blk-mq.c 73.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98 99 100 101 102 103 104 105 106
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
107 108 109 110 111 112 113
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

114
	inflight[0] = inflight[1] = 0;
115 116 117
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139
	int freeze_depth;
140

141 142
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
143
		percpu_ref_kill(&q->q_usage_counter);
144 145
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
146
	}
147
}
148
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149

150
void blk_mq_freeze_queue_wait(struct request_queue *q)
151
{
152
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155

156 157 158 159 160 161 162 163
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164

165 166 167 168
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
169
void blk_freeze_queue(struct request_queue *q)
170
{
171 172 173 174 175 176 177
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
178
	blk_freeze_queue_start(q);
179 180
	if (!q->mq_ops)
		blk_drain_queue(q);
181 182
	blk_mq_freeze_queue_wait(q);
}
183 184 185 186 187 188 189 190 191

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193

194
void blk_mq_unfreeze_queue(struct request_queue *q)
195
{
196
	int freeze_depth;
197

198 199 200
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
201
		percpu_ref_reinit(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
}
205
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206

207 208 209 210 211 212
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
213
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 215 216
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

217
/**
218
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 220 221
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
222 223 224
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
225 226 227 228 229 230 231
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

232
	blk_mq_quiesce_queue_nowait(q);
233

234 235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
236
			synchronize_srcu(hctx->srcu);
237 238 239 240 241 242 243 244
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

245 246 247 248 249 250 251 252 253
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
254
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255

256 257
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
258 259 260
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

261 262 263 264 265 266 267 268 269 270
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

271 272 273 274 275 276
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

277 278
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282
	req_flags_t rq_flags = 0;
283

284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
289
			rq_flags = RQF_MQ_INFLIGHT;
290 291 292 293 294 295 296
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

297
	/* csd/requeue_work/fifo_time is initialized before use */
298 299
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
300
	rq->rq_flags = rq_flags;
301
	rq->cpu = -1;
302
	rq->cmd_flags = op;
303 304
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
305
	if (blk_queue_io_stat(data->q))
306
		rq->rq_flags |= RQF_IO_STAT;
307
	INIT_LIST_HEAD(&rq->queuelist);
308 309 310 311
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
312
	rq->start_time_ns = ktime_get_ns();
313
	rq->io_start_time_ns = 0;
314 315 316 317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
321
	rq->__deadline = 0;
322 323

	INIT_LIST_HEAD(&rq->timeout_list);
324 325
	rq->timeout = 0;

326 327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

330 331 332 333
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

334
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
335
	refcount_set(&rq->ref, 1);
336
	return rq;
337 338
}

339 340 341 342 343 344
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
345
	unsigned int tag;
346
	bool put_ctx_on_error = false;
347 348 349

	blk_queue_enter_live(q);
	data->q = q;
350 351 352 353
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
354 355
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 357
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
358 359 360 361 362 363

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
364 365
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
366
		 */
367 368
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
369
			e->type->ops.mq.limit_depth(op, data);
370 371
	}

372 373
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
374 375
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
376 377
			data->ctx = NULL;
		}
378 379
		blk_queue_exit(q);
		return NULL;
380 381
	}

382
	rq = blk_mq_rq_ctx_init(data, tag, op);
383 384
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
385
		if (e && e->type->ops.mq.prepare_request) {
386 387 388
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

389 390
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
391
		}
392 393 394
	}
	data->hctx->queued++;
	return rq;
395 396
}

397
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398
		blk_mq_req_flags_t flags)
399
{
400
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
401
	struct request *rq;
402
	int ret;
403

404
	ret = blk_queue_enter(q, flags);
405 406
	if (ret)
		return ERR_PTR(ret);
407

408
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409
	blk_queue_exit(q);
410

411
	if (!rq)
412
		return ERR_PTR(-EWOULDBLOCK);
413

414 415
	blk_mq_put_ctx(alloc_data.ctx);

416 417 418
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
419 420
	return rq;
}
421
EXPORT_SYMBOL(blk_mq_alloc_request);
422

423
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
425
{
426
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
427
	struct request *rq;
428
	unsigned int cpu;
M
Ming Lin 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

443
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
444 445 446
	if (ret)
		return ERR_PTR(ret);

447 448 449 450
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
451 452 453 454
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
455
	}
456
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
458

459
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460
	blk_queue_exit(q);
461

462 463 464 465
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
466 467 468
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

484
void blk_mq_free_request(struct request *rq)
485 486
{
	struct request_queue *q = rq->q;
487 488 489 490
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

491
	if (rq->rq_flags & RQF_ELVPRIV) {
492 493 494 495 496 497 498
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
499

500
	ctx->rq_completed[rq_is_sync(rq)]++;
501
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
502
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
503

504 505 506
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

507
	wbt_done(q->rq_wb, rq);
508

S
Shaohua Li 已提交
509 510 511
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

K
Keith Busch 已提交
512 513 514
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
515
}
J
Jens Axboe 已提交
516
EXPORT_SYMBOL_GPL(blk_mq_free_request);
517

518
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519
{
520 521
	u64 now = ktime_get_ns();

522 523
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
524
		blk_stat_add(rq, now);
525 526
	}

527
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
528

C
Christoph Hellwig 已提交
529
	if (rq->end_io) {
530
		wbt_done(rq->q->rq_wb, rq);
531
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
532 533 534
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
535
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
536
	}
537
}
538
EXPORT_SYMBOL(__blk_mq_end_request);
539

540
void blk_mq_end_request(struct request *rq, blk_status_t error)
541 542 543
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
544
	__blk_mq_end_request(rq, error);
545
}
546
EXPORT_SYMBOL(blk_mq_end_request);
547

548
static void __blk_mq_complete_request_remote(void *data)
549
{
550
	struct request *rq = data;
551

552
	rq->q->softirq_done_fn(rq);
553 554
}

555
static void __blk_mq_complete_request(struct request *rq)
556 557
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
558
	bool shared = false;
559 560
	int cpu;

K
Keith Busch 已提交
561 562 563
	if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) !=
			MQ_RQ_IN_FLIGHT)
		return;
564

565 566 567
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
568
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 570 571
		rq->q->softirq_done_fn(rq);
		return;
	}
572 573

	cpu = get_cpu();
C
Christoph Hellwig 已提交
574 575 576 577
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578
		rq->csd.func = __blk_mq_complete_request_remote;
579 580
		rq->csd.info = rq;
		rq->csd.flags = 0;
581
		smp_call_function_single_async(ctx->cpu, &rq->csd);
582
	} else {
583
		rq->q->softirq_done_fn(rq);
584
	}
585 586
	put_cpu();
}
587

588
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589
	__releases(hctx->srcu)
590 591 592 593
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
594
		srcu_read_unlock(hctx->srcu, srcu_idx);
595 596 597
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598
	__acquires(hctx->srcu)
599
{
600 601 602
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
603
		rcu_read_lock();
604
	} else
605
		*srcu_idx = srcu_read_lock(hctx->srcu);
606 607
}

608 609 610 611 612 613 614 615
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
616
void blk_mq_complete_request(struct request *rq)
617
{
K
Keith Busch 已提交
618
	if (unlikely(blk_should_fake_timeout(rq->q)))
619
		return;
K
Keith Busch 已提交
620
	__blk_mq_complete_request(rq);
621 622
}
EXPORT_SYMBOL(blk_mq_complete_request);
623

624 625
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
626
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 628 629
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

630
void blk_mq_start_request(struct request *rq)
631 632 633
{
	struct request_queue *q = rq->q;

634 635
	blk_mq_sched_started_request(rq);

636 637
	trace_block_rq_issue(q, rq);

638
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 640 641 642
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
643
		rq->rq_flags |= RQF_STATS;
644
		wbt_issue(q->rq_wb, rq);
645 646
	}

647
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648

649
	blk_add_timer(rq);
K
Keith Busch 已提交
650
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 652 653 654 655 656 657 658 659

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
660
}
661
EXPORT_SYMBOL(blk_mq_start_request);
662

663
static void __blk_mq_requeue_request(struct request *rq)
664 665 666
{
	struct request_queue *q = rq->q;

667 668
	blk_mq_put_driver_tag(rq);

669
	trace_block_rq_requeue(q, rq);
670
	wbt_requeue(q->rq_wb, rq);
671

K
Keith Busch 已提交
672 673
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 675 676
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
677 678
}

679
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
680 681 682
{
	__blk_mq_requeue_request(rq);

683 684 685
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

686
	BUG_ON(blk_queued_rq(rq));
687
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
688 689 690
}
EXPORT_SYMBOL(blk_mq_requeue_request);

691 692 693
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
694
		container_of(work, struct request_queue, requeue_work.work);
695 696 697
	LIST_HEAD(rq_list);
	struct request *rq, *next;

698
	spin_lock_irq(&q->requeue_lock);
699
	list_splice_init(&q->requeue_list, &rq_list);
700
	spin_unlock_irq(&q->requeue_lock);
701 702

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
703
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
704 705
			continue;

706
		rq->rq_flags &= ~RQF_SOFTBARRIER;
707
		list_del_init(&rq->queuelist);
708
		blk_mq_sched_insert_request(rq, true, false, false);
709 710 711 712 713
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
714
		blk_mq_sched_insert_request(rq, false, false, false);
715 716
	}

717
	blk_mq_run_hw_queues(q, false);
718 719
}

720 721
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
722 723 724 725 726 727
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
728
	 * request head insertion from the workqueue.
729
	 */
730
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
731 732 733

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
734
		rq->rq_flags |= RQF_SOFTBARRIER;
735 736 737 738 739
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
740 741 742

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
743 744 745 746 747
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
748
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
749 750 751
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

752 753 754
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
755 756
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
757 758 759
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

760 761
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
762 763
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
764
		return tags->rqs[tag];
765
	}
766 767

	return NULL;
768 769 770
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

771
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
772
{
773 774 775 776 777 778 779
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
780
	}
781 782

	blk_add_timer(req);
783
}
784

K
Keith Busch 已提交
785
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
786
{
K
Keith Busch 已提交
787
	unsigned long deadline;
788

K
Keith Busch 已提交
789 790
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
791

K
Keith Busch 已提交
792 793 794
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
795

K
Keith Busch 已提交
796 797 798 799 800
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
801 802
}

K
Keith Busch 已提交
803
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
804 805
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

827
	/*
K
Keith Busch 已提交
828 829 830 831
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
832
	 */
K
Keith Busch 已提交
833
	if (blk_mq_req_expired(rq, next))
834
		blk_mq_rq_timed_out(rq, reserved);
K
Keith Busch 已提交
835 836
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
837 838
}

839
static void blk_mq_timeout_work(struct work_struct *work)
840
{
841 842
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
843
	unsigned long next = 0;
844
	struct blk_mq_hw_ctx *hctx;
845
	int i;
846

847 848 849 850 851 852 853 854 855
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
856
	 * blk_freeze_queue_start, and the moment the last request is
857 858 859 860
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
861 862
		return;

K
Keith Busch 已提交
863
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
864

K
Keith Busch 已提交
865 866
	if (next != 0) {
		mod_timer(&q->timeout, next);
867
	} else {
868 869 870 871 872 873
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
874 875 876 877 878
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
879
	}
880
	blk_queue_exit(q);
881 882
}

883 884 885 886 887 888 889 890 891 892 893 894 895
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
896
	sbitmap_clear_bit(sb, bitnr);
897 898 899 900
	spin_unlock(&ctx->lock);
	return true;
}

901 902 903 904
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
905
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
906
{
907 908 909 910
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
911

912
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
913
}
914
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
915

916 917 918 919 920 921 922 923 924 925 926 927 928
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
929
	if (!list_empty(&ctx->rq_list)) {
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

955 956 957 958
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
959

960
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
961 962
}

963 964
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
965 966 967 968 969 970 971
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

972 973
	might_sleep_if(wait);

974 975
	if (rq->tag != -1)
		goto done;
976

977 978 979
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

980 981
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
982 983 984 985
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
986 987 988
		data.hctx->tags->rqs[rq->tag] = rq;
	}

989 990 991 992
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
993 994
}

995 996
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
997 998 999 1000 1001
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1002
	list_del_init(&wait->entry);
1003 1004 1005 1006
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1007 1008
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1009 1010
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1011 1012 1013 1014
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1015
{
1016
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1017
	struct sbq_wait_state *ws;
1018 1019
	wait_queue_entry_t *wait;
	bool ret;
1020

1021
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1022 1023 1024
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1025 1026 1027 1028 1029 1030 1031 1032 1033
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1034 1035
	}

1036 1037 1038 1039 1040 1041 1042 1043
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1044 1045
	}

1046 1047 1048
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1049
	/*
1050 1051 1052
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1053
	 */
1054
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1055
	if (!ret) {
1056
		spin_unlock(&this_hctx->lock);
1057
		return false;
1058
	}
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1070 1071
}

1072 1073
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1074
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1075
			     bool got_budget)
1076
{
1077
	struct blk_mq_hw_ctx *hctx;
1078
	struct request *rq, *nxt;
1079
	bool no_tag = false;
1080
	int errors, queued;
1081
	blk_status_t ret = BLK_STS_OK;
1082

1083 1084 1085
	if (list_empty(list))
		return false;

1086 1087
	WARN_ON(!list_is_singular(list) && got_budget);

1088 1089 1090
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1091
	errors = queued = 0;
1092
	do {
1093
		struct blk_mq_queue_data bd;
1094

1095
		rq = list_first_entry(list, struct request, queuelist);
1096 1097 1098 1099 1100 1101

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1102
			/*
1103
			 * The initial allocation attempt failed, so we need to
1104 1105 1106 1107
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1108
			 */
1109
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1110
				blk_mq_put_dispatch_budget(hctx);
1111 1112 1113 1114 1115 1116
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1117 1118 1119 1120
				break;
			}
		}

1121 1122
		list_del_init(&rq->queuelist);

1123
		bd.rq = rq;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1135 1136

		ret = q->mq_ops->queue_rq(hctx, &bd);
1137
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1138 1139
			/*
			 * If an I/O scheduler has been configured and we got a
1140 1141
			 * driver tag for the next request already, free it
			 * again.
1142 1143 1144 1145 1146
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1147
			list_add(&rq->queuelist, list);
1148
			__blk_mq_requeue_request(rq);
1149
			break;
1150 1151 1152
		}

		if (unlikely(ret != BLK_STS_OK)) {
1153
			errors++;
1154
			blk_mq_end_request(rq, BLK_STS_IOERR);
1155
			continue;
1156 1157
		}

1158
		queued++;
1159
	} while (!list_empty(list));
1160

1161
	hctx->dispatched[queued_to_index(queued)]++;
1162 1163 1164 1165 1166

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1167
	if (!list_empty(list)) {
1168 1169
		bool needs_restart;

1170
		spin_lock(&hctx->lock);
1171
		list_splice_init(list, &hctx->dispatch);
1172
		spin_unlock(&hctx->lock);
1173

1174
		/*
1175 1176 1177
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1178
		 *
1179 1180 1181 1182
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1183
		 *
1184 1185 1186 1187 1188 1189 1190
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1191
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1192
		 *   and dm-rq.
1193 1194 1195 1196
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1197
		 */
1198 1199
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1200
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1201
			blk_mq_run_hw_queue(hctx, true);
1202 1203
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1204
	}
1205

1206
	return (queued + errors) != 0;
1207 1208
}

1209 1210 1211 1212
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1213 1214 1215
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1229
	 */
1230 1231 1232 1233 1234 1235 1236
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1237

1238 1239 1240 1241 1242 1243
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1244
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1245

1246 1247 1248
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1249 1250
}

1251 1252 1253 1254 1255 1256 1257 1258 1259
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1260 1261 1262 1263 1264 1265 1266 1267
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1268
	bool tried = false;
1269
	int next_cpu = hctx->next_cpu;
1270

1271 1272
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1273 1274

	if (--hctx->next_cpu_batch <= 0) {
1275
select_cpu:
1276
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1277
				cpu_online_mask);
1278
		if (next_cpu >= nr_cpu_ids)
1279
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1280 1281 1282
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1283 1284 1285 1286
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1287
	if (!cpu_online(next_cpu)) {
1288 1289 1290 1291 1292 1293 1294 1295 1296
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1297
		hctx->next_cpu = next_cpu;
1298 1299 1300
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1301 1302 1303

	hctx->next_cpu = next_cpu;
	return next_cpu;
1304 1305
}

1306 1307
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1308
{
1309
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1310 1311
		return;

1312
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1313 1314
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1315
			__blk_mq_run_hw_queue(hctx);
1316
			put_cpu();
1317 1318
			return;
		}
1319

1320
		put_cpu();
1321
	}
1322

1323 1324
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1325 1326 1327 1328 1329 1330 1331 1332
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1333
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1334
{
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1346 1347 1348 1349
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1350 1351

	if (need_run) {
1352 1353 1354 1355 1356
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1357
}
O
Omar Sandoval 已提交
1358
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1359

1360
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1361 1362 1363 1364 1365
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1366
		if (blk_mq_hctx_stopped(hctx))
1367 1368
			continue;

1369
		blk_mq_run_hw_queue(hctx, async);
1370 1371
	}
}
1372
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1394 1395 1396
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1397
 * BLK_STS_RESOURCE is usually returned.
1398 1399 1400 1401 1402
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1403 1404
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1405
	cancel_delayed_work(&hctx->run_work);
1406

1407
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1408
}
1409
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1410

1411 1412 1413
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1414
 * BLK_STS_RESOURCE is usually returned.
1415 1416 1417 1418 1419
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1420 1421
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1422 1423 1424 1425 1426
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1427 1428 1429
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1430 1431 1432
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1433

1434
	blk_mq_run_hw_queue(hctx, false);
1435 1436 1437
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1458
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1459 1460 1461 1462
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1463 1464
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1465 1466 1467
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1468
static void blk_mq_run_work_fn(struct work_struct *work)
1469 1470 1471
{
	struct blk_mq_hw_ctx *hctx;

1472
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1473

1474
	/*
M
Ming Lei 已提交
1475
	 * If we are stopped, don't run the queue.
1476
	 */
M
Ming Lei 已提交
1477
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1478
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1479 1480 1481 1482

	__blk_mq_run_hw_queue(hctx);
}

1483 1484 1485
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1486
{
J
Jens Axboe 已提交
1487 1488
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1489 1490
	lockdep_assert_held(&ctx->lock);

1491 1492
	trace_block_rq_insert(hctx->queue, rq);

1493 1494 1495 1496
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1497
}
1498

1499 1500
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1501 1502 1503
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1504 1505
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1506
	__blk_mq_insert_req_list(hctx, rq, at_head);
1507 1508 1509
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1510 1511 1512 1513
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1514
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1515 1516 1517 1518 1519 1520 1521 1522
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1523 1524
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1525 1526
}

1527 1528
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1540
		BUG_ON(rq->mq_ctx != ctx);
1541
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1542
		__blk_mq_insert_req_list(hctx, rq, false);
1543
	}
1544
	blk_mq_hctx_mark_pending(hctx, ctx);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1581 1582 1583 1584
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1601 1602 1603
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1604 1605 1606 1607 1608
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1609
	blk_init_request_from_bio(rq, bio);
1610

S
Shaohua Li 已提交
1611 1612
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1613
	blk_account_io_start(rq, true);
1614 1615
}

1616 1617
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1618 1619 1620 1621
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1622 1623
}

1624 1625 1626
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1627 1628 1629 1630
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1631
		.last = true,
1632
	};
1633
	blk_qc_t new_cookie;
1634
	blk_status_t ret;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1649
	case BLK_STS_DEV_RESOURCE:
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1662 1663
						blk_qc_t *cookie,
						bool bypass_insert)
1664 1665
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1666 1667
	bool run_queue = true;

1668 1669 1670 1671
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1672
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1673 1674
	 * and avoid driver to try to dispatch again.
	 */
1675
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1676
		run_queue = false;
1677
		bypass_insert = false;
M
Ming Lei 已提交
1678 1679
		goto insert;
	}
1680

1681
	if (q->elevator && !bypass_insert)
1682 1683
		goto insert;

1684
	if (!blk_mq_get_dispatch_budget(hctx))
1685 1686
		goto insert;

1687 1688
	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
		blk_mq_put_dispatch_budget(hctx);
1689
		goto insert;
1690
	}
1691

1692
	return __blk_mq_issue_directly(hctx, rq, cookie);
1693
insert:
1694 1695
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1696

1697
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1698
	return BLK_STS_OK;
1699 1700
}

1701 1702 1703
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1704
	blk_status_t ret;
1705
	int srcu_idx;
1706

1707
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1708

1709
	hctx_lock(hctx, &srcu_idx);
1710

1711
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1712
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1713
		blk_mq_sched_insert_request(rq, false, true, false);
1714 1715 1716
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1717
	hctx_unlock(hctx, srcu_idx);
1718 1719
}

1720
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1733 1734
}

1735
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1736
{
1737
	const int is_sync = op_is_sync(bio->bi_opf);
1738
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1739
	struct blk_mq_alloc_data data = { .flags = 0 };
1740
	struct request *rq;
1741
	unsigned int request_count = 0;
1742
	struct blk_plug *plug;
1743
	struct request *same_queue_rq = NULL;
1744
	blk_qc_t cookie;
J
Jens Axboe 已提交
1745
	unsigned int wb_acct;
1746 1747 1748

	blk_queue_bounce(q, &bio);

1749
	blk_queue_split(q, &bio);
1750

1751
	if (!bio_integrity_prep(bio))
1752
		return BLK_QC_T_NONE;
1753

1754 1755 1756
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1757

1758 1759 1760
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1761 1762
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1763 1764
	trace_block_getrq(q, bio, bio->bi_opf);

1765
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1766 1767
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1768 1769
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1770
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1771 1772
	}

1773
	wbt_track(rq, wb_acct);
1774

1775
	cookie = request_to_qc_t(data.hctx, rq);
1776

1777
	plug = current->plug;
1778
	if (unlikely(is_flush_fua)) {
1779
		blk_mq_put_ctx(data.ctx);
1780
		blk_mq_bio_to_request(rq, bio);
1781 1782 1783 1784

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1785
	} else if (plug && q->nr_hw_queues == 1) {
1786 1787
		struct request *last = NULL;

1788
		blk_mq_put_ctx(data.ctx);
1789
		blk_mq_bio_to_request(rq, bio);
1790 1791 1792 1793 1794 1795 1796

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1797 1798 1799
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1800
		if (!request_count)
1801
			trace_block_plug(q);
1802 1803
		else
			last = list_entry_rq(plug->mq_list.prev);
1804

1805 1806
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1807 1808
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1809
		}
1810

1811
		list_add_tail(&rq->queuelist, &plug->mq_list);
1812
	} else if (plug && !blk_queue_nomerges(q)) {
1813
		blk_mq_bio_to_request(rq, bio);
1814 1815

		/*
1816
		 * We do limited plugging. If the bio can be merged, do that.
1817 1818
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1819 1820
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1821
		 */
1822 1823 1824 1825 1826 1827
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1828 1829
		blk_mq_put_ctx(data.ctx);

1830 1831 1832
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1833 1834
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1835
		}
1836
	} else if (q->nr_hw_queues > 1 && is_sync) {
1837
		blk_mq_put_ctx(data.ctx);
1838 1839
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1840
	} else {
1841
		blk_mq_put_ctx(data.ctx);
1842
		blk_mq_bio_to_request(rq, bio);
1843
		blk_mq_sched_insert_request(rq, false, true, true);
1844
	}
1845

1846
	return cookie;
1847 1848
}

1849 1850
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1851
{
1852
	struct page *page;
1853

1854
	if (tags->rqs && set->ops->exit_request) {
1855
		int i;
1856

1857
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1858 1859 1860
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1861
				continue;
1862
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1863
			tags->static_rqs[i] = NULL;
1864
		}
1865 1866
	}

1867 1868
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1869
		list_del_init(&page->lru);
1870 1871 1872 1873 1874
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1875 1876
		__free_pages(page, page->private);
	}
1877
}
1878

1879 1880
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1881
	kfree(tags->rqs);
1882
	tags->rqs = NULL;
J
Jens Axboe 已提交
1883 1884
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1885

1886
	blk_mq_free_tags(tags);
1887 1888
}

1889 1890 1891 1892
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1893
{
1894
	struct blk_mq_tags *tags;
1895
	int node;
1896

1897 1898 1899 1900 1901
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1902
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1903 1904
	if (!tags)
		return NULL;
1905

1906
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1907
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1908
				 node);
1909 1910 1911 1912
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1913

J
Jens Axboe 已提交
1914 1915
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1916
				 node);
J
Jens Axboe 已提交
1917 1918 1919 1920 1921 1922
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1923 1924 1925 1926 1927 1928 1929 1930
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
1942
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1943 1944 1945
	return 0;
}

1946 1947 1948 1949 1950
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1951 1952 1953 1954 1955
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1956 1957 1958

	INIT_LIST_HEAD(&tags->page_list);

1959 1960 1961 1962
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1963
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1964
				cache_line_size());
1965
	left = rq_size * depth;
1966

1967
	for (i = 0; i < depth; ) {
1968 1969 1970 1971 1972
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1973
		while (this_order && left < order_to_size(this_order - 1))
1974 1975 1976
			this_order--;

		do {
1977
			page = alloc_pages_node(node,
1978
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1979
				this_order);
1980 1981 1982 1983 1984 1985 1986 1987 1988
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1989
			goto fail;
1990 1991

		page->private = this_order;
1992
		list_add_tail(&page->lru, &tags->page_list);
1993 1994

		p = page_address(page);
1995 1996 1997 1998
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1999
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2000
		entries_per_page = order_to_size(this_order) / rq_size;
2001
		to_do = min(entries_per_page, depth - i);
2002 2003
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2004 2005 2006
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2007 2008 2009
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2010 2011
			}

2012 2013 2014 2015
			p += rq_size;
			i++;
		}
	}
2016
	return 0;
2017

2018
fail:
2019 2020
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2021 2022
}

J
Jens Axboe 已提交
2023 2024 2025 2026 2027
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2028
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2029
{
2030
	struct blk_mq_hw_ctx *hctx;
2031 2032 2033
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2034
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2035
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2036 2037 2038 2039 2040 2041 2042 2043 2044

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2045
		return 0;
2046

J
Jens Axboe 已提交
2047 2048 2049
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2050 2051

	blk_mq_run_hw_queue(hctx, true);
2052
	return 0;
2053 2054
}

2055
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2056
{
2057 2058
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2059 2060
}

2061
/* hctx->ctxs will be freed in queue's release handler */
2062 2063 2064 2065
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2066 2067
	blk_mq_debugfs_unregister_hctx(hctx);

2068 2069
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2070

2071
	if (set->ops->exit_request)
2072
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2073

2074 2075
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2076 2077 2078
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2079
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2080
		cleanup_srcu_struct(hctx->srcu);
2081

2082
	blk_mq_remove_cpuhp(hctx);
2083
	blk_free_flush_queue(hctx->fq);
2084
	sbitmap_free(&hctx->ctx_map);
2085 2086
}

M
Ming Lei 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2096
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2097 2098 2099
	}
}

2100 2101 2102
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2103
{
2104 2105 2106 2107 2108 2109
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2110
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2111 2112 2113
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2114
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2115

2116
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2117 2118

	hctx->tags = set->tags[hctx_idx];
2119 2120

	/*
2121 2122
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2123
	 */
2124
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2125 2126 2127
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2128

2129 2130
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2131
		goto free_ctxs;
2132

2133
	hctx->nr_ctx = 0;
2134

2135 2136 2137
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2138 2139 2140
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2141

2142 2143 2144
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2145 2146
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2147
		goto sched_exit_hctx;
2148

2149
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2150
		goto free_fq;
2151

2152
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2153
		init_srcu_struct(hctx->srcu);
2154

2155 2156
	blk_mq_debugfs_register_hctx(q, hctx);

2157
	return 0;
2158

2159 2160
 free_fq:
	kfree(hctx->fq);
2161 2162
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2163 2164 2165
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2166
 free_bitmap:
2167
	sbitmap_free(&hctx->ctx_map);
2168 2169 2170
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2171
	blk_mq_remove_cpuhp(hctx);
2172 2173
	return -1;
}
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2193
		hctx = blk_mq_map_queue(q, i);
2194
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2195
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2196 2197 2198
	}
}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2221 2222 2223 2224 2225
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2226 2227
}

2228
static void blk_mq_map_swqueue(struct request_queue *q)
2229
{
2230
	unsigned int i, hctx_idx;
2231 2232
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2233
	struct blk_mq_tag_set *set = q->tag_set;
2234

2235 2236 2237 2238 2239
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2240
	queue_for_each_hw_ctx(q, hctx, i) {
2241
		cpumask_clear(hctx->cpumask);
2242
		hctx->nr_ctx = 0;
2243
		hctx->dispatch_from = NULL;
2244 2245 2246
	}

	/*
2247
	 * Map software to hardware queues.
2248 2249
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2250
	 */
2251
	for_each_possible_cpu(i) {
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2265
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2266
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2267

2268
		cpumask_set_cpu(i, hctx->cpumask);
2269 2270 2271
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2272

2273 2274
	mutex_unlock(&q->sysfs_lock);

2275
	queue_for_each_hw_ctx(q, hctx, i) {
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2291

M
Ming Lei 已提交
2292 2293 2294
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2295 2296 2297 2298 2299
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2300
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2301

2302 2303 2304
		/*
		 * Initialize batch roundrobin counts
		 */
2305
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2306 2307
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2308 2309
}

2310 2311 2312 2313
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2314
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2315 2316 2317 2318
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2319
	queue_for_each_hw_ctx(q, hctx, i) {
2320 2321 2322
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2323
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2324 2325 2326
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2327
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2328
		}
2329 2330 2331
	}
}

2332 2333
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2334 2335
{
	struct request_queue *q;
2336

2337 2338
	lockdep_assert_held(&set->tag_list_lock);

2339 2340
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2341
		queue_set_hctx_shared(q, shared);
2342 2343 2344 2345 2346 2347 2348 2349 2350
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2351 2352
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2353 2354 2355 2356 2357 2358
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2359
	mutex_unlock(&set->tag_list_lock);
2360 2361

	synchronize_rcu();
2362 2363 2364 2365 2366 2367 2368 2369
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2370

2371 2372 2373 2374 2375
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2376 2377 2378 2379 2380 2381
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2382
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2383

2384 2385 2386
	mutex_unlock(&set->tag_list_lock);
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2399 2400 2401
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2402
		kobject_put(&hctx->kobj);
2403
	}
2404

2405 2406
	q->mq_map = NULL;

2407 2408
	kfree(q->queue_hw_ctx);

2409 2410 2411 2412 2413 2414
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2415 2416 2417
	free_percpu(q->queue_ctx);
}

2418
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2419 2420 2421
{
	struct request_queue *uninit_q, *q;

2422
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2434 2435 2436 2437
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2438
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2439 2440 2441 2442 2443 2444 2445 2446 2447
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2448 2449
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2450
{
K
Keith Busch 已提交
2451 2452
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2453

K
Keith Busch 已提交
2454
	blk_mq_sysfs_unregister(q);
2455 2456 2457

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2458
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2459
		int node;
2460

K
Keith Busch 已提交
2461 2462 2463 2464
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2465
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2466
					GFP_KERNEL, node);
2467
		if (!hctxs[i])
K
Keith Busch 已提交
2468
			break;
2469

2470
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2471 2472 2473 2474 2475
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2476

2477
		atomic_set(&hctxs[i]->nr_active, 0);
2478
		hctxs[i]->numa_node = node;
2479
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2480 2481 2482 2483 2484 2485 2486 2487

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2488
	}
K
Keith Busch 已提交
2489 2490 2491 2492
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2493 2494
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2495 2496 2497 2498 2499 2500 2501
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2502
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2503 2504 2505 2506 2507 2508
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2509 2510 2511
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2512
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2513 2514
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2515 2516 2517
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2518 2519
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2520
		goto err_exit;
K
Keith Busch 已提交
2521

2522 2523 2524
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2525 2526 2527 2528 2529
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2530
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2531 2532 2533 2534

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2535

2536
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2537
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2538 2539 2540

	q->nr_queues = nr_cpu_ids;

2541
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2542

2543
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2544
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2545

2546 2547
	q->sg_reserved_size = INT_MAX;

2548
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2549 2550 2551
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2552
	blk_queue_make_request(q, blk_mq_make_request);
2553 2554
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2555

2556 2557 2558 2559 2560
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2561 2562 2563 2564 2565
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2566 2567
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2568

2569
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2570
	blk_mq_add_queue_tag_set(set, q);
2571
	blk_mq_map_swqueue(q);
2572

2573 2574 2575
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2576
		ret = elevator_init(q);
2577 2578 2579 2580
		if (ret)
			return ERR_PTR(ret);
	}

2581
	return q;
2582

2583
err_hctxs:
K
Keith Busch 已提交
2584
	kfree(q->queue_hw_ctx);
2585
err_percpu:
K
Keith Busch 已提交
2586
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2587 2588
err_exit:
	q->mq_ops = NULL;
2589 2590
	return ERR_PTR(-ENOMEM);
}
2591
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2592 2593 2594

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2595
	struct blk_mq_tag_set	*set = q->tag_set;
2596

2597
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2598
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2599 2600 2601
}

/* Basically redo blk_mq_init_queue with queue frozen */
2602
static void blk_mq_queue_reinit(struct request_queue *q)
2603
{
2604
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2605

2606
	blk_mq_debugfs_unregister_hctxs(q);
2607 2608
	blk_mq_sysfs_unregister(q);

2609 2610
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2611 2612
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2613
	 */
2614
	blk_mq_map_swqueue(q);
2615

2616
	blk_mq_sysfs_register(q);
2617
	blk_mq_debugfs_register_hctxs(q);
2618 2619
}

2620 2621 2622 2623
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2624 2625
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2626 2627 2628 2629 2630 2631
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2632
		blk_mq_free_rq_map(set->tags[i]);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2672 2673
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2693
		return set->ops->map_queues(set);
2694
	} else
2695 2696 2697
		return blk_mq_map_queues(set);
}

2698 2699 2700 2701 2702 2703
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2704 2705
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2706 2707
	int ret;

B
Bart Van Assche 已提交
2708 2709
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2710 2711
	if (!set->nr_hw_queues)
		return -EINVAL;
2712
	if (!set->queue_depth)
2713 2714 2715 2716
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2717
	if (!set->ops->queue_rq)
2718 2719
		return -EINVAL;

2720 2721 2722
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2723 2724 2725 2726 2727
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2728

2729 2730 2731 2732 2733 2734 2735 2736 2737
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2738 2739 2740 2741 2742
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2743

K
Keith Busch 已提交
2744
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2745 2746
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2747
		return -ENOMEM;
2748

2749 2750 2751
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2752 2753 2754
	if (!set->mq_map)
		goto out_free_tags;

2755
	ret = blk_mq_update_queue_map(set);
2756 2757 2758 2759 2760
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2761
		goto out_free_mq_map;
2762

2763 2764 2765
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2766
	return 0;
2767 2768 2769 2770 2771

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2772 2773
	kfree(set->tags);
	set->tags = NULL;
2774
	return ret;
2775 2776 2777 2778 2779 2780 2781
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2782 2783
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2784

2785 2786 2787
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2788
	kfree(set->tags);
2789
	set->tags = NULL;
2790 2791 2792
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2793 2794 2795 2796 2797 2798
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2799
	if (!set)
2800 2801
		return -EINVAL;

2802
	blk_mq_freeze_queue(q);
2803
	blk_mq_quiesce_queue(q);
2804

2805 2806
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2807 2808
		if (!hctx->tags)
			continue;
2809 2810 2811 2812
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2813
		if (!hctx->sched_tags) {
2814
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2815 2816 2817 2818 2819
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2820 2821 2822 2823 2824 2825 2826
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2827
	blk_mq_unquiesce_queue(q);
2828 2829
	blk_mq_unfreeze_queue(q);

2830 2831 2832
	return ret;
}

2833 2834
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2835 2836 2837
{
	struct request_queue *q;

2838 2839
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2840 2841 2842 2843 2844 2845 2846 2847 2848
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2849
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2850 2851
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2852
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2853 2854 2855 2856 2857
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2858 2859 2860 2861 2862 2863 2864

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2865 2866
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2867 2868 2869 2870
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2871
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2893
	int bucket;
2894

2895 2896 2897 2898
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2899 2900
}

2901 2902 2903 2904 2905
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2906
	int bucket;
2907 2908 2909 2910 2911

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2912
	if (!blk_poll_stats_enable(q))
2913 2914 2915 2916 2917 2918 2919 2920
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2921 2922
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2923
	 */
2924 2925 2926 2927 2928 2929
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2930 2931 2932 2933

	return ret;
}

2934
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2935
				     struct blk_mq_hw_ctx *hctx,
2936 2937 2938 2939
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2940
	unsigned int nsecs;
2941 2942
	ktime_t kt;

J
Jens Axboe 已提交
2943
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2961 2962
		return false;

J
Jens Axboe 已提交
2963
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2964 2965 2966 2967 2968

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2969
	kt = nsecs;
2970 2971 2972 2973 2974 2975 2976

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
2977
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2992 2993 2994 2995 2996
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2997 2998 2999 3000 3001 3002 3003
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3004
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3005 3006
		return true;

J
Jens Axboe 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3032
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3033 3034 3035
	return false;
}

3036
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3037 3038 3039 3040
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3041
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3042 3043 3044
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3045 3046
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3047
	else {
3048
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3049 3050 3051 3052 3053 3054 3055 3056 3057
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3058 3059 3060 3061

	return __blk_mq_poll(hctx, rq);
}

3062 3063
static int __init blk_mq_init(void)
{
3064 3065
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3066 3067 3068
	return 0;
}
subsys_initcall(blk_mq_init);