blk-mq.c 54.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
82
{
83 84
	while (true) {
		int ret;
85

86 87
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
88

89 90 91
		if (!(gfp & __GFP_WAIT))
			return -EBUSY;

92
		ret = wait_event_interruptible(q->mq_freeze_wq,
93 94
				!atomic_read(&q->mq_freeze_depth) ||
				blk_queue_dying(q));
95 96 97 98 99
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
100 101 102 103
}

static void blk_mq_queue_exit(struct request_queue *q)
{
104 105 106 107 108 109 110 111 112
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
113 114
}

115
void blk_mq_freeze_queue_start(struct request_queue *q)
116
{
117
	int freeze_depth;
118

119 120
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
121
		percpu_ref_kill(&q->mq_usage_counter);
122
		blk_mq_run_hw_queues(q, false);
123
	}
124
}
125
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
126 127 128

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
129
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
130 131
}

132 133 134 135 136 137 138 139 140
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
{
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
141
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142

143
void blk_mq_unfreeze_queue(struct request_queue *q)
144
{
145
	int freeze_depth;
146

147 148 149
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
150
		percpu_ref_reinit(&q->mq_usage_counter);
151
		wake_up_all(&q->mq_freeze_wq);
152
	}
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155

156 157 158 159 160 161 162 163
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
164 165 166 167 168 169 170

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
171 172
}

173 174 175 176 177 178
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

179 180
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
181
{
182 183 184
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

185 186 187
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
188
	rq->mq_ctx = ctx;
189
	rq->cmd_flags |= rw_flags;
190 191 192 193 194 195
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
196
	rq->start_time = jiffies;
197 198
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
199
	set_start_time_ns(rq);
200 201 202 203 204 205 206 207 208 209
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

210 211
	rq->cmd = rq->__cmd;

212 213 214 215 216 217
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
218 219
	rq->timeout = 0;

220 221 222 223
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

224 225 226
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

227
static struct request *
228
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
229 230 231 232
{
	struct request *rq;
	unsigned int tag;

233
	tag = blk_mq_get_tag(data);
234
	if (tag != BLK_MQ_TAG_FAIL) {
235
		rq = data->hctx->tags->rqs[tag];
236

237
		if (blk_mq_tag_busy(data->hctx)) {
238
			rq->cmd_flags = REQ_MQ_INFLIGHT;
239
			atomic_inc(&data->hctx->nr_active);
240 241 242
		}

		rq->tag = tag;
243
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
244 245 246 247 248 249
		return rq;
	}

	return NULL;
}

250 251
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
252
{
253 254
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
255
	struct request *rq;
256
	struct blk_mq_alloc_data alloc_data;
257
	int ret;
258

259
	ret = blk_mq_queue_enter(q, gfp);
260 261
	if (ret)
		return ERR_PTR(ret);
262

263 264
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
265 266
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
267

268
	rq = __blk_mq_alloc_request(&alloc_data, rw);
269 270 271 272 273 274
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
275 276 277 278
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
279 280
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
281 282
	if (!rq) {
		blk_mq_queue_exit(q);
283
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
284
	}
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288 289 290 291 292 293 294

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

295 296
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
297
	rq->cmd_flags = 0;
298

299
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
300
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
301 302 303
	blk_mq_queue_exit(q);
}

304
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
305 306 307 308 309
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
310 311 312 313 314 315 316 317 318 319 320

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
321
}
J
Jens Axboe 已提交
322
EXPORT_SYMBOL_GPL(blk_mq_free_request);
323

324
inline void __blk_mq_end_request(struct request *rq, int error)
325
{
M
Ming Lei 已提交
326 327
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
328
	if (rq->end_io) {
329
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
330 331 332
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
333
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
334
	}
335
}
336
EXPORT_SYMBOL(__blk_mq_end_request);
337

338
void blk_mq_end_request(struct request *rq, int error)
339 340 341
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
342
	__blk_mq_end_request(rq, error);
343
}
344
EXPORT_SYMBOL(blk_mq_end_request);
345

346
static void __blk_mq_complete_request_remote(void *data)
347
{
348
	struct request *rq = data;
349

350
	rq->q->softirq_done_fn(rq);
351 352
}

353
static void blk_mq_ipi_complete_request(struct request *rq)
354 355
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
356
	bool shared = false;
357 358
	int cpu;

C
Christoph Hellwig 已提交
359
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
360 361 362
		rq->q->softirq_done_fn(rq);
		return;
	}
363 364

	cpu = get_cpu();
C
Christoph Hellwig 已提交
365 366 367 368
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
369
		rq->csd.func = __blk_mq_complete_request_remote;
370 371
		rq->csd.info = rq;
		rq->csd.flags = 0;
372
		smp_call_function_single_async(ctx->cpu, &rq->csd);
373
	} else {
374
		rq->q->softirq_done_fn(rq);
375
	}
376 377
	put_cpu();
}
378

379 380 381 382 383
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
384
		blk_mq_end_request(rq, rq->errors);
385 386 387 388
	else
		blk_mq_ipi_complete_request(rq);
}

389 390 391 392 393 394 395 396
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
397
void blk_mq_complete_request(struct request *rq, int error)
398
{
399 400 401
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
402
		return;
403 404
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
405
		__blk_mq_complete_request(rq);
406
	}
407 408
}
EXPORT_SYMBOL(blk_mq_complete_request);
409

410 411 412 413 414 415
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

416
void blk_mq_start_request(struct request *rq)
417 418 419 420 421
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
422
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
423 424
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
425

426
	blk_add_timer(rq);
427

428 429 430 431 432 433
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

434 435 436 437 438 439
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
440 441 442 443
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444 445 446 447 448 449 450 451 452

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
453
}
454
EXPORT_SYMBOL(blk_mq_start_request);
455

456
static void __blk_mq_requeue_request(struct request *rq)
457 458 459 460
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
461

462 463 464 465
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
466 467
}

468 469 470 471 472
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
473
	blk_mq_add_to_requeue_list(rq, true);
474 475 476
}
EXPORT_SYMBOL(blk_mq_requeue_request);

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

504 505 506 507 508
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

533 534 535 536 537 538
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

539 540 541 542 543 544
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

565 566
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
567
	return tags->rqs[tag];
568 569 570
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

571
struct blk_mq_timeout_data {
572 573
	unsigned long next;
	unsigned int next_set;
574 575
};

576
void blk_mq_rq_timed_out(struct request *req, bool reserved)
577
{
578 579
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
580 581 582 583 584 585 586 587 588 589

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
590 591
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
592

593
	if (ops->timeout)
594
		ret = ops->timeout(req, reserved);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
610
}
611

612 613 614 615
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
616

617 618 619 620 621
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
622 623
		if (unlikely(blk_queue_dying(rq->q)))
			blk_mq_complete_request(rq, -EIO);
624
		return;
625
	}
626 627
	if (rq->cmd_flags & REQ_NO_TIMEOUT)
		return;
628

629 630
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
631
			blk_mq_rq_timed_out(rq, reserved);
632 633 634 635
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
636 637
}

638
static void blk_mq_rq_timer(unsigned long priv)
639
{
640 641 642 643 644 645
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
646

647
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
648

649 650 651
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
652
	} else {
653 654
		struct blk_mq_hw_ctx *hctx;

655 656 657 658 659
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
660
	}
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

702 703 704 705 706 707 708 709 710
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

711
	for (i = 0; i < hctx->ctx_map.size; i++) {
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

736 737 738 739 740 741 742 743 744 745 746
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
747 748
	LIST_HEAD(driver_list);
	struct list_head *dptr;
749
	int queued;
750

751
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
752

753
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
754 755 756 757 758 759 760
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
761
	flush_busy_ctxs(hctx, &rq_list);
762 763 764 765 766 767 768 769 770 771 772 773

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

774 775 776 777 778 779
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

780 781 782
	/*
	 * Now process all the entries, sending them to the driver.
	 */
783
	queued = 0;
784
	while (!list_empty(&rq_list)) {
785
		struct blk_mq_queue_data bd;
786 787 788 789 790
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

791 792 793 794 795
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
796 797 798 799 800 801
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
802
			__blk_mq_requeue_request(rq);
803 804 805 806
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
807
			rq->errors = -EIO;
808
			blk_mq_end_request(rq, rq->errors);
809 810 811 812 813
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
814 815 816 817 818 819 820

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
836 837 838 839 840 841 842 843 844 845
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
846 847 848
	}
}

849 850 851 852 853 854 855 856
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
857 858
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
859 860

	if (--hctx->next_cpu_batch <= 0) {
861
		int cpu = hctx->next_cpu, next_cpu;
862 863 864 865 866 867 868

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
869 870

		return cpu;
871 872
	}

873
	return hctx->next_cpu;
874 875
}

876 877
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
878 879
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
880 881
		return;

882
	if (!async) {
883 884
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
885
			__blk_mq_run_hw_queue(hctx);
886
			put_cpu();
887 888
			return;
		}
889

890
		put_cpu();
891
	}
892

893 894
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
895 896
}

897
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
898 899 900 901 902 903 904
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
905
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
906 907
			continue;

908
		blk_mq_run_hw_queue(hctx, async);
909 910
	}
}
911
EXPORT_SYMBOL(blk_mq_run_hw_queues);
912 913 914

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
915 916
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
917 918 919 920
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

921 922 923 924 925 926 927 928 929 930
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

931 932 933
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
934

935
	blk_mq_run_hw_queue(hctx, false);
936 937 938
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

939 940 941 942 943 944 945 946 947 948
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

949
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
950 951 952 953 954 955 956 957 958
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
959
		blk_mq_run_hw_queue(hctx, async);
960 961 962 963
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

964
static void blk_mq_run_work_fn(struct work_struct *work)
965 966 967
{
	struct blk_mq_hw_ctx *hctx;

968
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
969

970 971 972
	__blk_mq_run_hw_queue(hctx);
}

973 974 975 976 977 978 979 980 981 982 983 984
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
985 986
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
987

988 989
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
990 991 992
}
EXPORT_SYMBOL(blk_mq_delay_queue);

993
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
994
				    struct request *rq, bool at_head)
995 996 997
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

998 999
	trace_block_rq_insert(hctx->queue, rq);

1000 1001 1002 1003
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1004

1005 1006 1007
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1008 1009
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1010
{
1011
	struct request_queue *q = rq->q;
1012
	struct blk_mq_hw_ctx *hctx;
1013 1014 1015 1016 1017
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1018 1019 1020

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1021 1022 1023
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1024 1025 1026

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1027 1028

	blk_mq_put_ctx(current_ctx);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1060
		__blk_mq_insert_request(hctx, rq, false);
1061 1062 1063 1064
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1065
	blk_mq_put_ctx(current_ctx);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1128

1129
	if (blk_do_io_stat(rq))
1130
		blk_account_io_start(rq, 1);
1131 1132
}

1133 1134 1135 1136 1137 1138
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1139 1140 1141
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1142
{
1143
	if (!hctx_allow_merges(hctx)) {
1144 1145 1146 1147 1148 1149 1150
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1151 1152
		struct request_queue *q = hctx->queue;

1153 1154 1155 1156 1157
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1158

1159 1160 1161
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1162
	}
1163
}
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1178
	struct blk_mq_alloc_data alloc_data;
1179

1180
	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1181
		bio_io_error(bio);
1182
		return NULL;
1183 1184 1185 1186 1187
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1188
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1189
		rw |= REQ_SYNC;
1190

1191
	trace_block_getrq(q, bio, rw);
1192 1193 1194
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1195
	if (unlikely(!rq)) {
1196
		__blk_mq_run_hw_queue(hctx);
1197 1198
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1199 1200

		ctx = blk_mq_get_ctx(q);
1201
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1202 1203 1204 1205 1206
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1207 1208 1209
	}

	hctx->queued++;
1210 1211 1212 1213 1214
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
static int blk_mq_direct_issue_request(struct request *rq)
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	if (ret == BLK_MQ_RQ_QUEUE_OK)
		return 0;
	else {
		__blk_mq_requeue_request(rq);

		if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
			return 0;
		}
		return -1;
	}
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1258 1259
	unsigned int request_count = 0;
	struct blk_plug *plug;
1260
	struct request *same_queue_rq = NULL;
1261 1262 1263 1264

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1265
		bio_io_error(bio);
1266 1267 1268
		return;
	}

1269 1270
	blk_queue_split(q, &bio, q->bio_split);

1271
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1272
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1273 1274
		return;

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1285
	plug = current->plug;
1286 1287 1288 1289 1290
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1291 1292 1293
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1294 1295 1296 1297

		blk_mq_bio_to_request(rq, bio);

		/*
1298 1299 1300
		 * we do limited pluging. If bio can be merged, do merge.
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1301
		 */
1302
		if (plug) {
1303 1304 1305 1306 1307 1308
			/*
			 * The plug list might get flushed before this. If that
			 * happens, same_queue_rq is invalid and plug list is empty
			 **/
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1309
				list_del_init(&old_rq->queuelist);
1310
			}
1311 1312 1313 1314 1315
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1316
			return;
1317 1318 1319 1320
		if (!blk_mq_direct_issue_request(old_rq))
			return;
		blk_mq_insert_request(old_rq, false, true, true);
		return;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1344 1345
	struct blk_plug *plug;
	unsigned int request_count = 0;
1346 1347 1348 1349 1350 1351
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1352
		bio_io_error(bio);
1353 1354 1355
		return;
	}

1356 1357
	blk_queue_split(q, &bio, q->bio_split);

1358
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1359
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1360 1361 1362
		return;

	rq = blk_mq_map_request(q, bio, &data);
1363 1364
	if (unlikely(!rq))
		return;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1377 1378 1379 1380 1381 1382 1383 1384
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
		if (list_empty(&plug->mq_list))
			trace_block_plug(q);
		else if (request_count >= BLK_MAX_REQUEST_COUNT) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1385
		}
1386 1387 1388
		list_add_tail(&rq->queuelist, &plug->mq_list);
		blk_mq_put_ctx(data.ctx);
		return;
1389 1390
	}

1391 1392 1393 1394 1395 1396 1397 1398 1399
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1400 1401
	}

1402
	blk_mq_put_ctx(data.ctx);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1414 1415
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1416
{
1417
	struct page *page;
1418

1419
	if (tags->rqs && set->ops->exit_request) {
1420
		int i;
1421

1422 1423
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1424
				continue;
1425 1426
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1427
			tags->rqs[i] = NULL;
1428
		}
1429 1430
	}

1431 1432
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1433
		list_del_init(&page->lru);
1434 1435 1436 1437 1438
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1439 1440 1441
		__free_pages(page, page->private);
	}

1442
	kfree(tags->rqs);
1443

1444
	blk_mq_free_tags(tags);
1445 1446 1447 1448
}

static size_t order_to_size(unsigned int order)
{
1449
	return (size_t)PAGE_SIZE << order;
1450 1451
}

1452 1453
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1454
{
1455
	struct blk_mq_tags *tags;
1456 1457 1458
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1459
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1460 1461
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1462 1463
	if (!tags)
		return NULL;
1464

1465 1466
	INIT_LIST_HEAD(&tags->page_list);

1467 1468 1469
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1470 1471 1472 1473
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1474 1475 1476 1477 1478

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1479
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1480
				cache_line_size());
1481
	left = rq_size * set->queue_depth;
1482

1483
	for (i = 0; i < set->queue_depth; ) {
1484 1485 1486 1487 1488 1489 1490 1491 1492
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1493
			page = alloc_pages_node(set->numa_node,
1494
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1495
				this_order);
1496 1497 1498 1499 1500 1501 1502 1503 1504
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1505
			goto fail;
1506 1507

		page->private = this_order;
1508
		list_add_tail(&page->lru, &tags->page_list);
1509 1510

		p = page_address(page);
1511 1512 1513 1514 1515
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1516
		entries_per_page = order_to_size(this_order) / rq_size;
1517
		to_do = min(entries_per_page, set->queue_depth - i);
1518 1519
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1520 1521 1522 1523
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1524 1525
						set->numa_node)) {
					tags->rqs[i] = NULL;
1526
					goto fail;
1527
				}
1528 1529
			}

1530 1531 1532 1533
			p += rq_size;
			i++;
		}
	}
1534
	return tags;
1535

1536 1537 1538
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1539 1540
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1616 1617 1618 1619 1620

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1621 1622 1623 1624

	return NOTIFY_OK;
}

1625
/* hctx->ctxs will be freed in queue's release handler */
1626 1627 1628 1629
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1630 1631
	unsigned flush_start_tag = set->queue_depth;

1632 1633
	blk_mq_tag_idle(hctx);

1634 1635 1636 1637 1638
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1639 1640 1641 1642
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1643
	blk_free_flush_queue(hctx->fq);
1644 1645 1646
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1656
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1666
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1667 1668 1669
		free_cpumask_var(hctx->cpumask);
}

1670 1671 1672
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1673
{
1674
	int node;
1675
	unsigned flush_start_tag = set->queue_depth;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1694 1695

	/*
1696 1697
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1698
	 */
1699 1700 1701 1702
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1703

1704 1705
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1706

1707
	hctx->nr_ctx = 0;
1708

1709 1710 1711
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1712

1713 1714 1715
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1716

1717 1718 1719 1720 1721
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1722

1723
	return 0;
1724

1725 1726 1727 1728 1729
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1730 1731 1732 1733 1734 1735
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1736

1737 1738
	return -1;
}
1739

1740 1741 1742 1743 1744
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1745

1746 1747 1748 1749 1750
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1751 1752 1753 1754 1755 1756 1757 1758 1759
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1760
	blk_mq_exit_hw_queues(q, set, i);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1784 1785
		hctx = q->mq_ops->map_queue(q, i);

1786 1787 1788 1789 1790 1791 1792 1793 1794
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

1795 1796
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1797 1798 1799 1800
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1801
	struct blk_mq_tag_set *set = q->tag_set;
1802

1803 1804 1805 1806 1807
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1808
	queue_for_each_hw_ctx(q, hctx, i) {
1809
		cpumask_clear(hctx->cpumask);
1810 1811 1812 1813 1814 1815 1816 1817
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1818
		if (!cpumask_test_cpu(i, online_mask))
1819 1820
			continue;

1821
		hctx = q->mq_ops->map_queue(q, i);
1822
		cpumask_set_cpu(i, hctx->cpumask);
1823 1824 1825
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1826

1827 1828
	mutex_unlock(&q->sysfs_lock);

1829
	queue_for_each_hw_ctx(q, hctx, i) {
1830 1831
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1832
		/*
1833 1834
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1835 1836 1837 1838 1839 1840
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1841
			hctx->tags = NULL;
1842 1843 1844
			continue;
		}

M
Ming Lei 已提交
1845 1846 1847 1848 1849 1850
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1851 1852 1853 1854 1855
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1856
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1857

1858 1859 1860
		/*
		 * Initialize batch roundrobin counts
		 */
1861 1862 1863
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1864 1865

	queue_for_each_ctx(q, ctx, i) {
1866
		if (!cpumask_test_cpu(i, online_mask))
1867 1868 1869 1870 1871
			continue;

		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->tags->cpumask);
	}
1872 1873
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1932 1933 1934 1935
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1936
		kfree(hctx);
1937
	}
1938

1939 1940 1941
	kfree(q->mq_map);
	q->mq_map = NULL;

1942 1943 1944 1945 1946 1947
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1948
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
1966 1967
{
	struct blk_mq_hw_ctx **hctxs;
1968
	struct blk_mq_ctx __percpu *ctx;
1969
	unsigned int *map;
1970 1971 1972 1973 1974 1975
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1976 1977
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1978 1979 1980 1981

	if (!hctxs)
		goto err_percpu;

1982 1983 1984 1985
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1986
	for (i = 0; i < set->nr_hw_queues; i++) {
1987 1988
		int node = blk_mq_hw_queue_to_node(map, i);

1989 1990
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1991 1992 1993
		if (!hctxs[i])
			goto err_hctxs;

1994 1995
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
1996 1997
			goto err_hctxs;

1998
		atomic_set(&hctxs[i]->nr_active, 0);
1999
		hctxs[i]->numa_node = node;
2000 2001 2002
		hctxs[i]->queue_num = i;
	}

2003 2004 2005 2006
	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
2007
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
2008
			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
2009
		goto err_hctxs;
2010

2011
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2012
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2013 2014

	q->nr_queues = nr_cpu_ids;
2015
	q->nr_hw_queues = set->nr_hw_queues;
2016
	q->mq_map = map;
2017 2018 2019 2020

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

2021
	q->mq_ops = set->ops;
2022
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2023

2024 2025 2026
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2027 2028
	q->sg_reserved_size = INT_MAX;

2029 2030 2031 2032
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2033 2034 2035 2036 2037
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2038 2039 2040 2041 2042
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2043 2044
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2045

2046
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2047

2048
	if (blk_mq_init_hw_queues(q, set))
2049
		goto err_hctxs;
2050

2051
	get_online_cpus();
2052 2053
	mutex_lock(&all_q_mutex);

2054
	list_add_tail(&q->all_q_node, &all_q_list);
2055
	blk_mq_add_queue_tag_set(set, q);
2056
	blk_mq_map_swqueue(q, cpu_online_mask);
2057

2058
	mutex_unlock(&all_q_mutex);
2059
	put_online_cpus();
2060

2061
	return q;
2062

2063
err_hctxs:
2064
	kfree(map);
2065
	for (i = 0; i < set->nr_hw_queues; i++) {
2066 2067
		if (!hctxs[i])
			break;
2068
		free_cpumask_var(hctxs[i]->cpumask);
2069
		kfree(hctxs[i]);
2070
	}
2071
err_map:
2072 2073 2074 2075 2076
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
2077
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2078 2079 2080

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2081
	struct blk_mq_tag_set	*set = q->tag_set;
2082

2083 2084 2085 2086
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2087 2088
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2089 2090
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2091

2092
	percpu_ref_exit(&q->mq_usage_counter);
2093 2094 2095
}

/* Basically redo blk_mq_init_queue with queue frozen */
2096 2097
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2098
{
2099
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2100

2101 2102
	blk_mq_sysfs_unregister(q);

2103
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2104 2105 2106 2107 2108 2109 2110

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2111
	blk_mq_map_swqueue(q, online_mask);
2112

2113
	blk_mq_sysfs_register(q);
2114 2115
}

2116 2117
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2118 2119
{
	struct request_queue *q;
2120 2121 2122 2123 2124 2125 2126
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2127 2128

	/*
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2144
	 */
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2155
		return NOTIFY_OK;
2156
	}
2157 2158

	mutex_lock(&all_q_mutex);
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2169
	list_for_each_entry(q, &all_q_list, all_q_node) {
2170 2171
		blk_mq_freeze_queue_wait(q);

2172 2173 2174 2175 2176 2177 2178
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2179
	list_for_each_entry(q, &all_q_list, all_q_node)
2180
		blk_mq_queue_reinit(q, &online_new);
2181 2182 2183 2184

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2185 2186 2187 2188
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2243 2244 2245 2246 2247 2248
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2249 2250 2251 2252 2253 2254
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2255 2256
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2257 2258
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2259 2260
	if (!set->nr_hw_queues)
		return -EINVAL;
2261
	if (!set->queue_depth)
2262 2263 2264 2265
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2266
	if (!set->ops->queue_rq || !set->ops->map_queue)
2267 2268
		return -EINVAL;

2269 2270 2271 2272 2273
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2274

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2285 2286
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2287 2288
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2289
		return -ENOMEM;
2290

2291 2292
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2293

2294 2295 2296
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2297
	return 0;
2298
enomem:
2299 2300
	kfree(set->tags);
	set->tags = NULL;
2301 2302 2303 2304 2305 2306 2307 2308
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2309
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2310
		if (set->tags[i]) {
2311
			blk_mq_free_rq_map(set, set->tags[i], i);
K
Keith Busch 已提交
2312 2313
			free_cpumask_var(set->tags[i]->cpumask);
		}
2314 2315
	}

M
Ming Lei 已提交
2316
	kfree(set->tags);
2317
	set->tags = NULL;
2318 2319 2320
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2353 2354 2355 2356
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2357
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2358 2359 2360 2361

	return 0;
}
subsys_initcall(blk_mq_init);