set->tags[hctx_idx];
1747 1748

	/*
1749 1750
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1751
	 */
1752 1753 1754 1755
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1756

1757 1758
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1759
		goto free_ctxs;
1760

1761
	hctx->nr_ctx = 0;
1762

1763 1764 1765
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1766

1767 1768 1769
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1770

1771 1772 1773 1774 1775
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1776

1777 1778 1779
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1780
	return 0;
1781

1782 1783 1784 1785 1786
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1787
 free_bitmap:
1788
	sbitmap_free(&hctx->ctx_map);
1789 1790 1791
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1792
	blk_mq_remove_cpuhp(hctx);
1793 1794
	return -1;
}
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
1810 1811
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1812 1813 1814 1815 1816

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1817
		hctx = blk_mq_map_queue(q, i);
1818

1819 1820 1821 1822 1823
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1824
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1825 1826 1827
	}
}

1828 1829
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1830 1831 1832 1833
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1834
	struct blk_mq_tag_set *set = q->tag_set;
1835

1836 1837 1838 1839 1840
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1841
	queue_for_each_hw_ctx(q, hctx, i) {
1842
		cpumask_clear(hctx->cpumask);
1843 1844 1845 1846 1847 1848
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1849
	for_each_possible_cpu(i) {
1850
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1851
		if (!cpumask_test_cpu(i, online_mask))
1852 1853
			continue;

1854
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1855
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1856

1857
		cpumask_set_cpu(i, hctx->cpumask);
1858 1859 1860
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1861

1862 1863
	mutex_unlock(&q->sysfs_lock);

1864
	queue_for_each_hw_ctx(q, hctx, i) {
1865
		/*
1866 1867
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1868 1869 1870 1871 1872 1873
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1874
			hctx->tags = NULL;
1875 1876 1877
			continue;
		}

M
Ming Lei 已提交
1878 1879 1880 1881 1882 1883
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1884 1885 1886 1887 1888
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1889
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1890

1891 1892 1893
		/*
		 * Initialize batch roundrobin counts
		 */
1894 1895 1896
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1897 1898
}

1899
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1900 1901 1902 1903
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1915 1916 1917

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1918
		queue_set_hctx_shared(q, shared);
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1929 1930 1931 1932 1933 1934
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1935 1936 1937 1938 1939 1940 1941 1942 1943
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1944 1945 1946 1947 1948 1949 1950 1951 1952

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1953
	list_add_tail(&q->tag_set_list, &set->tag_list);
1954

1955 1956 1957
	mutex_unlock(&set->tag_list_lock);
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1970 1971 1972 1973
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1974
		kfree(hctx);
1975
	}
1976

1977 1978
	q->mq_map = NULL;

1979 1980 1981 1982 1983 1984
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1985
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2001 2002
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2003
{
K
Keith Busch 已提交
2004 2005
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2006

K
Keith Busch 已提交
2007
	blk_mq_sysfs_unregister(q);
2008
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2009
		int node;
2010

K
Keith Busch 已提交
2011 2012 2013 2014
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2015 2016
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2017
		if (!hctxs[i])
K
Keith Busch 已提交
2018
			break;
2019

2020
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2021 2022 2023 2024 2025
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2026

2027
		atomic_set(&hctxs[i]->nr_active, 0);
2028
		hctxs[i]->numa_node = node;
2029
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2030 2031 2032 2033 2034 2035 2036 2037

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2038
	}
K
Keith Busch 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2063 2064 2065
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2066 2067
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2068
		goto err_exit;
K
Keith Busch 已提交
2069 2070 2071 2072 2073 2074

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2075
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2076 2077 2078 2079

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2080

2081
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2082
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2083 2084 2085

	q->nr_queues = nr_cpu_ids;

2086
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2087

2088 2089 2090
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2091 2092
	q->sg_reserved_size = INT_MAX;

2093
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2094 2095 2096
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2097 2098 2099 2100 2101
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2102 2103 2104 2105 2106
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2107 2108
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2109

2110
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2111

2112
	get_online_cpus();
2113 2114
	mutex_lock(&all_q_mutex);

2115
	list_add_tail(&q->all_q_node, &all_q_list);
2116
	blk_mq_add_queue_tag_set(set, q);
2117
	blk_mq_map_swqueue(q, cpu_online_mask);
2118

2119
	mutex_unlock(&all_q_mutex);
2120
	put_online_cpus();
2121

2122
	return q;
2123

2124
err_hctxs:
K
Keith Busch 已提交
2125
	kfree(q->queue_hw_ctx);
2126
err_percpu:
K
Keith Busch 已提交
2127
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2128 2129
err_exit:
	q->mq_ops = NULL;
2130 2131
	return ERR_PTR(-ENOMEM);
}
2132
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2133 2134 2135

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2136
	struct blk_mq_tag_set	*set = q->tag_set;
2137

2138 2139 2140 2141
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2142 2143
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2144 2145
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2146 2147 2148
}

/* Basically redo blk_mq_init_queue with queue frozen */
2149 2150
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2151
{
2152
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2153

2154 2155
	blk_mq_sysfs_unregister(q);

2156 2157 2158 2159 2160 2161
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2162
	blk_mq_map_swqueue(q, online_mask);
2163

2164
	blk_mq_sysfs_register(q);
2165 2166
}

2167 2168 2169 2170 2171 2172 2173 2174
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2175 2176 2177 2178
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2179 2180 2181 2182 2183 2184 2185 2186 2187
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2188
	list_for_each_entry(q, &all_q_list, all_q_node) {
2189 2190
		blk_mq_freeze_queue_wait(q);

2191 2192 2193 2194 2195 2196 2197
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2198
	list_for_each_entry(q, &all_q_list, all_q_node)
2199
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2200 2201 2202 2203

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2204
	mutex_unlock(&all_q_mutex);
2205 2206 2207 2208
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2209
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
 * is ignored.
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2236 2237
}

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2292 2293 2294 2295 2296 2297
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2298 2299
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2300 2301
	int ret;

B
Bart Van Assche 已提交
2302 2303
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2304 2305
	if (!set->nr_hw_queues)
		return -EINVAL;
2306
	if (!set->queue_depth)
2307 2308 2309 2310
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2311
	if (!set->ops->queue_rq)
2312 2313
		return -EINVAL;

2314 2315 2316 2317 2318
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2329 2330 2331 2332 2333
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2334

K
Keith Busch 已提交
2335
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2336 2337
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2338
		return -ENOMEM;
2339

2340 2341 2342
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2343 2344 2345
	if (!set->mq_map)
		goto out_free_tags;

2346 2347 2348 2349 2350 2351 2352 2353 2354
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2355
		goto out_free_mq_map;
2356

2357 2358 2359
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2360
	return 0;
2361 2362 2363 2364 2365

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2366 2367
	kfree(set->tags);
	set->tags = NULL;
2368
	return ret;
2369 2370 2371 2372 2373 2374 2375
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2376
	for (i = 0; i < nr_cpu_ids; i++) {
2377
		if (set->tags[i])
2378 2379 2380
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

2381 2382 2383
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2384
	kfree(set->tags);
2385
	set->tags = NULL;
2386 2387 2388
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2400 2401
		if (!hctx->tags)
			continue;
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2452 2453
static int __init blk_mq_init(void)
{
2454 2455
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2456

2457 2458 2459
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2460 2461 2462
	return 0;
}
subsys_initcall(blk_mq_init);