blk-mq.c 58.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 163
			       struct request *rq, int op,
			       unsigned int op_flags)
164
{
165
	if (blk_queue_io_stat(q))
166
		op_flags |= REQ_IO_STAT;
167

168 169 170
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
171
	rq->mq_ctx = ctx;
172
	req_set_op_attrs(rq, op, op_flags);
173 174 175 176 177 178
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
179
	rq->start_time = jiffies;
180 181
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
182
	set_start_time_ns(rq);
183 184 185 186 187 188 189 190 191 192
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

193 194
	rq->cmd = rq->__cmd;

195 196 197 198 199 200
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
201 202
	rq->timeout = 0;

203 204 205 206
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

207
	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
208 209
}

210
static struct request *
211
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
212 213 214 215
{
	struct request *rq;
	unsigned int tag;

216
	tag = blk_mq_get_tag(data);
217
	if (tag != BLK_MQ_TAG_FAIL) {
218
		rq = data->hctx->tags->rqs[tag];
219

220
		if (blk_mq_tag_busy(data->hctx)) {
221
			rq->cmd_flags = REQ_MQ_INFLIGHT;
222
			atomic_inc(&data->hctx->nr_active);
223 224 225
		}

		rq->tag = tag;
226
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
227 228 229 230 231 232
		return rq;
	}

	return NULL;
}

233 234
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
235
{
236 237
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
238
	struct request *rq;
239
	struct blk_mq_alloc_data alloc_data;
240
	int ret;
241

242
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
243 244
	if (ret)
		return ERR_PTR(ret);
245

246 247
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
248
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
249

250
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
251
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
252 253 254 255 256
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258
		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
259
		ctx = alloc_data.ctx;
260 261
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
262
	if (!rq) {
263
		blk_queue_exit(q);
264
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
265
	}
266 267 268 269

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
270 271
	return rq;
}
272
EXPORT_SYMBOL(blk_mq_alloc_request);
273

M
Ming Lin 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

	hctx = q->queue_hw_ctx[hctx_idx];
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
	if (!rq) {
		blk_queue_exit(q);
		return ERR_PTR(-EWOULDBLOCK);
	}

	return rq;
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

313 314 315 316 317 318
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

319 320
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
321
	rq->cmd_flags = 0;
322

323
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
324
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
325
	blk_queue_exit(q);
326 327
}

328
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
329 330 331 332 333
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
334 335 336 337 338 339 340 341 342 343 344

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
345
}
J
Jens Axboe 已提交
346
EXPORT_SYMBOL_GPL(blk_mq_free_request);
347

348
inline void __blk_mq_end_request(struct request *rq, int error)
349
{
M
Ming Lei 已提交
350 351
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
352
	if (rq->end_io) {
353
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
354 355 356
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
357
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
358
	}
359
}
360
EXPORT_SYMBOL(__blk_mq_end_request);
361

362
void blk_mq_end_request(struct request *rq, int error)
363 364 365
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
366
	__blk_mq_end_request(rq, error);
367
}
368
EXPORT_SYMBOL(blk_mq_end_request);
369

370
static void __blk_mq_complete_request_remote(void *data)
371
{
372
	struct request *rq = data;
373

374
	rq->q->softirq_done_fn(rq);
375 376
}

377
static void blk_mq_ipi_complete_request(struct request *rq)
378 379
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
380
	bool shared = false;
381 382
	int cpu;

C
Christoph Hellwig 已提交
383
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
384 385 386
		rq->q->softirq_done_fn(rq);
		return;
	}
387 388

	cpu = get_cpu();
C
Christoph Hellwig 已提交
389 390 391 392
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
393
		rq->csd.func = __blk_mq_complete_request_remote;
394 395
		rq->csd.info = rq;
		rq->csd.flags = 0;
396
		smp_call_function_single_async(ctx->cpu, &rq->csd);
397
	} else {
398
		rq->q->softirq_done_fn(rq);
399
	}
400 401
	put_cpu();
}
402

403
static void __blk_mq_complete_request(struct request *rq)
404 405 406 407
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
408
		blk_mq_end_request(rq, rq->errors);
409 410 411 412
	else
		blk_mq_ipi_complete_request(rq);
}

413 414 415 416 417 418 419 420
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
421
void blk_mq_complete_request(struct request *rq, int error)
422
{
423 424 425
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
426
		return;
427 428
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
429
		__blk_mq_complete_request(rq);
430
	}
431 432
}
EXPORT_SYMBOL(blk_mq_complete_request);
433

434 435 436 437 438 439
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

440
void blk_mq_start_request(struct request *rq)
441 442 443 444 445
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
446
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
447 448
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
449

450
	blk_add_timer(rq);
451

452 453 454 455 456 457
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

458 459 460 461 462 463
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
464 465 466 467
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
468 469 470 471 472 473 474 475 476

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
477
}
478
EXPORT_SYMBOL(blk_mq_start_request);
479

480
static void __blk_mq_requeue_request(struct request *rq)
481 482 483 484
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
485

486 487 488 489
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
490 491
}

492 493 494 495 496
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
497
	blk_mq_add_to_requeue_list(rq, true);
498 499 500
}
EXPORT_SYMBOL(blk_mq_requeue_request);

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

528 529 530 531 532
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

557 558 559 560 561 562
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

563 564 565 566 567 568
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

589 590
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
591 592 593 594
	if (tag < tags->nr_tags)
		return tags->rqs[tag];

	return NULL;
595 596 597
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

598
struct blk_mq_timeout_data {
599 600
	unsigned long next;
	unsigned int next_set;
601 602
};

603
void blk_mq_rq_timed_out(struct request *req, bool reserved)
604
{
605 606
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
607 608 609 610 611 612 613 614 615 616

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
617 618
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
619

620
	if (ops->timeout)
621
		ret = ops->timeout(req, reserved);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
637
}
638

639 640 641 642
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
643

644 645 646 647 648
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
649 650 651 652
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
653
		return;
654
	}
655

656 657
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
658
			blk_mq_rq_timed_out(rq, reserved);
659 660 661 662
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
663 664
}

665
static void blk_mq_timeout_work(struct work_struct *work)
666
{
667 668
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
669 670 671 672 673
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
674

675 676 677 678 679 680 681 682 683 684 685 686 687 688
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
689 690
		return;

691
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
692

693 694 695
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
696
	} else {
697 698
		struct blk_mq_hw_ctx *hctx;

699 700 701 702 703
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
704
	}
705
	blk_queue_exit(q);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

747 748 749 750 751 752 753 754 755
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

756
	for (i = 0; i < hctx->ctx_map.size; i++) {
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

781 782 783 784 785 786 787 788 789 790 791
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
792 793
	LIST_HEAD(driver_list);
	struct list_head *dptr;
794
	int queued;
795

796
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
797 798
		return;

799 800 801
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

802 803 804 805 806
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
807
	flush_busy_ctxs(hctx, &rq_list);
808 809 810 811 812 813 814 815 816 817 818 819

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

820 821 822 823 824 825
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

826 827 828
	/*
	 * Now process all the entries, sending them to the driver.
	 */
829
	queued = 0;
830
	while (!list_empty(&rq_list)) {
831
		struct blk_mq_queue_data bd;
832 833 834 835 836
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

837 838 839 840 841
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
842 843 844
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
845
			break;
846 847
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
848
			__blk_mq_requeue_request(rq);
849 850 851 852
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
853
			rq->errors = -EIO;
854
			blk_mq_end_request(rq, rq->errors);
855 856 857 858 859
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
860 861 862 863 864 865 866

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
882 883 884 885 886 887 888 889 890 891
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
892 893 894
	}
}

895 896 897 898 899 900 901 902
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
903 904
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
905 906

	if (--hctx->next_cpu_batch <= 0) {
907
		int cpu = hctx->next_cpu, next_cpu;
908 909 910 911 912 913 914

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
915 916

		return cpu;
917 918
	}

919
	return hctx->next_cpu;
920 921
}

922 923
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
924 925
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
926 927
		return;

928
	if (!async) {
929 930
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
931
			__blk_mq_run_hw_queue(hctx);
932
			put_cpu();
933 934
			return;
		}
935

936
		put_cpu();
937
	}
938

939 940
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
941 942
}

943
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
944 945 946 947 948 949 950
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
951
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
952 953
			continue;

954
		blk_mq_run_hw_queue(hctx, async);
955 956
	}
}
957
EXPORT_SYMBOL(blk_mq_run_hw_queues);
958 959 960

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
961 962
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
963 964 965 966
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

967 968 969 970 971 972 973 974 975 976
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

977 978 979
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
980

981
	blk_mq_run_hw_queue(hctx, false);
982 983 984
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

985 986 987 988 989 990 991 992 993 994
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

995
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
996 997 998 999 1000 1001 1002 1003 1004
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1005
		blk_mq_run_hw_queue(hctx, async);
1006 1007 1008 1009
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1010
static void blk_mq_run_work_fn(struct work_struct *work)
1011 1012 1013
{
	struct blk_mq_hw_ctx *hctx;

1014
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1015

1016 1017 1018
	__blk_mq_run_hw_queue(hctx);
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1031 1032
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1033

1034 1035
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1036 1037 1038
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1039 1040 1041
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1042
{
J
Jens Axboe 已提交
1043 1044
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1045 1046
	trace_block_rq_insert(hctx->queue, rq);

1047 1048 1049 1050
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1051
}
1052

1053 1054 1055 1056 1057
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1058
	__blk_mq_insert_req_list(hctx, rq, at_head);
1059 1060 1061
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1062
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1063
			   bool async)
1064
{
J
Jens Axboe 已提交
1065
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1066
	struct request_queue *q = rq->q;
1067 1068 1069 1070
	struct blk_mq_hw_ctx *hctx;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1071 1072 1073
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;

	trace_block_unplug(q, depth, !from_schedule);

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1101
		BUG_ON(rq->mq_ctx != ctx);
1102
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1103
		__blk_mq_insert_req_list(hctx, rq, false);
1104
	}
1105
	blk_mq_hctx_mark_pending(hctx, ctx);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1171

1172
	blk_account_io_start(rq, 1);
1173 1174
}

1175 1176 1177 1178 1179 1180
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1181 1182 1183
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1184
{
1185
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1186 1187 1188 1189 1190 1191 1192
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1193 1194
		struct request_queue *q = hctx->queue;

1195 1196 1197 1198 1199
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1200

1201 1202 1203
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1204
	}
1205
}
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1219 1220
	int op = bio_data_dir(bio);
	int op_flags = 0;
1221
	struct blk_mq_alloc_data alloc_data;
1222

1223
	blk_queue_enter_live(q);
1224 1225 1226
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

J
Jens Axboe 已提交
1227
	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1228
		op_flags |= REQ_SYNC;
1229

1230
	trace_block_getrq(q, bio, op);
1231
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1232
	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1233
	if (unlikely(!rq)) {
1234
		__blk_mq_run_hw_queue(hctx);
1235
		blk_mq_put_ctx(ctx);
1236
		trace_block_sleeprq(q, bio, op);
1237 1238

		ctx = blk_mq_get_ctx(q);
1239
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1240
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1241
		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1242 1243
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1244 1245 1246
	}

	hctx->queued++;
1247 1248 1249 1250 1251
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1252
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1263
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1264 1265 1266 1267 1268 1269 1270

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1271 1272
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1273
		return 0;
1274
	}
1275

1276 1277 1278 1279 1280 1281 1282
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1283
	}
1284 1285

	return -1;
1286 1287
}

1288 1289 1290 1291 1292
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1293
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1294
{
J
Jens Axboe 已提交
1295 1296
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1297 1298
	struct blk_map_ctx data;
	struct request *rq;
1299 1300
	unsigned int request_count = 0;
	struct blk_plug *plug;
1301
	struct request *same_queue_rq = NULL;
1302
	blk_qc_t cookie;
1303 1304 1305 1306

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1307
		bio_io_error(bio);
1308
		return BLK_QC_T_NONE;
1309 1310
	}

1311 1312
	blk_queue_split(q, &bio, q->bio_split);

1313 1314 1315
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1316

1317 1318
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1319
		return BLK_QC_T_NONE;
1320

1321
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1322 1323 1324 1325 1326 1327 1328

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1329
	plug = current->plug;
1330 1331 1332 1333 1334
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1335 1336 1337
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1338 1339 1340 1341

		blk_mq_bio_to_request(rq, bio);

		/*
1342
		 * We do limited pluging. If the bio can be merged, do that.
1343 1344
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1345
		 */
1346
		if (plug) {
1347 1348
			/*
			 * The plug list might get flushed before this. If that
1349 1350 1351
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1352 1353
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1354
				list_del_init(&old_rq->queuelist);
1355
			}
1356 1357 1358 1359 1360
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1361 1362 1363
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1364
		blk_mq_insert_request(old_rq, false, true, true);
1365
		goto done;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1379 1380
done:
	return cookie;
1381 1382 1383 1384 1385 1386
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1387
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1388
{
J
Jens Axboe 已提交
1389 1390
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1391 1392
	struct blk_plug *plug;
	unsigned int request_count = 0;
1393 1394
	struct blk_map_ctx data;
	struct request *rq;
1395
	blk_qc_t cookie;
1396 1397 1398 1399

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1400
		bio_io_error(bio);
1401
		return BLK_QC_T_NONE;
1402 1403
	}

1404 1405
	blk_queue_split(q, &bio, q->bio_split);

1406 1407 1408 1409 1410
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1411 1412

	rq = blk_mq_map_request(q, bio, &data);
1413
	if (unlikely(!rq))
1414
		return BLK_QC_T_NONE;
1415

1416
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1429 1430 1431
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1432
		if (!request_count)
1433
			trace_block_plug(q);
1434 1435 1436 1437

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1438 1439
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1440
		}
1441

1442
		list_add_tail(&rq->queuelist, &plug->mq_list);
1443
		return cookie;
1444 1445
	}

1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1455 1456
	}

1457
	blk_mq_put_ctx(data.ctx);
1458
	return cookie;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1470 1471
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1472
{
1473
	struct page *page;
1474

1475
	if (tags->rqs && set->ops->exit_request) {
1476
		int i;
1477

1478 1479
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1480
				continue;
1481 1482
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1483
			tags->rqs[i] = NULL;
1484
		}
1485 1486
	}

1487 1488
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1489
		list_del_init(&page->lru);
1490 1491 1492 1493 1494
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1495 1496 1497
		__free_pages(page, page->private);
	}

1498
	kfree(tags->rqs);
1499

1500
	blk_mq_free_tags(tags);
1501 1502 1503 1504
}

static size_t order_to_size(unsigned int order)
{
1505
	return (size_t)PAGE_SIZE << order;
1506 1507
}

1508 1509
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1510
{
1511
	struct blk_mq_tags *tags;
1512 1513 1514
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1515
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1516 1517
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1518 1519
	if (!tags)
		return NULL;
1520

1521 1522
	INIT_LIST_HEAD(&tags->page_list);

1523 1524 1525
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1526 1527 1528 1529
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1530 1531 1532 1533 1534

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1535
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1536
				cache_line_size());
1537
	left = rq_size * set->queue_depth;
1538

1539
	for (i = 0; i < set->queue_depth; ) {
1540 1541 1542 1543 1544
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1545
		while (this_order && left < order_to_size(this_order - 1))
1546 1547 1548
			this_order--;

		do {
1549
			page = alloc_pages_node(set->numa_node,
1550
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1551
				this_order);
1552 1553 1554 1555 1556 1557 1558 1559 1560
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1561
			goto fail;
1562 1563

		page->private = this_order;
1564
		list_add_tail(&page->lru, &tags->page_list);
1565 1566

		p = page_address(page);
1567 1568 1569 1570 1571
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1572
		entries_per_page = order_to_size(this_order) / rq_size;
1573
		to_do = min(entries_per_page, set->queue_depth - i);
1574 1575
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1576 1577 1578 1579
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1580 1581
						set->numa_node)) {
					tags->rqs[i] = NULL;
1582
					goto fail;
1583
				}
1584 1585
			}

1586 1587 1588 1589
			p += rq_size;
			i++;
		}
	}
1590
	return tags;
1591

1592 1593 1594
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1595 1596
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

J
Jens Axboe 已提交
1623 1624 1625 1626 1627
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1628 1629 1630 1631 1632
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

J
Jens Axboe 已提交
1633
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

J
Jens Axboe 已提交
1645 1646 1647
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

	blk_mq_run_hw_queue(hctx, true);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1660 1661 1662 1663 1664

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1665 1666 1667 1668

	return NOTIFY_OK;
}

1669
/* hctx->ctxs will be freed in queue's release handler */
1670 1671 1672 1673
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1674 1675
	unsigned flush_start_tag = set->queue_depth;

1676 1677
	blk_mq_tag_idle(hctx);

1678 1679 1680 1681 1682
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1683 1684 1685 1686
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1687
	blk_free_flush_queue(hctx->fq);
1688 1689 1690
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1700
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1710
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1711 1712 1713
		free_cpumask_var(hctx->cpumask);
}

1714 1715 1716
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1717
{
1718
	int node;
1719
	unsigned flush_start_tag = set->queue_depth;
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1731
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1732 1733 1734 1735 1736 1737

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1738 1739

	/*
1740 1741
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1742
	 */
1743 1744 1745 1746
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1747

1748 1749
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1750

1751
	hctx->nr_ctx = 0;
1752

1753 1754 1755
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1756

1757 1758 1759
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1760

1761 1762 1763 1764 1765
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1766

1767
	return 0;
1768

1769 1770 1771 1772 1773
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1774 1775 1776 1777 1778 1779
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1780

1781 1782
	return -1;
}
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1803 1804
		hctx = q->mq_ops->map_queue(q, i);

1805 1806 1807 1808 1809
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1810
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1811 1812 1813
	}
}

1814 1815
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1816 1817 1818 1819
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1820
	struct blk_mq_tag_set *set = q->tag_set;
1821

1822 1823 1824 1825 1826
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1827
	queue_for_each_hw_ctx(q, hctx, i) {
1828
		cpumask_clear(hctx->cpumask);
1829 1830 1831 1832 1833 1834
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1835
	for_each_possible_cpu(i) {
1836
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1837
		if (!cpumask_test_cpu(i, online_mask))
1838 1839
			continue;

1840
		ctx = per_cpu_ptr(q->queue_ctx, i);
1841
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1842

1843
		cpumask_set_cpu(i, hctx->cpumask);
1844 1845 1846
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1847

1848 1849
	mutex_unlock(&q->sysfs_lock);

1850
	queue_for_each_hw_ctx(q, hctx, i) {
1851 1852
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1853
		/*
1854 1855
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1856 1857 1858 1859 1860 1861
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1862
			hctx->tags = NULL;
1863 1864 1865
			continue;
		}

M
Ming Lei 已提交
1866 1867 1868 1869 1870 1871
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1872
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1873 1874 1875 1876 1877
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1878
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1879

1880 1881 1882
		/*
		 * Initialize batch roundrobin counts
		 */
1883 1884 1885
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1886 1887
}

1888
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1889 1890 1891 1892
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1904 1905 1906

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1907
		queue_set_hctx_shared(q, shared);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1918 1919 1920 1921 1922 1923
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1924 1925 1926 1927 1928 1929 1930 1931 1932
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1933 1934 1935 1936 1937 1938 1939 1940 1941

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1942
	list_add_tail(&q->tag_set_list, &set->tag_list);
1943

1944 1945 1946
	mutex_unlock(&set->tag_list_lock);
}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1959 1960 1961 1962
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1963
		kfree(hctx);
1964
	}
1965

1966 1967 1968
	kfree(q->mq_map);
	q->mq_map = NULL;

1969 1970 1971 1972 1973 1974
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1975
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1991 1992
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1993
{
K
Keith Busch 已提交
1994 1995
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1996

K
Keith Busch 已提交
1997
	blk_mq_sysfs_unregister(q);
1998
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1999
		int node;
2000

K
Keith Busch 已提交
2001 2002 2003 2004
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2005 2006
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2007
		if (!hctxs[i])
K
Keith Busch 已提交
2008
			break;
2009

2010
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2011 2012 2013 2014 2015
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2016

2017
		atomic_set(&hctxs[i]->nr_active, 0);
2018
		hctxs[i]->numa_node = node;
2019
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2020 2021 2022 2023 2024 2025 2026 2027

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2028
	}
K
Keith Busch 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2053 2054 2055
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2056 2057
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2058
		goto err_exit;
K
Keith Busch 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2072

2073
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2074
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2075 2076 2077

	q->nr_queues = nr_cpu_ids;

2078
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2079

2080 2081 2082
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2083 2084
	q->sg_reserved_size = INT_MAX;

2085 2086 2087 2088
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2089 2090 2091 2092 2093
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2094 2095 2096 2097 2098
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2099 2100
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2101

2102
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2103

2104
	get_online_cpus();
2105 2106
	mutex_lock(&all_q_mutex);

2107
	list_add_tail(&q->all_q_node, &all_q_list);
2108
	blk_mq_add_queue_tag_set(set, q);
2109
	blk_mq_map_swqueue(q, cpu_online_mask);
2110

2111
	mutex_unlock(&all_q_mutex);
2112
	put_online_cpus();
2113

2114
	return q;
2115

2116
err_hctxs:
K
Keith Busch 已提交
2117
	kfree(q->mq_map);
2118
err_map:
K
Keith Busch 已提交
2119
	kfree(q->queue_hw_ctx);
2120
err_percpu:
K
Keith Busch 已提交
2121
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2122 2123
err_exit:
	q->mq_ops = NULL;
2124 2125
	return ERR_PTR(-ENOMEM);
}
2126
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2127 2128 2129

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2130
	struct blk_mq_tag_set	*set = q->tag_set;
2131

2132 2133 2134 2135
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2136 2137
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2138 2139
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2140 2141 2142
}

/* Basically redo blk_mq_init_queue with queue frozen */
2143 2144
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2145
{
2146
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2147

2148 2149
	blk_mq_sysfs_unregister(q);

2150
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2151 2152 2153 2154 2155 2156 2157

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2158
	blk_mq_map_swqueue(q, online_mask);
2159

2160
	blk_mq_sysfs_register(q);
2161 2162
}

2163 2164
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2165 2166
{
	struct request_queue *q;
2167 2168 2169 2170 2171 2172 2173
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2174 2175

	/*
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2191
	 */
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2202
		return NOTIFY_OK;
2203
	}
2204 2205

	mutex_lock(&all_q_mutex);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2216
	list_for_each_entry(q, &all_q_list, all_q_node) {
2217 2218
		blk_mq_freeze_queue_wait(q);

2219 2220 2221 2222 2223 2224 2225
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2226
	list_for_each_entry(q, &all_q_list, all_q_node)
2227
		blk_mq_queue_reinit(q, &online_new);
2228 2229 2230 2231

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2232 2233 2234 2235
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2290 2291 2292 2293 2294 2295
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2296 2297 2298 2299 2300 2301
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2302 2303
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2304 2305
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2306 2307
	if (!set->nr_hw_queues)
		return -EINVAL;
2308
	if (!set->queue_depth)
2309 2310 2311 2312
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2313
	if (!set->ops->queue_rq || !set->ops->map_queue)
2314 2315
		return -EINVAL;

2316 2317 2318 2319 2320
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2321

2322 2323 2324 2325 2326 2327 2328 2329 2330
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2331 2332 2333 2334 2335
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2336

K
Keith Busch 已提交
2337
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2338 2339
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2340
		return -ENOMEM;
2341

2342 2343
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2344

2345 2346 2347
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2348
	return 0;
2349
enomem:
2350 2351
	kfree(set->tags);
	set->tags = NULL;
2352 2353 2354 2355 2356 2357 2358 2359
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2360
	for (i = 0; i < nr_cpu_ids; i++) {
2361
		if (set->tags[i])
2362 2363 2364
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2365
	kfree(set->tags);
2366
	set->tags = NULL;
2367 2368 2369
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2381 2382
		if (!hctx->tags)
			continue;
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2433 2434 2435 2436
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2437
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2438 2439 2440 2441

	return 0;
}
subsys_initcall(blk_mq_init);