blk-mq.c 69.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46

47 48 49 50
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
51
	ddir = rq_data_dir(rq);
52 53 54 55 56 57 58 59 60 61 62 63
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

64 65 66
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
67
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68
{
69 70 71
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
72 73
}

74 75 76 77 78 79
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
80 81
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 83 84 85 86
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
87
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 89
}

90
void blk_freeze_queue_start(struct request_queue *q)
91
{
92
	int freeze_depth;
93

94 95
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
96
		percpu_ref_kill(&q->q_usage_counter);
97
		blk_mq_run_hw_queues(q, false);
98
	}
99
}
100
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101

102
void blk_mq_freeze_queue_wait(struct request_queue *q)
103
{
104
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105
}
106
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107

108 109 110 111 112 113 114 115
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116

117 118 119 120
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
121
void blk_freeze_queue(struct request_queue *q)
122
{
123 124 125 126 127 128 129
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
130
	blk_freeze_queue_start(q);
131 132
	blk_mq_freeze_queue_wait(q);
}
133 134 135 136 137 138 139 140 141

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
142
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143

144
void blk_mq_unfreeze_queue(struct request_queue *q)
145
{
146
	int freeze_depth;
147

148 149 150
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
151
		percpu_ref_reinit(&q->q_usage_counter);
152
		wake_up_all(&q->mq_freeze_wq);
153
	}
154
}
155
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

171
	__blk_mq_stop_hw_queues(q, true);
172 173 174 175 176 177 178 179 180 181 182 183

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
	blk_mq_start_stopped_hw_queues(q, true);
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

197 198 199 200 201 202 203 204
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
205 206 207 208 209 210 211

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
212 213
}

214 215 216 217 218 219
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

220 221
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
222
{
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

239 240
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
241 242
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
243
	rq->cmd_flags = op;
244
	if (blk_queue_io_stat(data->q))
245
		rq->rq_flags |= RQF_IO_STAT;
246 247 248 249 250 251
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
252
	rq->start_time = jiffies;
253 254
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
255
	set_start_time_ns(rq);
256 257 258 259 260 261 262 263 264 265 266
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
267 268
	rq->timeout = 0;

269 270 271 272
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

273 274
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
275 276
}

277 278 279 280 281 282
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
283
	unsigned int tag;
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
299 300
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
301 302
	}

303 304
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
305 306
		blk_queue_exit(q);
		return NULL;
307 308
	}

309
	rq = blk_mq_rq_ctx_init(data, tag, op);
310 311
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
312
		if (e && e->type->ops.mq.prepare_request) {
313 314 315
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

316 317
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
318
		}
319 320 321
	}
	data->hctx->queued++;
	return rq;
322 323
}

324 325
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
326
{
327
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
328
	struct request *rq;
329
	int ret;
330

331
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
332 333
	if (ret)
		return ERR_PTR(ret);
334

335
	rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
336

337 338 339 340
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
341
		return ERR_PTR(-EWOULDBLOCK);
342 343 344 345

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
346 347
	return rq;
}
348
EXPORT_SYMBOL(blk_mq_alloc_request);
349

M
Ming Lin 已提交
350 351 352
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
353
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
354
	struct request *rq;
355
	unsigned int cpu;
M
Ming Lin 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

374 375 376 377
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
378 379 380 381
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
382
	}
383 384
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
385

386
	rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
387 388

	blk_queue_exit(q);
389 390 391 392 393

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
394 395 396
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

397
void blk_mq_free_request(struct request *rq)
398 399
{
	struct request_queue *q = rq->q;
400 401 402 403 404
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

405
	if (rq->rq_flags & RQF_ELVPRIV) {
406 407 408 409 410 411 412
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
413

414
	ctx->rq_completed[rq_is_sync(rq)]++;
415
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
416
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
417 418

	wbt_done(q->rq_wb, &rq->issue_stat);
419
	rq->rq_flags = 0;
420

421
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
423 424 425
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
426
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
427
	blk_mq_sched_restart(hctx);
428
	blk_queue_exit(q);
429
}
J
Jens Axboe 已提交
430
EXPORT_SYMBOL_GPL(blk_mq_free_request);
431

432
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
433
{
M
Ming Lei 已提交
434 435
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
436
	if (rq->end_io) {
J
Jens Axboe 已提交
437
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
438
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
439 440 441
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
442
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
443
	}
444
}
445
EXPORT_SYMBOL(__blk_mq_end_request);
446

447
void blk_mq_end_request(struct request *rq, blk_status_t error)
448 449 450
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
451
	__blk_mq_end_request(rq, error);
452
}
453
EXPORT_SYMBOL(blk_mq_end_request);
454

455
static void __blk_mq_complete_request_remote(void *data)
456
{
457
	struct request *rq = data;
458

459
	rq->q->softirq_done_fn(rq);
460 461
}

462
static void __blk_mq_complete_request(struct request *rq)
463 464
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
465
	bool shared = false;
466 467
	int cpu;

468 469 470 471 472 473 474
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
475
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
476 477 478
		rq->q->softirq_done_fn(rq);
		return;
	}
479 480

	cpu = get_cpu();
C
Christoph Hellwig 已提交
481 482 483 484
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
485
		rq->csd.func = __blk_mq_complete_request_remote;
486 487
		rq->csd.info = rq;
		rq->csd.flags = 0;
488
		smp_call_function_single_async(ctx->cpu, &rq->csd);
489
	} else {
490
		rq->q->softirq_done_fn(rq);
491
	}
492 493
	put_cpu();
}
494 495 496 497 498 499 500 501 502

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
503
void blk_mq_complete_request(struct request *rq)
504
{
505 506 507
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
508
		return;
509
	if (!blk_mark_rq_complete(rq))
510
		__blk_mq_complete_request(rq);
511 512
}
EXPORT_SYMBOL(blk_mq_complete_request);
513

514 515 516 517 518 519
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

520
void blk_mq_start_request(struct request *rq)
521 522 523
{
	struct request_queue *q = rq->q;

524 525
	blk_mq_sched_started_request(rq);

526 527
	trace_block_rq_issue(q, rq);

528
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
529
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
530
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
531
		wbt_issue(q->rq_wb, &rq->issue_stat);
532 533
	}

534
	blk_add_timer(rq);
535

536 537 538 539 540 541
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

542 543 544 545 546 547
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
548 549 550 551
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
552 553 554 555 556 557 558 559 560

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
561
}
562
EXPORT_SYMBOL(blk_mq_start_request);
563

564 565
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
566
 * flag isn't set yet, so there may be race with timeout handler,
567 568 569 570 571 572
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
573
static void __blk_mq_requeue_request(struct request *rq)
574 575 576 577
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
578
	wbt_requeue(q->rq_wb, &rq->issue_stat);
579
	blk_mq_sched_requeue_request(rq);
580

581 582 583 584
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
585 586
}

587
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
588 589 590 591
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
592
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
593 594 595
}
EXPORT_SYMBOL(blk_mq_requeue_request);

596 597 598
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
599
		container_of(work, struct request_queue, requeue_work.work);
600 601 602 603 604 605 606 607 608
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
609
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
610 611
			continue;

612
		rq->rq_flags &= ~RQF_SOFTBARRIER;
613
		list_del_init(&rq->queuelist);
614
		blk_mq_sched_insert_request(rq, true, false, false, true);
615 616 617 618 619
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
620
		blk_mq_sched_insert_request(rq, false, false, false, true);
621 622
	}

623
	blk_mq_run_hw_queues(q, false);
624 625
}

626 627
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
628 629 630 631 632 633 634 635
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
636
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
637 638 639

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
640
		rq->rq_flags |= RQF_SOFTBARRIER;
641 642 643 644 645
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
646 647 648

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
649 650 651 652 653
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
654
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
655 656 657
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

658 659 660 661 662 663 664 665
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

666 667
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
668 669
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
670
		return tags->rqs[tag];
671
	}
672 673

	return NULL;
674 675 676
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

677
struct blk_mq_timeout_data {
678 679
	unsigned long next;
	unsigned int next_set;
680 681
};

682
void blk_mq_rq_timed_out(struct request *req, bool reserved)
683
{
J
Jens Axboe 已提交
684
	const struct blk_mq_ops *ops = req->q->mq_ops;
685
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
686 687 688 689 690 691 692

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
693
	 * both flags will get cleared. So check here again, and ignore
694 695
	 * a timeout event with a request that isn't active.
	 */
696 697
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
698

699
	if (ops->timeout)
700
		ret = ops->timeout(req, reserved);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
716
}
717

718 719 720 721
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
722

723
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
724
		return;
725

726 727 728 729 730 731 732 733 734 735 736 737 738
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
739 740
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
741
			blk_mq_rq_timed_out(rq, reserved);
742 743 744 745
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
746 747
}

748
static void blk_mq_timeout_work(struct work_struct *work)
749
{
750 751
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
752 753 754 755 756
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
757

758 759 760 761 762 763 764 765 766
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
767
	 * blk_freeze_queue_start, and the moment the last request is
768 769 770 771
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
772 773
		return;

774
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
775

776 777 778
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
779
	} else {
780 781
		struct blk_mq_hw_ctx *hctx;

782 783 784 785 786
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
787
	}
788
	blk_queue_exit(q);
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

809 810 811 812
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
813
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
814
{
815 816 817 818
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
819

820
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
821
}
822
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
823

824 825 826 827
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
828

829
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
830 831
}

832 833
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
834 835 836 837 838 839 840
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

841 842
	might_sleep_if(wait);

843 844
	if (rq->tag != -1)
		goto done;
845

846 847 848
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

849 850
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
851 852 853 854
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
855 856 857
		data.hctx->tags->rqs[rq->tag] = rq;
	}

858 859 860 861
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
862 863
}

864 865
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
866 867 868 869 870 871 872 873 874 875
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

958
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
959
{
960
	struct blk_mq_hw_ctx *hctx;
961
	struct request *rq;
962
	int errors, queued;
963

964 965 966
	if (list_empty(list))
		return false;

967 968 969
	/*
	 * Now process all the entries, sending them to the driver.
	 */
970
	errors = queued = 0;
971
	do {
972
		struct blk_mq_queue_data bd;
973
		blk_status_t ret;
974

975
		rq = list_first_entry(list, struct request, queuelist);
976 977 978
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
979 980

			/*
981 982
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
983
			 */
984 985 986 987 988 989 990 991 992
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
993
				break;
994
		}
995

996 997
		list_del_init(&rq->queuelist);

998
		bd.rq = rq;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1012 1013

		ret = q->mq_ops->queue_rq(hctx, &bd);
1014
		if (ret == BLK_STS_RESOURCE) {
1015
			blk_mq_put_driver_tag_hctx(hctx, rq);
1016
			list_add(&rq->queuelist, list);
1017
			__blk_mq_requeue_request(rq);
1018
			break;
1019 1020 1021
		}

		if (unlikely(ret != BLK_STS_OK)) {
1022
			errors++;
1023
			blk_mq_end_request(rq, BLK_STS_IOERR);
1024
			continue;
1025 1026
		}

1027
		queued++;
1028
	} while (!list_empty(list));
1029

1030
	hctx->dispatched[queued_to_index(queued)]++;
1031 1032 1033 1034 1035

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1036
	if (!list_empty(list)) {
1037
		/*
1038 1039
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1040 1041 1042 1043
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1044
		spin_lock(&hctx->lock);
1045
		list_splice_init(list, &hctx->dispatch);
1046
		spin_unlock(&hctx->lock);
1047

1048
		/*
1049 1050 1051
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1052
		 *
1053 1054 1055 1056
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1057
		 *
1058 1059 1060 1061 1062 1063 1064
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1065
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1066
		 *   and dm-rq.
1067
		 */
1068 1069
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1070
			blk_mq_run_hw_queue(hctx, true);
1071
	}
1072

1073
	return (queued + errors) != 0;
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1085
		blk_mq_sched_dispatch_requests(hctx);
1086 1087
		rcu_read_unlock();
	} else {
1088 1089
		might_sleep();

1090
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1091
		blk_mq_sched_dispatch_requests(hctx);
1092 1093 1094 1095
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1096 1097 1098 1099 1100 1101 1102 1103
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1104 1105
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1106 1107

	if (--hctx->next_cpu_batch <= 0) {
1108
		int next_cpu;
1109 1110 1111 1112 1113 1114 1115 1116 1117

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1118
	return hctx->next_cpu;
1119 1120
}

1121 1122
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1123
{
1124 1125
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1126 1127
		return;

1128
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1129 1130
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1131
			__blk_mq_run_hw_queue(hctx);
1132
			put_cpu();
1133 1134
			return;
		}
1135

1136
		put_cpu();
1137
	}
1138

1139 1140 1141
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1153
}
O
Omar Sandoval 已提交
1154
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1155

1156
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1157 1158 1159 1160 1161
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1162
		if (!blk_mq_hctx_has_pending(hctx) ||
1163
		    blk_mq_hctx_stopped(hctx))
1164 1165
			continue;

1166
		blk_mq_run_hw_queue(hctx, async);
1167 1168
	}
}
1169
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1191
static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1192
{
1193 1194 1195 1196 1197
	if (sync)
		cancel_delayed_work_sync(&hctx->run_work);
	else
		cancel_delayed_work(&hctx->run_work);

1198 1199
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
1200 1201 1202 1203 1204

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	__blk_mq_stop_hw_queue(hctx, false);
}
1205 1206
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1207
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1208 1209 1210 1211 1212
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
1213 1214 1215 1216 1217 1218
		__blk_mq_stop_hw_queue(hctx, sync);
}

void blk_mq_stop_hw_queues(struct request_queue *q)
{
	__blk_mq_stop_hw_queues(q, false);
1219 1220 1221
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1222 1223 1224
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1225

1226
	blk_mq_run_hw_queue(hctx, false);
1227 1228 1229
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1250
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1251 1252 1253 1254
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1255 1256
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1257 1258 1259
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1260
static void blk_mq_run_work_fn(struct work_struct *work)
1261 1262 1263
{
	struct blk_mq_hw_ctx *hctx;

1264
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1265

1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1274

1275 1276 1277
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1278 1279 1280 1281

	__blk_mq_run_hw_queue(hctx);
}

1282 1283 1284

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1285 1286
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1287

1288 1289 1290 1291 1292
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1293
	blk_mq_stop_hw_queue(hctx);
1294 1295 1296 1297
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1298 1299 1300
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1301 1302 1303
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1304
{
J
Jens Axboe 已提交
1305 1306
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1307 1308
	trace_block_rq_insert(hctx->queue, rq);

1309 1310 1311 1312
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1313
}
1314

1315 1316
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1317 1318 1319
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1320
	__blk_mq_insert_req_list(hctx, rq, at_head);
1321 1322 1323
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1324 1325
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1337
		BUG_ON(rq->mq_ctx != ctx);
1338
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1339
		__blk_mq_insert_req_list(hctx, rq, false);
1340
	}
1341
	blk_mq_hctx_mark_pending(hctx, ctx);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1378 1379 1380 1381
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1398 1399 1400
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1401 1402 1403 1404 1405
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1406
	blk_init_request_from_bio(rq, bio);
1407

1408
	blk_account_io_start(rq, true);
1409 1410
}

1411 1412 1413 1414 1415 1416
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1417 1418 1419 1420 1421 1422 1423
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1424
}
1425

1426 1427
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1428 1429 1430 1431
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1432 1433
}

M
Ming Lei 已提交
1434 1435 1436
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1437 1438 1439 1440
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1441
		.last = true,
1442
	};
1443
	blk_qc_t new_cookie;
1444
	blk_status_t ret;
M
Ming Lei 已提交
1445 1446 1447 1448 1449 1450
	bool run_queue = true;

	if (blk_mq_hctx_stopped(hctx)) {
		run_queue = false;
		goto insert;
	}
1451

1452
	if (q->elevator)
1453 1454
		goto insert;

M
Ming Lei 已提交
1455
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1456 1457 1458 1459
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1460 1461 1462 1463 1464 1465
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1466 1467
	switch (ret) {
	case BLK_STS_OK:
1468
		*cookie = new_cookie;
1469
		return;
1470 1471 1472 1473
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1474
		*cookie = BLK_QC_T_NONE;
1475
		blk_mq_end_request(rq, ret);
1476
		return;
1477
	}
1478

1479
insert:
M
Ming Lei 已提交
1480
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1481 1482
}

1483 1484 1485 1486 1487
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1488
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1489 1490
		rcu_read_unlock();
	} else {
1491 1492 1493 1494 1495
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
M
Ming Lei 已提交
1496
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1497 1498 1499 1500
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1501
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1502
{
1503
	const int is_sync = op_is_sync(bio->bi_opf);
1504
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1505
	struct blk_mq_alloc_data data = { .flags = 0 };
1506
	struct request *rq;
1507
	unsigned int request_count = 0;
1508
	struct blk_plug *plug;
1509
	struct request *same_queue_rq = NULL;
1510
	blk_qc_t cookie;
J
Jens Axboe 已提交
1511
	unsigned int wb_acct;
1512 1513 1514

	blk_queue_bounce(q, &bio);

1515
	blk_queue_split(q, &bio);
1516

1517
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1518
		bio_io_error(bio);
1519
		return BLK_QC_T_NONE;
1520 1521
	}

1522 1523 1524
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1525

1526 1527 1528
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1529 1530
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1531 1532
	trace_block_getrq(q, bio, bio->bi_opf);

1533
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1534 1535
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1536
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1537 1538 1539
	}

	wbt_track(&rq->issue_stat, wb_acct);
1540

1541
	cookie = request_to_qc_t(data.hctx, rq);
1542

1543
	plug = current->plug;
1544
	if (unlikely(is_flush_fua)) {
1545
		blk_mq_put_ctx(data.ctx);
1546
		blk_mq_bio_to_request(rq, bio);
1547 1548 1549
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1550
		} else {
1551 1552
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1553
		}
1554
	} else if (plug && q->nr_hw_queues == 1) {
1555 1556
		struct request *last = NULL;

1557
		blk_mq_put_ctx(data.ctx);
1558
		blk_mq_bio_to_request(rq, bio);
1559 1560 1561 1562 1563 1564 1565

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1566 1567 1568
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1569
		if (!request_count)
1570
			trace_block_plug(q);
1571 1572
		else
			last = list_entry_rq(plug->mq_list.prev);
1573

1574 1575
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1576 1577
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1578
		}
1579

1580
		list_add_tail(&rq->queuelist, &plug->mq_list);
1581
	} else if (plug && !blk_queue_nomerges(q)) {
1582
		blk_mq_bio_to_request(rq, bio);
1583 1584

		/*
1585
		 * We do limited plugging. If the bio can be merged, do that.
1586 1587
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1588 1589
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1590
		 */
1591 1592 1593 1594 1595 1596
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1597 1598
		blk_mq_put_ctx(data.ctx);

1599 1600 1601
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1602 1603
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1604
		}
1605
	} else if (q->nr_hw_queues > 1 && is_sync) {
1606
		blk_mq_put_ctx(data.ctx);
1607 1608
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1609
	} else if (q->elevator) {
1610
		blk_mq_put_ctx(data.ctx);
1611
		blk_mq_bio_to_request(rq, bio);
1612
		blk_mq_sched_insert_request(rq, false, true, true, true);
1613
	} else {
1614
		blk_mq_put_ctx(data.ctx);
1615 1616
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1617
		blk_mq_run_hw_queue(data.hctx, true);
1618
	}
1619

1620
	return cookie;
1621 1622
}

1623 1624
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1625
{
1626
	struct page *page;
1627

1628
	if (tags->rqs && set->ops->exit_request) {
1629
		int i;
1630

1631
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1632 1633 1634
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1635
				continue;
1636
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1637
			tags->static_rqs[i] = NULL;
1638
		}
1639 1640
	}

1641 1642
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1643
		list_del_init(&page->lru);
1644 1645 1646 1647 1648
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1649 1650
		__free_pages(page, page->private);
	}
1651
}
1652

1653 1654
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1655
	kfree(tags->rqs);
1656
	tags->rqs = NULL;
J
Jens Axboe 已提交
1657 1658
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1659

1660
	blk_mq_free_tags(tags);
1661 1662
}

1663 1664 1665 1666
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1667
{
1668
	struct blk_mq_tags *tags;
1669
	int node;
1670

1671 1672 1673 1674 1675
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1676
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1677 1678
	if (!tags)
		return NULL;
1679

1680
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1681
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1682
				 node);
1683 1684 1685 1686
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1687

J
Jens Axboe 已提交
1688 1689
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1690
				 node);
J
Jens Axboe 已提交
1691 1692 1693 1694 1695 1696
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1710 1711 1712 1713 1714
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1715 1716 1717

	INIT_LIST_HEAD(&tags->page_list);

1718 1719 1720 1721
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1722
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1723
				cache_line_size());
1724
	left = rq_size * depth;
1725

1726
	for (i = 0; i < depth; ) {
1727 1728 1729 1730 1731
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1732
		while (this_order && left < order_to_size(this_order - 1))
1733 1734 1735
			this_order--;

		do {
1736
			page = alloc_pages_node(node,
1737
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1738
				this_order);
1739 1740 1741 1742 1743 1744 1745 1746 1747
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1748
			goto fail;
1749 1750

		page->private = this_order;
1751
		list_add_tail(&page->lru, &tags->page_list);
1752 1753

		p = page_address(page);
1754 1755 1756 1757
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1758
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1759
		entries_per_page = order_to_size(this_order) / rq_size;
1760
		to_do = min(entries_per_page, depth - i);
1761 1762
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1763 1764 1765
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1766
			if (set->ops->init_request) {
1767
				if (set->ops->init_request(set, rq, hctx_idx,
1768
						node)) {
J
Jens Axboe 已提交
1769
					tags->static_rqs[i] = NULL;
1770
					goto fail;
1771
				}
1772 1773
			}

1774 1775 1776 1777
			p += rq_size;
			i++;
		}
	}
1778
	return 0;
1779

1780
fail:
1781 1782
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1783 1784
}

J
Jens Axboe 已提交
1785 1786 1787 1788 1789
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1790
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1791
{
1792
	struct blk_mq_hw_ctx *hctx;
1793 1794 1795
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1796
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1797
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1798 1799 1800 1801 1802 1803 1804 1805 1806

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1807
		return 0;
1808

J
Jens Axboe 已提交
1809 1810 1811
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1812 1813

	blk_mq_run_hw_queue(hctx, true);
1814
	return 0;
1815 1816
}

1817
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1818
{
1819 1820
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1821 1822
}

1823
/* hctx->ctxs will be freed in queue's release handler */
1824 1825 1826 1827
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1828 1829
	blk_mq_debugfs_unregister_hctx(hctx);

1830 1831
	blk_mq_tag_idle(hctx);

1832
	if (set->ops->exit_request)
1833
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1834

1835 1836
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1837 1838 1839
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1840 1841 1842
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1843
	blk_mq_remove_cpuhp(hctx);
1844
	blk_free_flush_queue(hctx->fq);
1845
	sbitmap_free(&hctx->ctx_map);
1846 1847
}

M
Ming Lei 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1857
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1858 1859 1860
	}
}

1861 1862 1863
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1864
{
1865 1866 1867 1868 1869 1870
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1871
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1872 1873 1874 1875
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1876
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1877

1878
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1879 1880

	hctx->tags = set->tags[hctx_idx];
1881 1882

	/*
1883 1884
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1885
	 */
1886 1887 1888 1889
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1890

1891 1892
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1893
		goto free_ctxs;
1894

1895
	hctx->nr_ctx = 0;
1896

1897 1898 1899
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1900

1901 1902 1903
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1904 1905
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1906
		goto sched_exit_hctx;
1907

1908
	if (set->ops->init_request &&
1909 1910
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1911
		goto free_fq;
1912

1913 1914 1915
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1916 1917
	blk_mq_debugfs_register_hctx(q, hctx);

1918
	return 0;
1919

1920 1921
 free_fq:
	kfree(hctx->fq);
1922 1923
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1924 1925 1926
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1927
 free_bitmap:
1928
	sbitmap_free(&hctx->ctx_map);
1929 1930 1931
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1932
	blk_mq_remove_cpuhp(hctx);
1933 1934
	return -1;
}
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1954
		hctx = blk_mq_map_queue(q, i);
1955

1956 1957 1958 1959 1960
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1961
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1962 1963 1964
	}
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1987 1988 1989 1990 1991
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1992 1993
}

1994 1995
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1996
{
1997
	unsigned int i, hctx_idx;
1998 1999
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2000
	struct blk_mq_tag_set *set = q->tag_set;
2001

2002 2003 2004 2005 2006
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2007
	queue_for_each_hw_ctx(q, hctx, i) {
2008
		cpumask_clear(hctx->cpumask);
2009 2010 2011 2012 2013 2014
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2015
	for_each_possible_cpu(i) {
2016
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2017
		if (!cpumask_test_cpu(i, online_mask))
2018 2019
			continue;

2020 2021
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2022 2023
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2024 2025 2026 2027 2028 2029
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2030
			q->mq_map[i] = 0;
2031 2032
		}

2033
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2034
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2035

2036
		cpumask_set_cpu(i, hctx->cpumask);
2037 2038 2039
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2040

2041 2042
	mutex_unlock(&q->sysfs_lock);

2043
	queue_for_each_hw_ctx(q, hctx, i) {
2044
		/*
2045 2046
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2047 2048
		 */
		if (!hctx->nr_ctx) {
2049 2050 2051 2052
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2053 2054 2055
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2056
			hctx->tags = NULL;
2057 2058 2059
			continue;
		}

M
Ming Lei 已提交
2060 2061 2062
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2063 2064 2065 2066 2067
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2068
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2069

2070 2071 2072
		/*
		 * Initialize batch roundrobin counts
		 */
2073 2074 2075
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2076 2077
}

2078
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2079 2080 2081 2082
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2094

2095 2096
	lockdep_assert_held(&set->tag_list_lock);

2097 2098
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2099
		queue_set_hctx_shared(q, shared);
2100 2101 2102 2103 2104 2105 2106 2107 2108
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2109 2110
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2111 2112 2113 2114 2115 2116
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2117
	mutex_unlock(&set->tag_list_lock);
2118 2119

	synchronize_rcu();
2120 2121 2122 2123 2124 2125 2126 2127
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2128 2129 2130 2131 2132 2133 2134 2135 2136

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2137
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2138

2139 2140 2141
	mutex_unlock(&set->tag_list_lock);
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2154 2155 2156
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2157
		kobject_put(&hctx->kobj);
2158
	}
2159

2160 2161
	q->mq_map = NULL;

2162 2163
	kfree(q->queue_hw_ctx);

2164 2165 2166 2167 2168 2169
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2170 2171 2172
	free_percpu(q->queue_ctx);
}

2173
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2189 2190
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2191
{
K
Keith Busch 已提交
2192 2193
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2194

K
Keith Busch 已提交
2195
	blk_mq_sysfs_unregister(q);
2196
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2197
		int node;
2198

K
Keith Busch 已提交
2199 2200 2201 2202
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2203 2204
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2205
		if (!hctxs[i])
K
Keith Busch 已提交
2206
			break;
2207

2208
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2209 2210 2211 2212 2213
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2214

2215
		atomic_set(&hctxs[i]->nr_active, 0);
2216
		hctxs[i]->numa_node = node;
2217
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2218 2219 2220 2221 2222 2223 2224 2225

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2226
	}
K
Keith Busch 已提交
2227 2228 2229 2230
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2231 2232
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2246 2247 2248
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2249
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2250 2251
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2252 2253 2254
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2255 2256
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2257
		goto err_exit;
K
Keith Busch 已提交
2258

2259 2260 2261
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2262 2263 2264 2265 2266
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2267
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2268 2269 2270 2271

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2272

2273
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2274
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2275 2276 2277

	q->nr_queues = nr_cpu_ids;

2278
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2279

2280 2281 2282
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2283 2284
	q->sg_reserved_size = INT_MAX;

2285
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2286 2287 2288
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2289
	blk_queue_make_request(q, blk_mq_make_request);
2290

2291 2292 2293 2294 2295
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2296 2297 2298 2299 2300
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2301 2302
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2303

2304
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2305

2306
	get_online_cpus();
2307
	mutex_lock(&all_q_mutex);
2308

2309
	list_add_tail(&q->all_q_node, &all_q_list);
2310
	blk_mq_add_queue_tag_set(set, q);
2311
	blk_mq_map_swqueue(q, cpu_online_mask);
2312

2313
	mutex_unlock(&all_q_mutex);
2314
	put_online_cpus();
2315

2316 2317 2318 2319 2320 2321 2322 2323
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2324
	return q;
2325

2326
err_hctxs:
K
Keith Busch 已提交
2327
	kfree(q->queue_hw_ctx);
2328
err_percpu:
K
Keith Busch 已提交
2329
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2330 2331
err_exit:
	q->mq_ops = NULL;
2332 2333
	return ERR_PTR(-ENOMEM);
}
2334
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2335 2336 2337

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2338
	struct blk_mq_tag_set	*set = q->tag_set;
2339

2340 2341 2342 2343
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2344 2345
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2346
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2347 2348 2349
}

/* Basically redo blk_mq_init_queue with queue frozen */
2350 2351
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2352
{
2353
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2354

2355
	blk_mq_debugfs_unregister_hctxs(q);
2356 2357
	blk_mq_sysfs_unregister(q);

2358 2359 2360 2361 2362 2363
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2364
	blk_mq_map_swqueue(q, online_mask);
2365

2366
	blk_mq_sysfs_register(q);
2367
	blk_mq_debugfs_register_hctxs(q);
2368 2369
}

2370 2371 2372 2373 2374 2375 2376 2377
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2378 2379 2380 2381
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2382 2383 2384 2385 2386 2387 2388 2389
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2390
		blk_freeze_queue_start(q);
2391
	list_for_each_entry(q, &all_q_list, all_q_node)
2392 2393
		blk_mq_freeze_queue_wait(q);

2394
	list_for_each_entry(q, &all_q_list, all_q_node)
2395
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2396 2397 2398 2399

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2400
	mutex_unlock(&all_q_mutex);
2401 2402 2403 2404
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2405
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2421 2422 2423 2424
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2425 2426 2427 2428 2429 2430 2431
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2432 2433
}

2434 2435 2436 2437
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2438 2439
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2440 2441 2442 2443 2444 2445
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2446
		blk_mq_free_rq_map(set->tags[i]);
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2486 2487 2488 2489 2490 2491 2492 2493
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2494 2495 2496 2497 2498 2499
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2500 2501
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2502 2503
	int ret;

B
Bart Van Assche 已提交
2504 2505
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2506 2507
	if (!set->nr_hw_queues)
		return -EINVAL;
2508
	if (!set->queue_depth)
2509 2510 2511 2512
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2513
	if (!set->ops->queue_rq)
2514 2515
		return -EINVAL;

2516 2517 2518 2519 2520
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2521

2522 2523 2524 2525 2526 2527 2528 2529 2530
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2531 2532 2533 2534 2535
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2536

K
Keith Busch 已提交
2537
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2538 2539
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2540
		return -ENOMEM;
2541

2542 2543 2544
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2545 2546 2547
	if (!set->mq_map)
		goto out_free_tags;

2548
	ret = blk_mq_update_queue_map(set);
2549 2550 2551 2552 2553
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2554
		goto out_free_mq_map;
2555

2556 2557 2558
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2559
	return 0;
2560 2561 2562 2563 2564

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2565 2566
	kfree(set->tags);
	set->tags = NULL;
2567
	return ret;
2568 2569 2570 2571 2572 2573 2574
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2575 2576
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2577

2578 2579 2580
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2581
	kfree(set->tags);
2582
	set->tags = NULL;
2583 2584 2585
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2586 2587 2588 2589 2590 2591
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2592
	if (!set)
2593 2594
		return -EINVAL;

2595 2596
	blk_mq_freeze_queue(q);

2597 2598
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2599 2600
		if (!hctx->tags)
			continue;
2601 2602 2603 2604
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2605 2606 2607 2608 2609 2610 2611 2612
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2613 2614 2615 2616 2617 2618 2619
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2620 2621
	blk_mq_unfreeze_queue(q);

2622 2623 2624
	return ret;
}

2625 2626
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2627 2628 2629
{
	struct request_queue *q;

2630 2631
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2641
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2642 2643 2644 2645 2646 2647 2648 2649
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2650 2651 2652 2653 2654 2655 2656

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2657 2658
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2685
	int bucket;
2686

2687 2688 2689 2690
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2691 2692
}

2693 2694 2695 2696 2697
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2698
	int bucket;
2699 2700 2701 2702 2703

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2704
	if (!blk_poll_stats_enable(q))
2705 2706 2707 2708 2709 2710 2711 2712
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2713 2714
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2715
	 */
2716 2717 2718 2719 2720 2721
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2722 2723 2724 2725

	return ret;
}

2726
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2727
				     struct blk_mq_hw_ctx *hctx,
2728 2729 2730 2731
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2732
	unsigned int nsecs;
2733 2734
	ktime_t kt;

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2753 2754 2755 2756 2757 2758 2759 2760
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2761
	kt = nsecs;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2784 2785 2786 2787 2788
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2789 2790 2791 2792 2793 2794 2795
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2796
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2797 2798
		return true;

J
Jens Axboe 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2842 2843
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2844
	else {
2845
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2846 2847 2848 2849 2850 2851 2852 2853 2854
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2855 2856 2857 2858 2859

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2870 2871
static int __init blk_mq_init(void)
{
2872 2873
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2874

2875 2876 2877
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2878 2879 2880
	return 0;
}
subsys_initcall(blk_mq_init);