blk-mq.c 70.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128
		blk_mq_run_hw_queues(q, false);
129
	}
130
}
131
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132

133
void blk_mq_freeze_queue_wait(struct request_queue *q)
134
{
135
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138

139 140 141 142 143 144 145 146
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147

148 149 150 151
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
152
void blk_freeze_queue(struct request_queue *q)
153
{
154 155 156 157 158 159 160
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
161
	blk_freeze_queue_start(q);
162 163
	blk_mq_freeze_queue_wait(q);
}
164 165 166 167 168 169 170 171 172

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
173
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174

175
void blk_mq_unfreeze_queue(struct request_queue *q)
176
{
177
	int freeze_depth;
178

179 180 181
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
182
		percpu_ref_reinit(&q->q_usage_counter);
183
		wake_up_all(&q->mq_freeze_wq);
184
	}
185
}
186
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

202
/**
203
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 205 206
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
207 208 209
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
210 211 212 213 214 215 216
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

217
	blk_mq_quiesce_queue_nowait(q);
218

219 220
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
221
			synchronize_srcu(hctx->queue_rq_srcu);
222 223 224 225 226 227 228 229
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

230 231 232 233 234 235 236 237 238
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
239 240 241
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
242
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243
	spin_unlock_irqrestore(q->queue_lock, flags);
244

245 246
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
247 248 249
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

250 251 252 253 254 255 256 257
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
258 259 260 261 262 263 264

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
265 266
}

267 268 269 270 271 272
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

273 274
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
275
{
276 277 278
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

279 280
	rq->rq_flags = 0;

281 282 283 284 285 286 287 288 289 290 291 292 293
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

294 295
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
296 297
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
298
	rq->cmd_flags = op;
299
	if (blk_queue_io_stat(data->q))
300
		rq->rq_flags |= RQF_IO_STAT;
301 302 303 304 305 306
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
307
	rq->start_time = jiffies;
308 309
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
310
	set_start_time_ns(rq);
311 312 313 314 315 316 317 318 319 320 321
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
322 323
	rq->timeout = 0;

324 325 326 327
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

328 329
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
330 331
}

332 333 334 335 336 337
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
338
	unsigned int tag;
339
	struct blk_mq_ctx *local_ctx = NULL;
340 341 342 343

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
344
		data->ctx = local_ctx = blk_mq_get_ctx(q);
345 346
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 348
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
349 350 351 352 353 354 355 356

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
357 358
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
359 360
	}

361 362
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
363 364 365 366
		if (local_ctx) {
			blk_mq_put_ctx(local_ctx);
			data->ctx = NULL;
		}
367 368
		blk_queue_exit(q);
		return NULL;
369 370
	}

371
	rq = blk_mq_rq_ctx_init(data, tag, op);
372 373
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
374
		if (e && e->type->ops.mq.prepare_request) {
375 376 377
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

378 379
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
380
		}
381 382 383
	}
	data->hctx->queued++;
	return rq;
384 385
}

386
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387
		unsigned int flags)
388
{
389
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
390
	struct request *rq;
391
	int ret;
392

393
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 395
	if (ret)
		return ERR_PTR(ret);
396

397
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398
	blk_queue_exit(q);
399

400
	if (!rq)
401
		return ERR_PTR(-EWOULDBLOCK);
402

403 404
	blk_mq_put_ctx(alloc_data.ctx);

405 406 407
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
408 409
	return rq;
}
410
EXPORT_SYMBOL(blk_mq_alloc_request);
411

412 413
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
414
{
415
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
416
	struct request *rq;
417
	unsigned int cpu;
M
Ming Lin 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

436 437 438 439
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
440 441 442 443
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
444
	}
445 446
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
447

448
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449
	blk_queue_exit(q);
450

451 452 453 454
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
455 456 457
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

458
void blk_mq_free_request(struct request *rq)
459 460
{
	struct request_queue *q = rq->q;
461 462 463 464 465
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

466
	if (rq->rq_flags & RQF_ELVPRIV) {
467 468 469 470 471 472 473
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
474

475
	ctx->rq_completed[rq_is_sync(rq)]++;
476
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
477
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
478 479

	wbt_done(q->rq_wb, &rq->issue_stat);
480

481
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
483 484 485
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
486
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
487
	blk_mq_sched_restart(hctx);
488
	blk_queue_exit(q);
489
}
J
Jens Axboe 已提交
490
EXPORT_SYMBOL_GPL(blk_mq_free_request);
491

492
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
493
{
M
Ming Lei 已提交
494 495
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
496
	if (rq->end_io) {
J
Jens Axboe 已提交
497
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
498
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
499 500 501
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
502
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
503
	}
504
}
505
EXPORT_SYMBOL(__blk_mq_end_request);
506

507
void blk_mq_end_request(struct request *rq, blk_status_t error)
508 509 510
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
511
	__blk_mq_end_request(rq, error);
512
}
513
EXPORT_SYMBOL(blk_mq_end_request);
514

515
static void __blk_mq_complete_request_remote(void *data)
516
{
517
	struct request *rq = data;
518

519
	rq->q->softirq_done_fn(rq);
520 521
}

522
static void __blk_mq_complete_request(struct request *rq)
523 524
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
525
	bool shared = false;
526 527
	int cpu;

528 529 530 531 532 533 534
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
535
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
536 537 538
		rq->q->softirq_done_fn(rq);
		return;
	}
539 540

	cpu = get_cpu();
C
Christoph Hellwig 已提交
541 542 543 544
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
545
		rq->csd.func = __blk_mq_complete_request_remote;
546 547
		rq->csd.info = rq;
		rq->csd.flags = 0;
548
		smp_call_function_single_async(ctx->cpu, &rq->csd);
549
	} else {
550
		rq->q->softirq_done_fn(rq);
551
	}
552 553
	put_cpu();
}
554 555 556 557 558 559 560 561 562

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
563
void blk_mq_complete_request(struct request *rq)
564
{
565 566 567
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
568
		return;
569
	if (!blk_mark_rq_complete(rq))
570
		__blk_mq_complete_request(rq);
571 572
}
EXPORT_SYMBOL(blk_mq_complete_request);
573

574 575 576 577 578 579
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

580
void blk_mq_start_request(struct request *rq)
581 582 583
{
	struct request_queue *q = rq->q;

584 585
	blk_mq_sched_started_request(rq);

586 587
	trace_block_rq_issue(q, rq);

588
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
589
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
590
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
591
		wbt_issue(q->rq_wb, &rq->issue_stat);
592 593
	}

594
	blk_add_timer(rq);
595

596 597 598 599 600 601
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

602 603 604 605 606 607
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
608 609 610 611
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
612 613 614 615 616 617 618 619 620

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
621
}
622
EXPORT_SYMBOL(blk_mq_start_request);
623

624 625
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
626
 * flag isn't set yet, so there may be race with timeout handler,
627 628 629 630 631 632
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
633
static void __blk_mq_requeue_request(struct request *rq)
634 635 636 637
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
638
	wbt_requeue(q->rq_wb, &rq->issue_stat);
639
	blk_mq_sched_requeue_request(rq);
640

641 642 643 644
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
645 646
}

647
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
648 649 650 651
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
652
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
653 654 655
}
EXPORT_SYMBOL(blk_mq_requeue_request);

656 657 658
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
659
		container_of(work, struct request_queue, requeue_work.work);
660 661 662
	LIST_HEAD(rq_list);
	struct request *rq, *next;

663
	spin_lock_irq(&q->requeue_lock);
664
	list_splice_init(&q->requeue_list, &rq_list);
665
	spin_unlock_irq(&q->requeue_lock);
666 667

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
668
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
669 670
			continue;

671
		rq->rq_flags &= ~RQF_SOFTBARRIER;
672
		list_del_init(&rq->queuelist);
673
		blk_mq_sched_insert_request(rq, true, false, false, true);
674 675 676 677 678
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
679
		blk_mq_sched_insert_request(rq, false, false, false, true);
680 681
	}

682
	blk_mq_run_hw_queues(q, false);
683 684
}

685 686
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
687 688 689 690 691 692 693 694
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
695
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
696 697 698

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
699
		rq->rq_flags |= RQF_SOFTBARRIER;
700 701 702 703 704
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
705 706 707

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
708 709 710 711 712
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
713
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
714 715 716
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

717 718 719
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
720 721
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
722 723 724
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

725 726
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
727 728
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
729
		return tags->rqs[tag];
730
	}
731 732

	return NULL;
733 734 735
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

736
struct blk_mq_timeout_data {
737 738
	unsigned long next;
	unsigned int next_set;
739 740
};

741
void blk_mq_rq_timed_out(struct request *req, bool reserved)
742
{
J
Jens Axboe 已提交
743
	const struct blk_mq_ops *ops = req->q->mq_ops;
744
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
745 746 747 748 749 750 751

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
752
	 * both flags will get cleared. So check here again, and ignore
753 754
	 * a timeout event with a request that isn't active.
	 */
755 756
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
757

758
	if (ops->timeout)
759
		ret = ops->timeout(req, reserved);
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
775
}
776

777 778 779 780
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
781

782
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
783
		return;
784

785 786 787 788 789 790 791 792 793 794 795 796 797
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
798 799
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
800
			blk_mq_rq_timed_out(rq, reserved);
801 802 803 804
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
805 806
}

807
static void blk_mq_timeout_work(struct work_struct *work)
808
{
809 810
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
811 812 813 814 815
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
816

817 818 819 820 821 822 823 824 825
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
826
	 * blk_freeze_queue_start, and the moment the last request is
827 828 829 830
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
831 832
		return;

833
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
834

835 836 837
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
838
	} else {
839 840
		struct blk_mq_hw_ctx *hctx;

841 842 843 844 845
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
846
	}
847
	blk_queue_exit(q);
848 849
}

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

868 869 870 871
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
872
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
873
{
874 875 876 877
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
878

879
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
880
}
881
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
882

883 884 885 886
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
887

888
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
889 890
}

891 892
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
893 894 895 896 897 898 899
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

900 901
	might_sleep_if(wait);

902 903
	if (rq->tag != -1)
		goto done;
904

905 906 907
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

908 909
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
910 911 912 913
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
914 915 916
		data.hctx->tags->rqs[rq->tag] = rq;
	}

917 918 919 920
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
921 922
}

923 924
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
925 926 927 928 929 930 931 932 933 934
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

979
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
980 981 982 983 984 985
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

986
	list_del(&wait->entry);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1017
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1018
{
1019
	struct blk_mq_hw_ctx *hctx;
1020
	struct request *rq;
1021
	int errors, queued;
1022

1023 1024 1025
	if (list_empty(list))
		return false;

1026 1027 1028
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1029
	errors = queued = 0;
1030
	do {
1031
		struct blk_mq_queue_data bd;
1032
		blk_status_t ret;
1033

1034
		rq = list_first_entry(list, struct request, queuelist);
1035 1036 1037
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1038 1039

			/*
1040 1041
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1042
			 */
1043 1044 1045 1046 1047 1048 1049 1050 1051
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1052
				break;
1053
		}
1054

1055 1056
		list_del_init(&rq->queuelist);

1057
		bd.rq = rq;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1071 1072

		ret = q->mq_ops->queue_rq(hctx, &bd);
1073
		if (ret == BLK_STS_RESOURCE) {
1074
			blk_mq_put_driver_tag_hctx(hctx, rq);
1075
			list_add(&rq->queuelist, list);
1076
			__blk_mq_requeue_request(rq);
1077
			break;
1078 1079 1080
		}

		if (unlikely(ret != BLK_STS_OK)) {
1081
			errors++;
1082
			blk_mq_end_request(rq, BLK_STS_IOERR);
1083
			continue;
1084 1085
		}

1086
		queued++;
1087
	} while (!list_empty(list));
1088

1089
	hctx->dispatched[queued_to_index(queued)]++;
1090 1091 1092 1093 1094

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1095
	if (!list_empty(list)) {
1096
		/*
1097 1098
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1099 1100 1101 1102
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1103
		spin_lock(&hctx->lock);
1104
		list_splice_init(list, &hctx->dispatch);
1105
		spin_unlock(&hctx->lock);
1106

1107
		/*
1108 1109 1110
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1111
		 *
1112 1113 1114 1115
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1116
		 *
1117 1118 1119 1120 1121 1122 1123
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1124
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1125
		 *   and dm-rq.
1126
		 */
1127 1128
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1129
			blk_mq_run_hw_queue(hctx, true);
1130
	}
1131

1132
	return (queued + errors) != 0;
1133 1134
}

1135 1136 1137 1138
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1139 1140 1141 1142
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1143 1144 1145
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1146 1147 1148 1149 1150 1151
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1152 1153
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1154
		blk_mq_sched_dispatch_requests(hctx);
1155 1156
		rcu_read_unlock();
	} else {
1157 1158
		might_sleep();

1159
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1160
		blk_mq_sched_dispatch_requests(hctx);
1161
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1162 1163 1164
	}
}

1165 1166 1167 1168 1169 1170 1171 1172
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1173 1174
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1175 1176

	if (--hctx->next_cpu_batch <= 0) {
1177
		int next_cpu;
1178 1179 1180 1181 1182 1183 1184 1185 1186

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1187
	return hctx->next_cpu;
1188 1189
}

1190 1191
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1192
{
1193 1194 1195 1196
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1197 1198
		return;

1199
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1200 1201
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1202
			__blk_mq_run_hw_queue(hctx);
1203
			put_cpu();
1204 1205
			return;
		}
1206

1207
		put_cpu();
1208
	}
1209

1210 1211 1212
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1224
}
O
Omar Sandoval 已提交
1225
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1226

1227
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1228 1229 1230 1231 1232
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1233
		if (!blk_mq_hctx_has_pending(hctx) ||
1234
		    blk_mq_hctx_stopped(hctx))
1235 1236
			continue;

1237
		blk_mq_run_hw_queue(hctx, async);
1238 1239
	}
}
1240
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1262 1263 1264
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1265
 * BLK_STS_RESOURCE is usually returned.
1266 1267 1268 1269 1270
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1271 1272
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1273
	cancel_delayed_work(&hctx->run_work);
1274

1275
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1276
}
1277
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1278

1279 1280 1281
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1282
 * BLK_STS_RESOURCE is usually returned.
1283 1284 1285 1286 1287
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1288 1289
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1290 1291 1292 1293 1294
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1295 1296 1297
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1298 1299 1300
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1301

1302
	blk_mq_run_hw_queue(hctx, false);
1303 1304 1305
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1326
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1327 1328 1329 1330
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1331 1332
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1333 1334 1335
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1336
static void blk_mq_run_work_fn(struct work_struct *work)
1337 1338 1339
{
	struct blk_mq_hw_ctx *hctx;

1340
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1341

1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1350

1351 1352 1353
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1354 1355 1356 1357

	__blk_mq_run_hw_queue(hctx);
}

1358 1359 1360

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1361
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1362
		return;
1363

1364 1365 1366 1367 1368
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1369
	blk_mq_stop_hw_queue(hctx);
1370 1371 1372 1373
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1374 1375 1376
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1377 1378 1379
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1380
{
J
Jens Axboe 已提交
1381 1382
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1383 1384
	lockdep_assert_held(&ctx->lock);

1385 1386
	trace_block_rq_insert(hctx->queue, rq);

1387 1388 1389 1390
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1391
}
1392

1393 1394
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1395 1396 1397
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1398 1399
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1400
	__blk_mq_insert_req_list(hctx, rq, at_head);
1401 1402 1403
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1404 1405
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1417
		BUG_ON(rq->mq_ctx != ctx);
1418
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1419
		__blk_mq_insert_req_list(hctx, rq, false);
1420
	}
1421
	blk_mq_hctx_mark_pending(hctx, ctx);
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1458 1459 1460 1461
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1478 1479 1480
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1481 1482 1483 1484 1485
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1486
	blk_init_request_from_bio(rq, bio);
1487

1488
	blk_account_io_start(rq, true);
1489 1490
}

1491 1492 1493 1494 1495 1496
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1497 1498 1499 1500 1501 1502 1503
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1504
}
1505

1506 1507
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1508 1509 1510 1511
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1512 1513
}

M
Ming Lei 已提交
1514 1515 1516
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1517 1518 1519 1520
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1521
		.last = true,
1522
	};
1523
	blk_qc_t new_cookie;
1524
	blk_status_t ret;
M
Ming Lei 已提交
1525 1526
	bool run_queue = true;

1527 1528
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1529 1530 1531
		run_queue = false;
		goto insert;
	}
1532

1533
	if (q->elevator)
1534 1535
		goto insert;

M
Ming Lei 已提交
1536
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1537 1538 1539 1540
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1541 1542 1543 1544 1545 1546
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1547 1548
	switch (ret) {
	case BLK_STS_OK:
1549
		*cookie = new_cookie;
1550
		return;
1551 1552 1553 1554
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1555
		*cookie = BLK_QC_T_NONE;
1556
		blk_mq_end_request(rq, ret);
1557
		return;
1558
	}
1559

1560
insert:
M
Ming Lei 已提交
1561
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1562 1563
}

1564 1565 1566 1567 1568
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1569
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1570 1571
		rcu_read_unlock();
	} else {
1572 1573 1574 1575
		unsigned int srcu_idx;

		might_sleep();

1576
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1577
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1578
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1579 1580 1581
	}
}

1582
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1583
{
1584
	const int is_sync = op_is_sync(bio->bi_opf);
1585
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1586
	struct blk_mq_alloc_data data = { .flags = 0 };
1587
	struct request *rq;
1588
	unsigned int request_count = 0;
1589
	struct blk_plug *plug;
1590
	struct request *same_queue_rq = NULL;
1591
	blk_qc_t cookie;
J
Jens Axboe 已提交
1592
	unsigned int wb_acct;
1593 1594 1595

	blk_queue_bounce(q, &bio);

1596
	blk_queue_split(q, &bio);
1597

1598
	if (!bio_integrity_prep(bio))
1599
		return BLK_QC_T_NONE;
1600

1601 1602 1603
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1604

1605 1606 1607
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1608 1609
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1610 1611
	trace_block_getrq(q, bio, bio->bi_opf);

1612
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1613 1614
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1615 1616
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1617
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1618 1619 1620
	}

	wbt_track(&rq->issue_stat, wb_acct);
1621

1622
	cookie = request_to_qc_t(data.hctx, rq);
1623

1624
	plug = current->plug;
1625
	if (unlikely(is_flush_fua)) {
1626
		blk_mq_put_ctx(data.ctx);
1627
		blk_mq_bio_to_request(rq, bio);
1628 1629 1630
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1631
		} else {
1632 1633
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1634
		}
1635
	} else if (plug && q->nr_hw_queues == 1) {
1636 1637
		struct request *last = NULL;

1638
		blk_mq_put_ctx(data.ctx);
1639
		blk_mq_bio_to_request(rq, bio);
1640 1641 1642 1643 1644 1645 1646

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1647 1648 1649
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1650
		if (!request_count)
1651
			trace_block_plug(q);
1652 1653
		else
			last = list_entry_rq(plug->mq_list.prev);
1654

1655 1656
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1657 1658
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1659
		}
1660

1661
		list_add_tail(&rq->queuelist, &plug->mq_list);
1662
	} else if (plug && !blk_queue_nomerges(q)) {
1663
		blk_mq_bio_to_request(rq, bio);
1664 1665

		/*
1666
		 * We do limited plugging. If the bio can be merged, do that.
1667 1668
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1669 1670
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1671
		 */
1672 1673 1674 1675 1676 1677
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1678 1679
		blk_mq_put_ctx(data.ctx);

1680 1681 1682
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1683 1684
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1685
		}
1686
	} else if (q->nr_hw_queues > 1 && is_sync) {
1687
		blk_mq_put_ctx(data.ctx);
1688 1689
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1690
	} else if (q->elevator) {
1691
		blk_mq_put_ctx(data.ctx);
1692
		blk_mq_bio_to_request(rq, bio);
1693
		blk_mq_sched_insert_request(rq, false, true, true, true);
1694
	} else {
1695
		blk_mq_put_ctx(data.ctx);
1696 1697
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1698
		blk_mq_run_hw_queue(data.hctx, true);
1699
	}
1700

1701
	return cookie;
1702 1703
}

1704 1705
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1706
{
1707
	struct page *page;
1708

1709
	if (tags->rqs && set->ops->exit_request) {
1710
		int i;
1711

1712
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1713 1714 1715
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1716
				continue;
1717
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1718
			tags->static_rqs[i] = NULL;
1719
		}
1720 1721
	}

1722 1723
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1724
		list_del_init(&page->lru);
1725 1726 1727 1728 1729
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1730 1731
		__free_pages(page, page->private);
	}
1732
}
1733

1734 1735
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1736
	kfree(tags->rqs);
1737
	tags->rqs = NULL;
J
Jens Axboe 已提交
1738 1739
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1740

1741
	blk_mq_free_tags(tags);
1742 1743
}

1744 1745 1746 1747
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1748
{
1749
	struct blk_mq_tags *tags;
1750
	int node;
1751

1752 1753 1754 1755 1756
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1757
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1758 1759
	if (!tags)
		return NULL;
1760

1761
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1762
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1763
				 node);
1764 1765 1766 1767
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1768

J
Jens Axboe 已提交
1769 1770
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1771
				 node);
J
Jens Axboe 已提交
1772 1773 1774 1775 1776 1777
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1791 1792 1793 1794 1795
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1796 1797 1798

	INIT_LIST_HEAD(&tags->page_list);

1799 1800 1801 1802
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1803
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1804
				cache_line_size());
1805
	left = rq_size * depth;
1806

1807
	for (i = 0; i < depth; ) {
1808 1809 1810 1811 1812
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1813
		while (this_order && left < order_to_size(this_order - 1))
1814 1815 1816
			this_order--;

		do {
1817
			page = alloc_pages_node(node,
1818
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1819
				this_order);
1820 1821 1822 1823 1824 1825 1826 1827 1828
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1829
			goto fail;
1830 1831

		page->private = this_order;
1832
		list_add_tail(&page->lru, &tags->page_list);
1833 1834

		p = page_address(page);
1835 1836 1837 1838
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1839
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1840
		entries_per_page = order_to_size(this_order) / rq_size;
1841
		to_do = min(entries_per_page, depth - i);
1842 1843
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1844 1845 1846
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1847
			if (set->ops->init_request) {
1848
				if (set->ops->init_request(set, rq, hctx_idx,
1849
						node)) {
J
Jens Axboe 已提交
1850
					tags->static_rqs[i] = NULL;
1851
					goto fail;
1852
				}
1853 1854
			}

1855 1856 1857 1858
			p += rq_size;
			i++;
		}
	}
1859
	return 0;
1860

1861
fail:
1862 1863
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1864 1865
}

J
Jens Axboe 已提交
1866 1867 1868 1869 1870
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1871
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1872
{
1873
	struct blk_mq_hw_ctx *hctx;
1874 1875 1876
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1877
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1878
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1879 1880 1881 1882 1883 1884 1885 1886 1887

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1888
		return 0;
1889

J
Jens Axboe 已提交
1890 1891 1892
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1893 1894

	blk_mq_run_hw_queue(hctx, true);
1895
	return 0;
1896 1897
}

1898
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1899
{
1900 1901
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1902 1903
}

1904
/* hctx->ctxs will be freed in queue's release handler */
1905 1906 1907 1908
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1909 1910
	blk_mq_debugfs_unregister_hctx(hctx);

1911 1912
	blk_mq_tag_idle(hctx);

1913
	if (set->ops->exit_request)
1914
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1915

1916 1917
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1918 1919 1920
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1921
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1922
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1923

1924
	blk_mq_remove_cpuhp(hctx);
1925
	blk_free_flush_queue(hctx->fq);
1926
	sbitmap_free(&hctx->ctx_map);
1927 1928
}

M
Ming Lei 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1938
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1939 1940 1941
	}
}

1942 1943 1944
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1945
{
1946 1947 1948 1949 1950 1951
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1952
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1953 1954 1955
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
1956
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1957

1958
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1959 1960

	hctx->tags = set->tags[hctx_idx];
1961 1962

	/*
1963 1964
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1965
	 */
1966 1967 1968 1969
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1970

1971 1972
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1973
		goto free_ctxs;
1974

1975
	hctx->nr_ctx = 0;
1976

1977 1978 1979
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1980

1981 1982 1983
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1984 1985
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1986
		goto sched_exit_hctx;
1987

1988
	if (set->ops->init_request &&
1989 1990
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1991
		goto free_fq;
1992

1993
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1994
		init_srcu_struct(hctx->queue_rq_srcu);
1995

1996 1997
	blk_mq_debugfs_register_hctx(q, hctx);

1998
	return 0;
1999

2000 2001
 free_fq:
	kfree(hctx->fq);
2002 2003
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2004 2005 2006
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2007
 free_bitmap:
2008
	sbitmap_free(&hctx->ctx_map);
2009 2010 2011
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2012
	blk_mq_remove_cpuhp(hctx);
2013 2014
	return -1;
}
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2030 2031
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2032 2033
			continue;

C
Christoph Hellwig 已提交
2034
		hctx = blk_mq_map_queue(q, i);
2035

2036 2037 2038 2039 2040
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2041
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2042 2043 2044
	}
}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2067 2068 2069 2070 2071
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2072 2073
}

2074
static void blk_mq_map_swqueue(struct request_queue *q)
2075
{
2076
	unsigned int i, hctx_idx;
2077 2078
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2079
	struct blk_mq_tag_set *set = q->tag_set;
2080

2081 2082 2083 2084 2085
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2086
	queue_for_each_hw_ctx(q, hctx, i) {
2087
		cpumask_clear(hctx->cpumask);
2088 2089 2090 2091
		hctx->nr_ctx = 0;
	}

	/*
2092 2093 2094
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2095
	 */
2096
	for_each_present_cpu(i) {
2097 2098
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2099 2100
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2101 2102 2103 2104 2105 2106
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2107
			q->mq_map[i] = 0;
2108 2109
		}

2110
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2111
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2112

2113
		cpumask_set_cpu(i, hctx->cpumask);
2114 2115 2116
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2117

2118 2119
	mutex_unlock(&q->sysfs_lock);

2120
	queue_for_each_hw_ctx(q, hctx, i) {
2121
		/*
2122 2123
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2124 2125
		 */
		if (!hctx->nr_ctx) {
2126 2127 2128 2129
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2130 2131 2132
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2133
			hctx->tags = NULL;
2134 2135 2136
			continue;
		}

M
Ming Lei 已提交
2137 2138 2139
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2140 2141 2142 2143 2144
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2145
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2146

2147 2148 2149
		/*
		 * Initialize batch roundrobin counts
		 */
2150 2151 2152
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2153 2154
}

2155 2156 2157 2158
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2159
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2160 2161 2162 2163
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2164
	queue_for_each_hw_ctx(q, hctx, i) {
2165 2166 2167
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2168
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2169 2170 2171
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2172
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2173
		}
2174 2175 2176
	}
}

2177 2178
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2179 2180
{
	struct request_queue *q;
2181

2182 2183
	lockdep_assert_held(&set->tag_list_lock);

2184 2185
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2186
		queue_set_hctx_shared(q, shared);
2187 2188 2189 2190 2191 2192 2193 2194 2195
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2196 2197
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2198 2199 2200 2201 2202 2203
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2204
	mutex_unlock(&set->tag_list_lock);
2205 2206

	synchronize_rcu();
2207 2208 2209 2210 2211 2212 2213 2214
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2215 2216 2217 2218 2219 2220 2221 2222 2223

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2224
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2225

2226 2227 2228
	mutex_unlock(&set->tag_list_lock);
}

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2241 2242 2243
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2244
		kobject_put(&hctx->kobj);
2245
	}
2246

2247 2248
	q->mq_map = NULL;

2249 2250
	kfree(q->queue_hw_ctx);

2251 2252 2253 2254 2255 2256
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2257 2258 2259
	free_percpu(q->queue_ctx);
}

2260
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2290 2291
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2292
{
K
Keith Busch 已提交
2293 2294
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2295

K
Keith Busch 已提交
2296
	blk_mq_sysfs_unregister(q);
2297
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2298
		int node;
2299

K
Keith Busch 已提交
2300 2301 2302 2303
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2304
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2305
					GFP_KERNEL, node);
2306
		if (!hctxs[i])
K
Keith Busch 已提交
2307
			break;
2308

2309
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2310 2311 2312 2313 2314
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2315

2316
		atomic_set(&hctxs[i]->nr_active, 0);
2317
		hctxs[i]->numa_node = node;
2318
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2319 2320 2321 2322 2323 2324 2325 2326

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2327
	}
K
Keith Busch 已提交
2328 2329 2330 2331
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2332 2333
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2347 2348 2349
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2350
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2351 2352
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2353 2354 2355
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2356 2357
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2358
		goto err_exit;
K
Keith Busch 已提交
2359

2360 2361 2362
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2363 2364 2365 2366 2367
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2368
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2369 2370 2371 2372

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2373

2374
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2375
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2376 2377 2378

	q->nr_queues = nr_cpu_ids;

2379
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2380

2381 2382 2383
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2384 2385
	q->sg_reserved_size = INT_MAX;

2386
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2387 2388 2389
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2390
	blk_queue_make_request(q, blk_mq_make_request);
2391

2392 2393 2394 2395 2396
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2397 2398 2399 2400 2401
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2402 2403
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2404

2405
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2406
	blk_mq_add_queue_tag_set(set, q);
2407
	blk_mq_map_swqueue(q);
2408

2409 2410 2411 2412 2413 2414 2415 2416
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2417
	return q;
2418

2419
err_hctxs:
K
Keith Busch 已提交
2420
	kfree(q->queue_hw_ctx);
2421
err_percpu:
K
Keith Busch 已提交
2422
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2423 2424
err_exit:
	q->mq_ops = NULL;
2425 2426
	return ERR_PTR(-ENOMEM);
}
2427
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2428 2429 2430

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2431
	struct blk_mq_tag_set	*set = q->tag_set;
2432

2433
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2434
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2435 2436 2437
}

/* Basically redo blk_mq_init_queue with queue frozen */
2438
static void blk_mq_queue_reinit(struct request_queue *q)
2439
{
2440
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2441

2442
	blk_mq_debugfs_unregister_hctxs(q);
2443 2444
	blk_mq_sysfs_unregister(q);

2445 2446 2447 2448 2449 2450
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2451
	blk_mq_map_swqueue(q);
2452

2453
	blk_mq_sysfs_register(q);
2454
	blk_mq_debugfs_register_hctxs(q);
2455 2456
}

2457 2458 2459 2460
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2461 2462
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2463 2464 2465 2466 2467 2468
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2469
		blk_mq_free_rq_map(set->tags[i]);
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2509 2510 2511 2512 2513 2514 2515 2516
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2517 2518 2519 2520 2521 2522
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2523 2524
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2525 2526
	int ret;

B
Bart Van Assche 已提交
2527 2528
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2529 2530
	if (!set->nr_hw_queues)
		return -EINVAL;
2531
	if (!set->queue_depth)
2532 2533 2534 2535
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2536
	if (!set->ops->queue_rq)
2537 2538
		return -EINVAL;

2539 2540 2541 2542 2543
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2544

2545 2546 2547 2548 2549 2550 2551 2552 2553
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2554 2555 2556 2557 2558
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2559

K
Keith Busch 已提交
2560
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2561 2562
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2563
		return -ENOMEM;
2564

2565 2566 2567
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2568 2569 2570
	if (!set->mq_map)
		goto out_free_tags;

2571
	ret = blk_mq_update_queue_map(set);
2572 2573 2574 2575 2576
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2577
		goto out_free_mq_map;
2578

2579 2580 2581
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2582
	return 0;
2583 2584 2585 2586 2587

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2588 2589
	kfree(set->tags);
	set->tags = NULL;
2590
	return ret;
2591 2592 2593 2594 2595 2596 2597
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2598 2599
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2600

2601 2602 2603
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2604
	kfree(set->tags);
2605
	set->tags = NULL;
2606 2607 2608
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2609 2610 2611 2612 2613 2614
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2615
	if (!set)
2616 2617
		return -EINVAL;

2618 2619
	blk_mq_freeze_queue(q);

2620 2621
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2622 2623
		if (!hctx->tags)
			continue;
2624 2625 2626 2627
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2628 2629 2630 2631 2632 2633 2634 2635
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2636 2637 2638 2639 2640 2641 2642
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2643 2644
	blk_mq_unfreeze_queue(q);

2645 2646 2647
	return ret;
}

2648 2649
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2650 2651 2652
{
	struct request_queue *q;

2653 2654
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2664
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2665 2666
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2667
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2668 2669 2670 2671 2672
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2673 2674 2675 2676 2677 2678 2679

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2680 2681
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2708
	int bucket;
2709

2710 2711 2712 2713
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2714 2715
}

2716 2717 2718 2719 2720
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2721
	int bucket;
2722 2723 2724 2725 2726

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2727
	if (!blk_poll_stats_enable(q))
2728 2729 2730 2731 2732 2733 2734 2735
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2736 2737
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2738
	 */
2739 2740 2741 2742 2743 2744
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2745 2746 2747 2748

	return ret;
}

2749
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2750
				     struct blk_mq_hw_ctx *hctx,
2751 2752 2753 2754
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2755
	unsigned int nsecs;
2756 2757
	ktime_t kt;

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2776 2777 2778 2779 2780 2781 2782 2783
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2784
	kt = nsecs;
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2807 2808 2809 2810 2811
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2812 2813 2814 2815 2816 2817 2818
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2819
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2820 2821
		return true;

J
Jens Axboe 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2865 2866
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2867
	else {
2868
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2869 2870 2871 2872 2873 2874 2875 2876 2877
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2878 2879 2880 2881 2882

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2883 2884
static int __init blk_mq_init(void)
{
2885 2886
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2887 2888 2889
	return 0;
}
subsys_initcall(blk_mq_init);