blk-mq.c 73.6 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129 130
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
131
	}
132
}
133
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134

135
void blk_mq_freeze_queue_wait(struct request_queue *q)
136
{
137
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138
}
139
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140

141 142 143 144 145 146 147 148
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149

150 151 152 153
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
154
void blk_freeze_queue(struct request_queue *q)
155
{
156 157 158 159 160 161 162
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
163
	blk_freeze_queue_start(q);
164 165
	blk_mq_freeze_queue_wait(q);
}
166 167 168 169 170 171 172 173 174

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
175
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
176

177
void blk_mq_unfreeze_queue(struct request_queue *q)
178
{
179
	int freeze_depth;
180

181 182 183
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
184
		percpu_ref_reinit(&q->q_usage_counter);
185
		wake_up_all(&q->mq_freeze_wq);
186
	}
187
}
188
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

204
/**
205
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206 207 208
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
209 210 211
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
212 213 214 215 216 217 218
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

219
	blk_mq_quiesce_queue_nowait(q);
220

221 222
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
223
			synchronize_srcu(hctx->queue_rq_srcu);
224 225 226 227 228 229 230 231
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

232 233 234 235 236 237 238 239 240
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
241 242 243
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
244
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
245
	spin_unlock_irqrestore(q->queue_lock, flags);
246

247 248
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
249 250 251
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

252 253 254 255 256 257 258 259 260 261
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

262 263 264 265 266 267
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

268 269
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
270
{
271 272 273
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

274 275
	rq->rq_flags = 0;

276 277 278 279 280 281 282 283 284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

289 290
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
291 292
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
293
	rq->cmd_flags = op;
294 295
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
296
	if (blk_queue_io_stat(data->q))
297
		rq->rq_flags |= RQF_IO_STAT;
298 299 300 301 302 303
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
304
	rq->start_time = jiffies;
305 306
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
307
	set_start_time_ns(rq);
308 309 310 311 312 313 314 315 316 317 318
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
319 320
	rq->timeout = 0;

321 322 323 324
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

325 326
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
327 328
}

329 330 331 332 333 334
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
335
	unsigned int tag;
336
	bool put_ctx_on_error = false;
337 338 339

	blk_queue_enter_live(q);
	data->q = q;
340 341 342 343
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
344 345
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
346 347
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
348 349 350 351 352 353 354 355

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
356 357
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
358 359
	}

360 361
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
362 363
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
364 365
			data->ctx = NULL;
		}
366 367
		blk_queue_exit(q);
		return NULL;
368 369
	}

370
	rq = blk_mq_rq_ctx_init(data, tag, op);
371 372
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
373
		if (e && e->type->ops.mq.prepare_request) {
374 375 376
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

377 378
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
379
		}
380 381 382
	}
	data->hctx->queued++;
	return rq;
383 384
}

385
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
386
		blk_mq_req_flags_t flags)
387
{
388
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
389
	struct request *rq;
390
	int ret;
391

392
	ret = blk_queue_enter(q, flags);
393 394
	if (ret)
		return ERR_PTR(ret);
395

396
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
397
	blk_queue_exit(q);
398

399
	if (!rq)
400
		return ERR_PTR(-EWOULDBLOCK);
401

402 403
	blk_mq_put_ctx(alloc_data.ctx);

404 405 406
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
407 408
	return rq;
}
409
EXPORT_SYMBOL(blk_mq_alloc_request);
410

411
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
412
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
413
{
414
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
415
	struct request *rq;
416
	unsigned int cpu;
M
Ming Lin 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

431
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
432 433 434
	if (ret)
		return ERR_PTR(ret);

435 436 437 438
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
439 440 441 442
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
443
	}
444 445
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
446

447
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
448
	blk_queue_exit(q);
449

450 451 452 453
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
454 455 456
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

457
void blk_mq_free_request(struct request *rq)
458 459
{
	struct request_queue *q = rq->q;
460 461 462 463 464
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

465
	if (rq->rq_flags & RQF_ELVPRIV) {
466 467 468 469 470 471 472
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
473

474
	ctx->rq_completed[rq_is_sync(rq)]++;
475
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
476
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
477

478 479 480
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
481
	wbt_done(q->rq_wb, &rq->issue_stat);
482

S
Shaohua Li 已提交
483 484 485
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

486
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
487
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
488 489 490
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
491
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
492
	blk_mq_sched_restart(hctx);
493
	blk_queue_exit(q);
494
}
J
Jens Axboe 已提交
495
EXPORT_SYMBOL_GPL(blk_mq_free_request);
496

497
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
498
{
M
Ming Lei 已提交
499 500
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
501
	if (rq->end_io) {
J
Jens Axboe 已提交
502
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
503
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
504 505 506
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
507
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
508
	}
509
}
510
EXPORT_SYMBOL(__blk_mq_end_request);
511

512
void blk_mq_end_request(struct request *rq, blk_status_t error)
513 514 515
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
516
	__blk_mq_end_request(rq, error);
517
}
518
EXPORT_SYMBOL(blk_mq_end_request);
519

520
static void __blk_mq_complete_request_remote(void *data)
521
{
522
	struct request *rq = data;
523

524
	rq->q->softirq_done_fn(rq);
525 526
}

527
static void __blk_mq_complete_request(struct request *rq)
528 529
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
530
	bool shared = false;
531 532
	int cpu;

533 534 535 536 537 538 539
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
540
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
541 542 543
		rq->q->softirq_done_fn(rq);
		return;
	}
544 545

	cpu = get_cpu();
C
Christoph Hellwig 已提交
546 547 548 549
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
550
		rq->csd.func = __blk_mq_complete_request_remote;
551 552
		rq->csd.info = rq;
		rq->csd.flags = 0;
553
		smp_call_function_single_async(ctx->cpu, &rq->csd);
554
	} else {
555
		rq->q->softirq_done_fn(rq);
556
	}
557 558
	put_cpu();
}
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_lock();
	else
		*srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
}

576 577 578 579 580 581 582 583
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
584
void blk_mq_complete_request(struct request *rq)
585
{
586
	struct request_queue *q = rq->q;
587 588
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
589 590

	if (unlikely(blk_should_fake_timeout(q)))
591
		return;
592 593

	hctx_lock(hctx, &srcu_idx);
594
	if (!blk_mark_rq_complete(rq))
595
		__blk_mq_complete_request(rq);
596
	hctx_unlock(hctx, srcu_idx);
597 598
}
EXPORT_SYMBOL(blk_mq_complete_request);
599

600 601 602 603 604 605
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

606
void blk_mq_start_request(struct request *rq)
607 608 609
{
	struct request_queue *q = rq->q;

610 611
	blk_mq_sched_started_request(rq);

612 613
	trace_block_rq_issue(q, rq);

614
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
615
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
616
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
617
		wbt_issue(q->rq_wb, &rq->issue_stat);
618 619
	}

620
	blk_add_timer(rq);
621

622
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
623

624 625 626 627 628
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
629 630 631 632
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
633
	 */
634 635 636 637 638 639 640 641 642 643 644 645
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
646
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
647
	}
648 649 650 651 652 653 654 655 656

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
657
}
658
EXPORT_SYMBOL(blk_mq_start_request);
659

660 661
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
662
 * flag isn't set yet, so there may be race with timeout handler,
663 664 665 666 667 668
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
669
static void __blk_mq_requeue_request(struct request *rq)
670 671 672
{
	struct request_queue *q = rq->q;

673 674
	blk_mq_put_driver_tag(rq);

675
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
676
	wbt_requeue(q->rq_wb, &rq->issue_stat);
677
	blk_mq_sched_requeue_request(rq);
678

679 680 681 682
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
683 684
}

685
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
686 687 688 689
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
690
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
691 692 693
}
EXPORT_SYMBOL(blk_mq_requeue_request);

694 695 696
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
697
		container_of(work, struct request_queue, requeue_work.work);
698 699 700
	LIST_HEAD(rq_list);
	struct request *rq, *next;

701
	spin_lock_irq(&q->requeue_lock);
702
	list_splice_init(&q->requeue_list, &rq_list);
703
	spin_unlock_irq(&q->requeue_lock);
704 705

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
706
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
707 708
			continue;

709
		rq->rq_flags &= ~RQF_SOFTBARRIER;
710
		list_del_init(&rq->queuelist);
711
		blk_mq_sched_insert_request(rq, true, false, false, true);
712 713 714 715 716
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
717
		blk_mq_sched_insert_request(rq, false, false, false, true);
718 719
	}

720
	blk_mq_run_hw_queues(q, false);
721 722
}

723 724
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
725 726 727 728 729 730
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
731
	 * request head insertion from the workqueue.
732
	 */
733
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
734 735 736

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
737
		rq->rq_flags |= RQF_SOFTBARRIER;
738 739 740 741 742
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
743 744 745

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
746 747 748 749 750
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
751
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
752 753 754
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

755 756 757
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
758 759
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
760 761 762
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

763 764
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
765 766
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
767
		return tags->rqs[tag];
768
	}
769 770

	return NULL;
771 772 773
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

774
struct blk_mq_timeout_data {
775 776
	unsigned long next;
	unsigned int next_set;
777 778
};

779
void blk_mq_rq_timed_out(struct request *req, bool reserved)
780
{
J
Jens Axboe 已提交
781
	const struct blk_mq_ops *ops = req->q->mq_ops;
782
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
783 784 785 786 787 788 789

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
790
	 * both flags will get cleared. So check here again, and ignore
791 792
	 * a timeout event with a request that isn't active.
	 */
793 794
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
795

796
	if (ops->timeout)
797
		ret = ops->timeout(req, reserved);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
813
}
814

815 816 817 818
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
819
	unsigned long deadline;
820

821
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
822
		return;
823

824 825 826 827 828 829 830 831
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

832 833 834 835 836 837 838 839 840 841 842 843 844
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
845 846 847 848 849 850 851 852 853 854
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
855
			blk_mq_rq_timed_out(rq, reserved);
856 857 858
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
859 860
		data->next_set = 1;
	}
861 862
}

863
static void blk_mq_timeout_work(struct work_struct *work)
864
{
865 866
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
867 868 869 870 871
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
872

873 874 875 876 877 878 879 880 881
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
882
	 * blk_freeze_queue_start, and the moment the last request is
883 884 885 886
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
887 888
		return;

889
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
890

891 892 893
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
894
	} else {
895 896
		struct blk_mq_hw_ctx *hctx;

897 898 899 900 901
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
902
	}
903
	blk_queue_exit(q);
904 905
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

924 925 926 927
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
928
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
929
{
930 931 932 933
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
934

935
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
936
}
937
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
938

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

978 979 980 981
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
982

983
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
984 985
}

986 987
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
988 989 990 991 992 993 994
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

995 996
	might_sleep_if(wait);

997 998
	if (rq->tag != -1)
		goto done;
999

1000 1001 1002
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1003 1004
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1005 1006 1007 1008
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1009 1010 1011
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1012 1013 1014 1015
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1016 1017
}

1018 1019
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1020 1021 1022 1023 1024
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1025
	list_del_init(&wait->entry);
1026 1027 1028 1029
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1030 1031 1032 1033 1034 1035 1036 1037
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
 * restart. For both caes, take care to check the condition again after
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1038
{
1039
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1040
	bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1041
	struct sbq_wait_state *ws;
1042 1043
	wait_queue_entry_t *wait;
	bool ret;
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	if (!shared_tags) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
	} else {
		wait = &this_hctx->dispatch_wait;
		if (!list_empty_careful(&wait->entry))
			return false;

		spin_lock(&this_hctx->lock);
		if (!list_empty(&wait->entry)) {
			spin_unlock(&this_hctx->lock);
			return false;
		}
1058

1059 1060
		ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
		add_wait_queue(&ws->wait, wait);
1061 1062
	}

1063
	/*
1064 1065 1066
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1067
	 */
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	ret = blk_mq_get_driver_tag(rq, hctx, false);

	if (!shared_tags) {
		/*
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return ret;
	} else {
		if (!ret) {
			spin_unlock(&this_hctx->lock);
			return false;
		}

		/*
		 * We got a tag, remove ourselves from the wait queue to ensure
		 * someone else gets the wakeup.
		 */
		spin_lock_irq(&ws->wait.lock);
		list_del_init(&wait->entry);
		spin_unlock_irq(&ws->wait.lock);
1089
		spin_unlock(&this_hctx->lock);
1090
		return true;
1091
	}
1092 1093
}

1094
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1095
			     bool got_budget)
1096
{
1097
	struct blk_mq_hw_ctx *hctx;
1098
	struct request *rq, *nxt;
1099
	bool no_tag = false;
1100
	int errors, queued;
1101

1102 1103 1104
	if (list_empty(list))
		return false;

1105 1106
	WARN_ON(!list_is_singular(list) && got_budget);

1107 1108 1109
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1110
	errors = queued = 0;
1111
	do {
1112
		struct blk_mq_queue_data bd;
1113
		blk_status_t ret;
1114

1115
		rq = list_first_entry(list, struct request, queuelist);
1116
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1117
			/*
1118
			 * The initial allocation attempt failed, so we need to
1119 1120 1121 1122
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1123
			 */
1124
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1125 1126
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1127 1128 1129 1130 1131 1132
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1133 1134 1135 1136
				break;
			}
		}

1137 1138
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1139
			break;
1140
		}
1141

1142 1143
		list_del_init(&rq->queuelist);

1144
		bd.rq = rq;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1156 1157

		ret = q->mq_ops->queue_rq(hctx, &bd);
1158
		if (ret == BLK_STS_RESOURCE) {
1159 1160
			/*
			 * If an I/O scheduler has been configured and we got a
1161 1162
			 * driver tag for the next request already, free it
			 * again.
1163 1164 1165 1166 1167
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1168
			list_add(&rq->queuelist, list);
1169
			__blk_mq_requeue_request(rq);
1170
			break;
1171 1172 1173
		}

		if (unlikely(ret != BLK_STS_OK)) {
1174
			errors++;
1175
			blk_mq_end_request(rq, BLK_STS_IOERR);
1176
			continue;
1177 1178
		}

1179
		queued++;
1180
	} while (!list_empty(list));
1181

1182
	hctx->dispatched[queued_to_index(queued)]++;
1183 1184 1185 1186 1187

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1188
	if (!list_empty(list)) {
1189
		spin_lock(&hctx->lock);
1190
		list_splice_init(list, &hctx->dispatch);
1191
		spin_unlock(&hctx->lock);
1192

1193
		/*
1194 1195 1196
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1197
		 *
1198 1199 1200 1201
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1202
		 *
1203 1204 1205 1206 1207 1208 1209
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1210
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1211
		 *   and dm-rq.
1212
		 */
1213 1214
		if (!blk_mq_sched_needs_restart(hctx) ||
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1215
			blk_mq_run_hw_queue(hctx, true);
1216
	}
1217

1218
	return (queued + errors) != 0;
1219 1220
}

1221 1222 1223 1224
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1225 1226 1227 1228
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1229 1230 1231
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1232 1233 1234 1235 1236 1237
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1238
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1239

1240 1241 1242
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1243 1244
}

1245 1246 1247 1248 1249 1250 1251 1252
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1253 1254
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1255 1256

	if (--hctx->next_cpu_batch <= 0) {
1257
		int next_cpu;
1258 1259 1260 1261 1262 1263 1264 1265 1266

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1267
	return hctx->next_cpu;
1268 1269
}

1270 1271
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1272
{
1273 1274 1275 1276
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1277 1278
		return;

1279
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1280 1281
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1282
			__blk_mq_run_hw_queue(hctx);
1283
			put_cpu();
1284 1285
			return;
		}
1286

1287
		put_cpu();
1288
	}
1289

1290 1291 1292
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1293 1294 1295 1296 1297 1298 1299 1300
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1301
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1302
{
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1314 1315 1316 1317
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1318 1319

	if (need_run) {
1320 1321 1322 1323 1324
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1325
}
O
Omar Sandoval 已提交
1326
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1327

1328
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1329 1330 1331 1332 1333
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1334
		if (blk_mq_hctx_stopped(hctx))
1335 1336
			continue;

1337
		blk_mq_run_hw_queue(hctx, async);
1338 1339
	}
}
1340
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1362 1363 1364
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1365
 * BLK_STS_RESOURCE is usually returned.
1366 1367 1368 1369 1370
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1371 1372
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1373
	cancel_delayed_work(&hctx->run_work);
1374

1375
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1376
}
1377
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1378

1379 1380 1381
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1382
 * BLK_STS_RESOURCE is usually returned.
1383 1384 1385 1386 1387
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1388 1389
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1390 1391 1392 1393 1394
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1395 1396 1397
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1398 1399 1400
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1401

1402
	blk_mq_run_hw_queue(hctx, false);
1403 1404 1405
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1426
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1427 1428 1429 1430
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1431 1432
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1433 1434 1435
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1436
static void blk_mq_run_work_fn(struct work_struct *work)
1437 1438 1439
{
	struct blk_mq_hw_ctx *hctx;

1440
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1441

1442 1443 1444 1445 1446 1447 1448 1449
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1450

1451 1452 1453
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1454 1455 1456 1457

	__blk_mq_run_hw_queue(hctx);
}

1458 1459 1460

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1461
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1462
		return;
1463

1464 1465 1466 1467 1468
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1469
	blk_mq_stop_hw_queue(hctx);
1470 1471 1472 1473
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1474 1475 1476
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1477 1478 1479
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1480
{
J
Jens Axboe 已提交
1481 1482
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1483 1484
	lockdep_assert_held(&ctx->lock);

1485 1486
	trace_block_rq_insert(hctx->queue, rq);

1487 1488 1489 1490
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1491
}
1492

1493 1494
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1495 1496 1497
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1498 1499
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1500
	__blk_mq_insert_req_list(hctx, rq, at_head);
1501 1502 1503
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1504 1505 1506 1507
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1508
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1509 1510 1511 1512 1513 1514 1515 1516
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1517 1518
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1519 1520
}

1521 1522
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1534
		BUG_ON(rq->mq_ctx != ctx);
1535
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1536
		__blk_mq_insert_req_list(hctx, rq, false);
1537
	}
1538
	blk_mq_hctx_mark_pending(hctx, ctx);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1575 1576 1577 1578
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1595 1596 1597
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1598 1599 1600 1601 1602
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1603
	blk_init_request_from_bio(rq, bio);
1604

S
Shaohua Li 已提交
1605 1606
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1607
	blk_account_io_start(rq, true);
1608 1609
}

1610 1611 1612 1613 1614 1615 1616
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1617
}
1618

1619 1620
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1621 1622 1623 1624
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1625 1626
}

M
Ming Lei 已提交
1627 1628
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
1629
					blk_qc_t *cookie)
1630 1631 1632 1633
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1634
		.last = true,
1635
	};
1636
	blk_qc_t new_cookie;
1637
	blk_status_t ret;
M
Ming Lei 已提交
1638 1639
	bool run_queue = true;

1640 1641
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1642 1643 1644
		run_queue = false;
		goto insert;
	}
1645

1646
	if (q->elevator)
1647 1648
		goto insert;

M
Ming Lei 已提交
1649
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1650 1651
		goto insert;

1652
	if (!blk_mq_get_dispatch_budget(hctx)) {
1653 1654
		blk_mq_put_driver_tag(rq);
		goto insert;
1655
	}
1656

1657 1658
	new_cookie = request_to_qc_t(hctx, rq);

1659 1660 1661 1662 1663 1664
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1665 1666
	switch (ret) {
	case BLK_STS_OK:
1667
		*cookie = new_cookie;
1668
		return;
1669 1670 1671 1672
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1673
		*cookie = BLK_QC_T_NONE;
1674
		blk_mq_end_request(rq, ret);
1675
		return;
1676
	}
1677

1678
insert:
1679 1680
	blk_mq_sched_insert_request(rq, false, run_queue, false,
					hctx->flags & BLK_MQ_F_BLOCKING);
1681 1682
}

1683 1684 1685
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1686
	int srcu_idx;
1687

1688
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1689

1690 1691 1692
	hctx_lock(hctx, &srcu_idx);
	__blk_mq_try_issue_directly(hctx, rq, cookie);
	hctx_unlock(hctx, srcu_idx);
1693 1694
}

1695
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1696
{
1697
	const int is_sync = op_is_sync(bio->bi_opf);
1698
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1699
	struct blk_mq_alloc_data data = { .flags = 0 };
1700
	struct request *rq;
1701
	unsigned int request_count = 0;
1702
	struct blk_plug *plug;
1703
	struct request *same_queue_rq = NULL;
1704
	blk_qc_t cookie;
J
Jens Axboe 已提交
1705
	unsigned int wb_acct;
1706 1707 1708

	blk_queue_bounce(q, &bio);

1709
	blk_queue_split(q, &bio);
1710

1711
	if (!bio_integrity_prep(bio))
1712
		return BLK_QC_T_NONE;
1713

1714 1715 1716
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1717

1718 1719 1720
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1721 1722
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1723 1724
	trace_block_getrq(q, bio, bio->bi_opf);

1725
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1726 1727
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1728 1729
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1730
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1731 1732 1733
	}

	wbt_track(&rq->issue_stat, wb_acct);
1734

1735
	cookie = request_to_qc_t(data.hctx, rq);
1736

1737
	plug = current->plug;
1738
	if (unlikely(is_flush_fua)) {
1739
		blk_mq_put_ctx(data.ctx);
1740
		blk_mq_bio_to_request(rq, bio);
1741 1742 1743 1744

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1745
	} else if (plug && q->nr_hw_queues == 1) {
1746 1747
		struct request *last = NULL;

1748
		blk_mq_put_ctx(data.ctx);
1749
		blk_mq_bio_to_request(rq, bio);
1750 1751 1752 1753 1754 1755 1756

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1757 1758 1759
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1760
		if (!request_count)
1761
			trace_block_plug(q);
1762 1763
		else
			last = list_entry_rq(plug->mq_list.prev);
1764

1765 1766
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1767 1768
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1769
		}
1770

1771
		list_add_tail(&rq->queuelist, &plug->mq_list);
1772
	} else if (plug && !blk_queue_nomerges(q)) {
1773
		blk_mq_bio_to_request(rq, bio);
1774 1775

		/*
1776
		 * We do limited plugging. If the bio can be merged, do that.
1777 1778
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1779 1780
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1781
		 */
1782 1783 1784 1785 1786 1787
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1788 1789
		blk_mq_put_ctx(data.ctx);

1790 1791 1792
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1793 1794
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1795
		}
1796
	} else if (q->nr_hw_queues > 1 && is_sync) {
1797
		blk_mq_put_ctx(data.ctx);
1798 1799
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1800
	} else if (q->elevator) {
1801
		blk_mq_put_ctx(data.ctx);
1802
		blk_mq_bio_to_request(rq, bio);
1803
		blk_mq_sched_insert_request(rq, false, true, true, true);
1804
	} else {
1805
		blk_mq_put_ctx(data.ctx);
1806 1807
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1808
		blk_mq_run_hw_queue(data.hctx, true);
1809
	}
1810

1811
	return cookie;
1812 1813
}

1814 1815
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1816
{
1817
	struct page *page;
1818

1819
	if (tags->rqs && set->ops->exit_request) {
1820
		int i;
1821

1822
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1823 1824 1825
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1826
				continue;
1827
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1828
			tags->static_rqs[i] = NULL;
1829
		}
1830 1831
	}

1832 1833
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1834
		list_del_init(&page->lru);
1835 1836 1837 1838 1839
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1840 1841
		__free_pages(page, page->private);
	}
1842
}
1843

1844 1845
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1846
	kfree(tags->rqs);
1847
	tags->rqs = NULL;
J
Jens Axboe 已提交
1848 1849
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1850

1851
	blk_mq_free_tags(tags);
1852 1853
}

1854 1855 1856 1857
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1858
{
1859
	struct blk_mq_tags *tags;
1860
	int node;
1861

1862 1863 1864 1865 1866
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1867
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1868 1869
	if (!tags)
		return NULL;
1870

1871
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1872
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1873
				 node);
1874 1875 1876 1877
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1878

J
Jens Axboe 已提交
1879 1880
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1881
				 node);
J
Jens Axboe 已提交
1882 1883 1884 1885 1886 1887
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1901 1902 1903 1904 1905
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1906 1907 1908

	INIT_LIST_HEAD(&tags->page_list);

1909 1910 1911 1912
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1913
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1914
				cache_line_size());
1915
	left = rq_size * depth;
1916

1917
	for (i = 0; i < depth; ) {
1918 1919 1920 1921 1922
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1923
		while (this_order && left < order_to_size(this_order - 1))
1924 1925 1926
			this_order--;

		do {
1927
			page = alloc_pages_node(node,
1928
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1929
				this_order);
1930 1931 1932 1933 1934 1935 1936 1937 1938
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1939
			goto fail;
1940 1941

		page->private = this_order;
1942
		list_add_tail(&page->lru, &tags->page_list);
1943 1944

		p = page_address(page);
1945 1946 1947 1948
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1949
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1950
		entries_per_page = order_to_size(this_order) / rq_size;
1951
		to_do = min(entries_per_page, depth - i);
1952 1953
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1954 1955 1956
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1957
			if (set->ops->init_request) {
1958
				if (set->ops->init_request(set, rq, hctx_idx,
1959
						node)) {
J
Jens Axboe 已提交
1960
					tags->static_rqs[i] = NULL;
1961
					goto fail;
1962
				}
1963 1964
			}

1965 1966 1967 1968
			p += rq_size;
			i++;
		}
	}
1969
	return 0;
1970

1971
fail:
1972 1973
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1974 1975
}

J
Jens Axboe 已提交
1976 1977 1978 1979 1980
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1981
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1982
{
1983
	struct blk_mq_hw_ctx *hctx;
1984 1985 1986
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1987
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1988
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1989 1990 1991 1992 1993 1994 1995 1996 1997

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1998
		return 0;
1999

J
Jens Axboe 已提交
2000 2001 2002
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2003 2004

	blk_mq_run_hw_queue(hctx, true);
2005
	return 0;
2006 2007
}

2008
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2009
{
2010 2011
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2012 2013
}

2014
/* hctx->ctxs will be freed in queue's release handler */
2015 2016 2017 2018
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2019 2020
	blk_mq_debugfs_unregister_hctx(hctx);

2021 2022
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2023

2024
	if (set->ops->exit_request)
2025
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2026

2027 2028
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2029 2030 2031
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2032
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2033
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2034

2035
	blk_mq_remove_cpuhp(hctx);
2036
	blk_free_flush_queue(hctx->fq);
2037
	sbitmap_free(&hctx->ctx_map);
2038 2039
}

M
Ming Lei 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2049
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2050 2051 2052
	}
}

2053 2054 2055
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2056
{
2057 2058 2059 2060 2061 2062
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2063
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2064 2065 2066
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2067
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2068

2069
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2070 2071

	hctx->tags = set->tags[hctx_idx];
2072 2073

	/*
2074 2075
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2076
	 */
2077
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2078 2079 2080
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2081

2082 2083
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2084
		goto free_ctxs;
2085

2086
	hctx->nr_ctx = 0;
2087

2088 2089 2090
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2091 2092 2093
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2094

2095 2096 2097
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2098 2099
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2100
		goto sched_exit_hctx;
2101

2102
	if (set->ops->init_request &&
2103 2104
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2105
		goto free_fq;
2106

2107
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2108
		init_srcu_struct(hctx->queue_rq_srcu);
2109

2110 2111
	blk_mq_debugfs_register_hctx(q, hctx);

2112
	return 0;
2113

2114 2115
 free_fq:
	kfree(hctx->fq);
2116 2117
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2118 2119 2120
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2121
 free_bitmap:
2122
	sbitmap_free(&hctx->ctx_map);
2123 2124 2125
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2126
	blk_mq_remove_cpuhp(hctx);
2127 2128
	return -1;
}
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2144 2145
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2146 2147
			continue;

C
Christoph Hellwig 已提交
2148
		hctx = blk_mq_map_queue(q, i);
2149

2150 2151 2152 2153 2154
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2155
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2156 2157 2158
	}
}

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2181 2182 2183 2184 2185
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2186 2187
}

2188
static void blk_mq_map_swqueue(struct request_queue *q)
2189
{
2190
	unsigned int i, hctx_idx;
2191 2192
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2193
	struct blk_mq_tag_set *set = q->tag_set;
2194

2195 2196 2197 2198 2199
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2200
	queue_for_each_hw_ctx(q, hctx, i) {
2201
		cpumask_clear(hctx->cpumask);
2202 2203 2204 2205
		hctx->nr_ctx = 0;
	}

	/*
2206 2207 2208
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2209
	 */
2210
	for_each_present_cpu(i) {
2211 2212
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2213 2214
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2215 2216 2217 2218 2219 2220
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2221
			q->mq_map[i] = 0;
2222 2223
		}

2224
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2225
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2226

2227
		cpumask_set_cpu(i, hctx->cpumask);
2228 2229 2230
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2231

2232 2233
	mutex_unlock(&q->sysfs_lock);

2234
	queue_for_each_hw_ctx(q, hctx, i) {
2235
		/*
2236 2237
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2238 2239
		 */
		if (!hctx->nr_ctx) {
2240 2241 2242 2243
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2244 2245 2246
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2247
			hctx->tags = NULL;
2248 2249 2250
			continue;
		}

M
Ming Lei 已提交
2251 2252 2253
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2254 2255 2256 2257 2258
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2259
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2260

2261 2262 2263
		/*
		 * Initialize batch roundrobin counts
		 */
2264 2265 2266
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2267 2268
}

2269 2270 2271 2272
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2273
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2274 2275 2276 2277
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2278
	queue_for_each_hw_ctx(q, hctx, i) {
2279 2280 2281
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2282
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2283 2284 2285
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2286
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2287
		}
2288 2289 2290
	}
}

2291 2292
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2293 2294
{
	struct request_queue *q;
2295

2296 2297
	lockdep_assert_held(&set->tag_list_lock);

2298 2299
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2300
		queue_set_hctx_shared(q, shared);
2301 2302 2303 2304 2305 2306 2307 2308 2309
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2310 2311
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2312 2313 2314 2315 2316 2317
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2318
	mutex_unlock(&set->tag_list_lock);
2319 2320

	synchronize_rcu();
2321 2322 2323 2324 2325 2326 2327 2328
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2329

2330 2331 2332 2333 2334
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2335 2336 2337 2338 2339 2340
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2341
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2342

2343 2344 2345
	mutex_unlock(&set->tag_list_lock);
}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2358 2359 2360
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2361
		kobject_put(&hctx->kobj);
2362
	}
2363

2364 2365
	q->mq_map = NULL;

2366 2367
	kfree(q->queue_hw_ctx);

2368 2369 2370 2371 2372 2373
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2374 2375 2376
	free_percpu(q->queue_ctx);
}

2377
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2407 2408
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2409
{
K
Keith Busch 已提交
2410 2411
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2412

K
Keith Busch 已提交
2413
	blk_mq_sysfs_unregister(q);
2414 2415 2416

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2417
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2418
		int node;
2419

K
Keith Busch 已提交
2420 2421 2422 2423
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2424
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2425
					GFP_KERNEL, node);
2426
		if (!hctxs[i])
K
Keith Busch 已提交
2427
			break;
2428

2429
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2430 2431 2432 2433 2434
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2435

2436
		atomic_set(&hctxs[i]->nr_active, 0);
2437
		hctxs[i]->numa_node = node;
2438
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2439 2440 2441 2442 2443 2444 2445 2446

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2447
	}
K
Keith Busch 已提交
2448 2449 2450 2451
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2452 2453
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2454 2455 2456 2457 2458 2459 2460
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2461
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2462 2463 2464 2465 2466 2467
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2468 2469 2470
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2471
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2472 2473
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2474 2475 2476
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2477 2478
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2479
		goto err_exit;
K
Keith Busch 已提交
2480

2481 2482 2483
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2484 2485 2486 2487 2488
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2489
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2490 2491 2492 2493

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2494

2495
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2496
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2497 2498 2499

	q->nr_queues = nr_cpu_ids;

2500
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2501

2502 2503 2504
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2505 2506
	q->sg_reserved_size = INT_MAX;

2507
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2508 2509 2510
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2511
	blk_queue_make_request(q, blk_mq_make_request);
2512 2513
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2514

2515 2516 2517 2518 2519
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2520 2521 2522 2523 2524
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2525 2526
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2527

2528
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2529
	blk_mq_add_queue_tag_set(set, q);
2530
	blk_mq_map_swqueue(q);
2531

2532 2533 2534 2535 2536 2537 2538 2539
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2540
	return q;
2541

2542
err_hctxs:
K
Keith Busch 已提交
2543
	kfree(q->queue_hw_ctx);
2544
err_percpu:
K
Keith Busch 已提交
2545
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2546 2547
err_exit:
	q->mq_ops = NULL;
2548 2549
	return ERR_PTR(-ENOMEM);
}
2550
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2551 2552 2553

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2554
	struct blk_mq_tag_set	*set = q->tag_set;
2555

2556
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2557
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2558 2559 2560
}

/* Basically redo blk_mq_init_queue with queue frozen */
2561
static void blk_mq_queue_reinit(struct request_queue *q)
2562
{
2563
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2564

2565
	blk_mq_debugfs_unregister_hctxs(q);
2566 2567
	blk_mq_sysfs_unregister(q);

2568 2569
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2570 2571
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2572
	 */
2573
	blk_mq_map_swqueue(q);
2574

2575
	blk_mq_sysfs_register(q);
2576
	blk_mq_debugfs_register_hctxs(q);
2577 2578
}

2579 2580 2581 2582
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2583 2584
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2585 2586 2587 2588 2589 2590
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2591
		blk_mq_free_rq_map(set->tags[i]);
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2631 2632
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2652
		return set->ops->map_queues(set);
2653
	} else
2654 2655 2656
		return blk_mq_map_queues(set);
}

2657 2658 2659 2660 2661 2662
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2663 2664
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2665 2666
	int ret;

B
Bart Van Assche 已提交
2667 2668
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2669 2670
	if (!set->nr_hw_queues)
		return -EINVAL;
2671
	if (!set->queue_depth)
2672 2673 2674 2675
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2676
	if (!set->ops->queue_rq)
2677 2678
		return -EINVAL;

2679 2680 2681
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2682 2683 2684 2685 2686
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2687

2688 2689 2690 2691 2692 2693 2694 2695 2696
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2697 2698 2699 2700 2701
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2702

K
Keith Busch 已提交
2703
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2704 2705
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2706
		return -ENOMEM;
2707

2708 2709 2710
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2711 2712 2713
	if (!set->mq_map)
		goto out_free_tags;

2714
	ret = blk_mq_update_queue_map(set);
2715 2716 2717 2718 2719
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2720
		goto out_free_mq_map;
2721

2722 2723 2724
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2725
	return 0;
2726 2727 2728 2729 2730

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2731 2732
	kfree(set->tags);
	set->tags = NULL;
2733
	return ret;
2734 2735 2736 2737 2738 2739 2740
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2741 2742
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2743

2744 2745 2746
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2747
	kfree(set->tags);
2748
	set->tags = NULL;
2749 2750 2751
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2752 2753 2754 2755 2756 2757
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2758
	if (!set)
2759 2760
		return -EINVAL;

2761
	blk_mq_freeze_queue(q);
2762
	blk_mq_quiesce_queue(q);
2763

2764 2765
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2766 2767
		if (!hctx->tags)
			continue;
2768 2769 2770 2771
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2772
		if (!hctx->sched_tags) {
2773
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2774 2775 2776 2777 2778
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2779 2780 2781 2782 2783 2784 2785
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2786
	blk_mq_unquiesce_queue(q);
2787 2788
	blk_mq_unfreeze_queue(q);

2789 2790 2791
	return ret;
}

2792 2793
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2794 2795 2796
{
	struct request_queue *q;

2797 2798
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2808
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2809 2810
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2811
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2812 2813 2814 2815 2816
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2817 2818 2819 2820 2821 2822 2823

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2824 2825
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2852
	int bucket;
2853

2854 2855 2856 2857
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2858 2859
}

2860 2861 2862 2863 2864
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2865
	int bucket;
2866 2867 2868 2869 2870

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2871
	if (!blk_poll_stats_enable(q))
2872 2873 2874 2875 2876 2877 2878 2879
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2880 2881
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2882
	 */
2883 2884 2885 2886 2887 2888
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2889 2890 2891 2892

	return ret;
}

2893
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2894
				     struct blk_mq_hw_ctx *hctx,
2895 2896 2897 2898
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2899
	unsigned int nsecs;
2900 2901
	ktime_t kt;

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2920 2921 2922 2923 2924 2925 2926 2927
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2928
	kt = nsecs;
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2951 2952 2953 2954 2955
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2956 2957 2958 2959 2960 2961 2962
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2963
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2964 2965
		return true;

J
Jens Axboe 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2994
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
2995 2996 2997 2998
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2999
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3000 3001 3002
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3003 3004
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3005
	else {
3006
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3007 3008 3009 3010 3011 3012 3013 3014 3015
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3016 3017 3018 3019

	return __blk_mq_poll(hctx, rq);
}

3020 3021
static int __init blk_mq_init(void)
{
3022 3023 3024 3025 3026 3027
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

3028 3029
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3030 3031 3032
	return 0;
}
subsys_initcall(blk_mq_init);