blk-mq.c 69.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47 48
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
49
	ddir = rq_data_dir(rq);
50 51 52 53 54 55 56 57 58 59 60 61
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

62 63 64
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
65
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66
{
67 68 69
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
70 71
}

72 73 74 75 76 77
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
78 79
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 81 82 83 84
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
85
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 87
}

88
void blk_freeze_queue_start(struct request_queue *q)
89
{
90
	int freeze_depth;
91

92 93
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
94
		percpu_ref_kill(&q->q_usage_counter);
95
		blk_mq_run_hw_queues(q, false);
96
	}
97
}
98
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
99

100
void blk_mq_freeze_queue_wait(struct request_queue *q)
101
{
102
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
103
}
104
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
105

106 107 108 109 110 111 112 113
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
114

115 116 117 118
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
119
void blk_freeze_queue(struct request_queue *q)
120
{
121 122 123 124 125 126 127
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
128
	blk_freeze_queue_start(q);
129 130
	blk_mq_freeze_queue_wait(q);
}
131 132 133 134 135 136 137 138 139

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
140
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141

142
void blk_mq_unfreeze_queue(struct request_queue *q)
143
{
144
	int freeze_depth;
145

146 147 148
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
149
		percpu_ref_reinit(&q->q_usage_counter);
150
		wake_up_all(&q->mq_freeze_wq);
151
	}
152
}
153
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

182 183 184 185 186 187 188 189
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
190 191 192 193 194 195 196

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
197 198
}

199 200 201 202 203 204
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

205 206
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
207
{
208 209 210
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
211
	rq->mq_ctx = ctx;
212
	rq->cmd_flags = op;
213 214
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
215 216 217 218 219 220
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
221
	rq->start_time = jiffies;
222 223
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
224
	set_start_time_ns(rq);
225 226 227 228 229 230 231 232 233 234 235
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
236 237
	rq->timeout = 0;

238 239 240 241
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

242
	ctx->rq_dispatched[op_is_sync(op)]++;
243
}
244
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
245

246 247
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
248 249 250 251
{
	struct request *rq;
	unsigned int tag;

252
	tag = blk_mq_get_tag(data);
253
	if (tag != BLK_MQ_TAG_FAIL) {
254 255 256
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
257

258 259 260 261
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
262 263 264 265
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
266 267
			rq->tag = tag;
			rq->internal_tag = -1;
268
			data->hctx->tags->rqs[rq->tag] = rq;
269 270
		}

271
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
272 273 274 275 276
		return rq;
	}

	return NULL;
}
277
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
278

279 280
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
281
{
282
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
283
	struct request *rq;
284
	int ret;
285

286
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
287 288
	if (ret)
		return ERR_PTR(ret);
289

290
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
291

292 293 294 295
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
296
		return ERR_PTR(-EWOULDBLOCK);
297 298 299 300

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
301 302
	return rq;
}
303
EXPORT_SYMBOL(blk_mq_alloc_request);
304

M
Ming Lin 已提交
305 306 307
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
308
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
309
	struct request *rq;
310
	unsigned int cpu;
M
Ming Lin 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

329 330 331 332
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
333 334 335 336
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
337
	}
338 339
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
340

341
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
342 343

	blk_queue_exit(q);
344 345 346 347 348

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
349 350 351
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

352 353
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
354
{
355
	const int sched_tag = rq->internal_tag;
356 357
	struct request_queue *q = rq->q;

358
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
359
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
360 361

	wbt_done(q->rq_wb, &rq->issue_stat);
362
	rq->rq_flags = 0;
363

364
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
365
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
366 367 368
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
369
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
370
	blk_mq_sched_restart(hctx);
371
	blk_queue_exit(q);
372 373
}

374
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
375
				     struct request *rq)
376 377 378 379
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
380 381 382 383 384 385
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
386
}
O
Omar Sandoval 已提交
387
EXPORT_SYMBOL_GPL(blk_mq_finish_request);
388 389 390

void blk_mq_free_request(struct request *rq)
{
391
	blk_mq_sched_put_request(rq);
392
}
J
Jens Axboe 已提交
393
EXPORT_SYMBOL_GPL(blk_mq_free_request);
394

395
inline void __blk_mq_end_request(struct request *rq, int error)
396
{
M
Ming Lei 已提交
397 398
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
399
	if (rq->end_io) {
J
Jens Axboe 已提交
400
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
401
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
402 403 404
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
405
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
406
	}
407
}
408
EXPORT_SYMBOL(__blk_mq_end_request);
409

410
void blk_mq_end_request(struct request *rq, int error)
411 412 413
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
414
	__blk_mq_end_request(rq, error);
415
}
416
EXPORT_SYMBOL(blk_mq_end_request);
417

418
static void __blk_mq_complete_request_remote(void *data)
419
{
420
	struct request *rq = data;
421

422
	rq->q->softirq_done_fn(rq);
423 424
}

425
static void __blk_mq_complete_request(struct request *rq)
426 427
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
428
	bool shared = false;
429 430
	int cpu;

431 432 433 434 435 436 437
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
438
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
439 440 441
		rq->q->softirq_done_fn(rq);
		return;
	}
442 443

	cpu = get_cpu();
C
Christoph Hellwig 已提交
444 445 446 447
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
448
		rq->csd.func = __blk_mq_complete_request_remote;
449 450
		rq->csd.info = rq;
		rq->csd.flags = 0;
451
		smp_call_function_single_async(ctx->cpu, &rq->csd);
452
	} else {
453
		rq->q->softirq_done_fn(rq);
454
	}
455 456
	put_cpu();
}
457 458 459 460 461 462 463 464 465

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
466
void blk_mq_complete_request(struct request *rq)
467
{
468 469 470
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
471
		return;
472
	if (!blk_mark_rq_complete(rq))
473
		__blk_mq_complete_request(rq);
474 475
}
EXPORT_SYMBOL(blk_mq_complete_request);
476

477 478 479 480 481 482
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

483
void blk_mq_start_request(struct request *rq)
484 485 486
{
	struct request_queue *q = rq->q;

487 488
	blk_mq_sched_started_request(rq);

489 490
	trace_block_rq_issue(q, rq);

491
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
492
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
493
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
494
		wbt_issue(q->rq_wb, &rq->issue_stat);
495 496
	}

497
	blk_add_timer(rq);
498

499 500 501 502 503 504
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

505 506 507 508 509 510
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
511 512 513 514
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
515 516 517 518 519 520 521 522 523

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
524
}
525
EXPORT_SYMBOL(blk_mq_start_request);
526

527 528
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
529
 * flag isn't set yet, so there may be race with timeout handler,
530 531 532 533 534 535
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
536
static void __blk_mq_requeue_request(struct request *rq)
537 538 539 540
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
541
	wbt_requeue(q->rq_wb, &rq->issue_stat);
542
	blk_mq_sched_requeue_request(rq);
543

544 545 546 547
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
548 549
}

550
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
551 552 553 554
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
555
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
556 557 558
}
EXPORT_SYMBOL(blk_mq_requeue_request);

559 560 561
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
562
		container_of(work, struct request_queue, requeue_work.work);
563 564 565 566 567 568 569 570 571
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
572
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
573 574
			continue;

575
		rq->rq_flags &= ~RQF_SOFTBARRIER;
576
		list_del_init(&rq->queuelist);
577
		blk_mq_sched_insert_request(rq, true, false, false, true);
578 579 580 581 582
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
583
		blk_mq_sched_insert_request(rq, false, false, false, true);
584 585
	}

586
	blk_mq_run_hw_queues(q, false);
587 588
}

589 590
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
591 592 593 594 595 596 597 598
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
599
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
600 601 602

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
603
		rq->rq_flags |= RQF_SOFTBARRIER;
604 605 606 607 608
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
609 610 611

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
612 613 614 615 616
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
617
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
618 619 620
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

621 622 623 624 625 626 627 628
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

629 630 631 632 633 634 635 636 637 638 639 640 641 642
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
643
		blk_mq_end_request(rq, -EIO);
644 645 646 647
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

648 649
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
650 651
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
652
		return tags->rqs[tag];
653
	}
654 655

	return NULL;
656 657 658
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

659
struct blk_mq_timeout_data {
660 661
	unsigned long next;
	unsigned int next_set;
662 663
};

664
void blk_mq_rq_timed_out(struct request *req, bool reserved)
665
{
J
Jens Axboe 已提交
666
	const struct blk_mq_ops *ops = req->q->mq_ops;
667
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668 669 670 671 672 673 674

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
675
	 * both flags will get cleared. So check here again, and ignore
676 677
	 * a timeout event with a request that isn't active.
	 */
678 679
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
680

681
	if (ops->timeout)
682
		ret = ops->timeout(req, reserved);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
698
}
699

700 701 702 703
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
704

705
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706
		return;
707

708 709 710 711 712 713 714 715 716 717 718 719 720
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
721 722
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
723
			blk_mq_rq_timed_out(rq, reserved);
724 725 726 727
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
728 729
}

730
static void blk_mq_timeout_work(struct work_struct *work)
731
{
732 733
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
734 735 736 737 738
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
739

740 741 742 743 744 745 746 747 748
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
749
	 * blk_freeze_queue_start, and the moment the last request is
750 751 752 753
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
754 755
		return;

756
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757

758 759 760
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
761
	} else {
762 763
		struct blk_mq_hw_ctx *hctx;

764 765 766 767 768
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
769
	}
770
	blk_queue_exit(q);
771 772 773 774 775 776 777 778 779 780 781 782 783 784
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785
		bool merged = false;
786 787 788 789 790 791 792

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

793 794 795 796
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
797
			break;
798 799 800
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
801
			break;
802 803
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
804
			break;
805 806
		default:
			continue;
807
		}
808 809 810 811

		if (merged)
			ctx->rq_merged++;
		return merged;
812 813 814 815 816
	}

	return false;
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

835 836 837 838
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
839
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840
{
841 842 843 844
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
845

846
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847
}
848
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849

850 851 852 853
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
854

855
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 857
}

858 859
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
860 861 862 863 864 865 866
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

867 868
	might_sleep_if(wait);

869 870
	if (rq->tag != -1)
		goto done;
871

872 873 874
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

875 876
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
877 878 879 880
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
881 882 883
		data.hctx->tags->rqs[rq->tag] = rq;
	}

884 885 886 887
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
888 889
}

890 891
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
892 893 894 895 896 897 898 899 900 901
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

984
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
985
{
986
	struct blk_mq_hw_ctx *hctx;
987
	struct request *rq;
988
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
989

990 991 992
	if (list_empty(list))
		return false;

993 994 995
	/*
	 * Now process all the entries, sending them to the driver.
	 */
996
	errors = queued = 0;
997
	do {
998
		struct blk_mq_queue_data bd;
999

1000
		rq = list_first_entry(list, struct request, queuelist);
1001 1002 1003
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1004 1005

			/*
1006 1007
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1008
			 */
1009 1010 1011 1012 1013 1014 1015 1016 1017
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1018
				break;
1019
		}
1020

1021 1022
		list_del_init(&rq->queuelist);

1023
		bd.rq = rq;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1037 1038

		ret = q->mq_ops->queue_rq(hctx, &bd);
1039 1040 1041
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1042
			break;
1043
		case BLK_MQ_RQ_QUEUE_BUSY:
1044
			blk_mq_put_driver_tag_hctx(hctx, rq);
1045
			list_add(&rq->queuelist, list);
1046
			__blk_mq_requeue_request(rq);
1047 1048 1049 1050
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1051
			errors++;
1052
			blk_mq_end_request(rq, -EIO);
1053 1054 1055 1056 1057
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1058
	} while (!list_empty(list));
1059

1060
	hctx->dispatched[queued_to_index(queued)]++;
1061 1062 1063 1064 1065

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1066
	if (!list_empty(list)) {
1067
		/*
1068 1069
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1070 1071 1072 1073
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1074
		spin_lock(&hctx->lock);
1075
		list_splice_init(list, &hctx->dispatch);
1076
		spin_unlock(&hctx->lock);
1077

1078
		/*
1079 1080 1081
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1082
		 *
1083 1084 1085 1086
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1087
		 *
1088 1089 1090 1091 1092 1093 1094 1095 1096
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
		 *   and dm-rq.
1097
		 */
1098 1099
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1100
			blk_mq_run_hw_queue(hctx, true);
1101
	}
1102

1103
	return (queued + errors) != 0;
1104 1105
}

1106 1107 1108 1109 1110 1111 1112 1113 1114
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1115
		blk_mq_sched_dispatch_requests(hctx);
1116 1117
		rcu_read_unlock();
	} else {
1118 1119
		might_sleep();

1120
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1121
		blk_mq_sched_dispatch_requests(hctx);
1122 1123 1124 1125
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1126 1127 1128 1129 1130 1131 1132 1133
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1134 1135
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1136 1137

	if (--hctx->next_cpu_batch <= 0) {
1138
		int next_cpu;
1139 1140 1141 1142 1143 1144 1145 1146 1147

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1148
	return hctx->next_cpu;
1149 1150
}

1151 1152
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1153
{
1154 1155
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1156 1157
		return;

1158
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1159 1160
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1161
			__blk_mq_run_hw_queue(hctx);
1162
			put_cpu();
1163 1164
			return;
		}
1165

1166
		put_cpu();
1167
	}
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	if (msecs == 0)
		kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work);
	else
		kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
						 &hctx->delayed_run_work,
						 msecs_to_jiffies(msecs));
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1187
}
O
Omar Sandoval 已提交
1188
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1189

1190
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1191 1192 1193 1194 1195
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1196
		if (!blk_mq_hctx_has_pending(hctx) ||
1197
		    blk_mq_hctx_stopped(hctx))
1198 1199
			continue;

1200
		blk_mq_run_hw_queue(hctx, async);
1201 1202
	}
}
1203
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1225 1226
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1227
	cancel_work(&hctx->run_work);
1228
	cancel_delayed_work(&hctx->delay_work);
1229 1230 1231 1232
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1243 1244 1245
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1246

1247
	blk_mq_run_hw_queue(hctx, false);
1248 1249 1250
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1271
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1272 1273 1274 1275
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1276 1277
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1278 1279 1280
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1281
static void blk_mq_run_work_fn(struct work_struct *work)
1282 1283 1284
{
	struct blk_mq_hw_ctx *hctx;

1285
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1286

1287 1288 1289
	__blk_mq_run_hw_queue(hctx);
}

1290 1291 1292 1293 1294 1295 1296 1297 1298
static void blk_mq_delayed_run_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);

	__blk_mq_run_hw_queue(hctx);
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1311 1312
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1313

1314
	blk_mq_stop_hw_queue(hctx);
1315 1316
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1317 1318 1319
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1320 1321 1322
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1323
{
J
Jens Axboe 已提交
1324 1325
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1326 1327
	trace_block_rq_insert(hctx->queue, rq);

1328 1329 1330 1331
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1332
}
1333

1334 1335
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1336 1337 1338
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1339
	__blk_mq_insert_req_list(hctx, rq, at_head);
1340 1341 1342
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1343 1344
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1356
		BUG_ON(rq->mq_ctx != ctx);
1357
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1358
		__blk_mq_insert_req_list(hctx, rq, false);
1359
	}
1360
	blk_mq_hctx_mark_pending(hctx, ctx);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1397 1398 1399 1400
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1417 1418 1419
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1420 1421 1422 1423 1424
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1425
	blk_init_request_from_bio(rq, bio);
1426

1427
	blk_account_io_start(rq, true);
1428 1429
}

1430 1431 1432 1433 1434 1435
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1436 1437 1438
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1439
{
1440
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1441 1442 1443 1444 1445 1446 1447
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1448 1449
		struct request_queue *q = hctx->queue;

1450 1451 1452 1453 1454
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1455

1456
		spin_unlock(&ctx->lock);
1457
		__blk_mq_finish_request(hctx, ctx, rq);
1458
		return true;
1459
	}
1460
}
1461

1462 1463
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1464 1465 1466 1467
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1468 1469
}

1470
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1471
				      bool may_sleep)
1472 1473 1474 1475
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1476
		.last = true,
1477
	};
1478 1479 1480
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1481

1482
	if (q->elevator)
1483 1484
		goto insert;

1485 1486 1487 1488 1489
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1490 1491 1492 1493 1494 1495
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1496 1497
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1498
		return;
1499
	}
1500

1501 1502
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
1503
		blk_mq_end_request(rq, -EIO);
1504
		return;
1505
	}
1506

1507
	__blk_mq_requeue_request(rq);
1508
insert:
1509
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
1520 1521 1522 1523 1524
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1525 1526 1527 1528 1529
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1530
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1531
{
1532
	const int is_sync = op_is_sync(bio->bi_opf);
1533
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1534
	struct blk_mq_alloc_data data = { .flags = 0 };
1535
	struct request *rq;
1536
	unsigned int request_count = 0;
1537
	struct blk_plug *plug;
1538
	struct request *same_queue_rq = NULL;
1539
	blk_qc_t cookie;
J
Jens Axboe 已提交
1540
	unsigned int wb_acct;
1541 1542 1543 1544

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1545
		bio_io_error(bio);
1546
		return BLK_QC_T_NONE;
1547 1548
	}

1549 1550
	blk_queue_split(q, &bio, q->bio_split);

1551 1552 1553
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1554

1555 1556 1557
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1558 1559
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1560 1561 1562
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1563 1564
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1565
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1566 1567 1568
	}

	wbt_track(&rq->issue_stat, wb_acct);
1569

1570
	cookie = request_to_qc_t(data.hctx, rq);
1571

1572
	plug = current->plug;
1573
	if (unlikely(is_flush_fua)) {
1574
		blk_mq_put_ctx(data.ctx);
1575
		blk_mq_bio_to_request(rq, bio);
1576 1577 1578 1579 1580 1581 1582 1583
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
1584 1585
		struct request *last = NULL;

1586
		blk_mq_put_ctx(data.ctx);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
1610
	} else if (plug && !blk_queue_nomerges(q)) {
1611 1612 1613
		blk_mq_bio_to_request(rq, bio);

		/*
1614
		 * We do limited plugging. If the bio can be merged, do that.
1615 1616
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1617 1618
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1619
		 */
1620 1621 1622 1623 1624 1625
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1626 1627
		blk_mq_put_ctx(data.ctx);

1628 1629 1630
		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1631
	} else if (q->nr_hw_queues > 1 && is_sync) {
1632
		blk_mq_put_ctx(data.ctx);
1633 1634
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1635
	} else if (q->elevator) {
1636
		blk_mq_put_ctx(data.ctx);
1637
		blk_mq_bio_to_request(rq, bio);
1638
		blk_mq_sched_insert_request(rq, false, true, true, true);
1639 1640
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		blk_mq_put_ctx(data.ctx);
1641
		blk_mq_run_hw_queue(data.hctx, true);
1642 1643
	} else
		blk_mq_put_ctx(data.ctx);
1644

1645
	return cookie;
1646 1647
}

1648 1649
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1650
{
1651
	struct page *page;
1652

1653
	if (tags->rqs && set->ops->exit_request) {
1654
		int i;
1655

1656
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1657 1658 1659
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1660
				continue;
J
Jens Axboe 已提交
1661
			set->ops->exit_request(set->driver_data, rq,
1662
						hctx_idx, i);
J
Jens Axboe 已提交
1663
			tags->static_rqs[i] = NULL;
1664
		}
1665 1666
	}

1667 1668
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1669
		list_del_init(&page->lru);
1670 1671 1672 1673 1674
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1675 1676
		__free_pages(page, page->private);
	}
1677
}
1678

1679 1680
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1681
	kfree(tags->rqs);
1682
	tags->rqs = NULL;
J
Jens Axboe 已提交
1683 1684
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1685

1686
	blk_mq_free_tags(tags);
1687 1688
}

1689 1690 1691 1692
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1693
{
1694
	struct blk_mq_tags *tags;
1695
	int node;
1696

1697 1698 1699 1700 1701
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1702
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1703 1704
	if (!tags)
		return NULL;
1705

1706
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1707
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1708
				 node);
1709 1710 1711 1712
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1713

J
Jens Axboe 已提交
1714 1715
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1716
				 node);
J
Jens Axboe 已提交
1717 1718 1719 1720 1721 1722
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1736 1737 1738 1739 1740
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1741 1742 1743

	INIT_LIST_HEAD(&tags->page_list);

1744 1745 1746 1747
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1748
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1749
				cache_line_size());
1750
	left = rq_size * depth;
1751

1752
	for (i = 0; i < depth; ) {
1753 1754 1755 1756 1757
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1758
		while (this_order && left < order_to_size(this_order - 1))
1759 1760 1761
			this_order--;

		do {
1762
			page = alloc_pages_node(node,
1763
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1764
				this_order);
1765 1766 1767 1768 1769 1770 1771 1772 1773
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1774
			goto fail;
1775 1776

		page->private = this_order;
1777
		list_add_tail(&page->lru, &tags->page_list);
1778 1779

		p = page_address(page);
1780 1781 1782 1783
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1784
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1785
		entries_per_page = order_to_size(this_order) / rq_size;
1786
		to_do = min(entries_per_page, depth - i);
1787 1788
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1789 1790 1791
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1792 1793
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1794
						rq, hctx_idx, i,
1795
						node)) {
J
Jens Axboe 已提交
1796
					tags->static_rqs[i] = NULL;
1797
					goto fail;
1798
				}
1799 1800
			}

1801 1802 1803 1804
			p += rq_size;
			i++;
		}
	}
1805
	return 0;
1806

1807
fail:
1808 1809
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1810 1811
}

J
Jens Axboe 已提交
1812 1813 1814 1815 1816
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1817
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1818
{
1819
	struct blk_mq_hw_ctx *hctx;
1820 1821 1822
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1823
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1824
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1825 1826 1827 1828 1829 1830 1831 1832 1833

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1834
		return 0;
1835

J
Jens Axboe 已提交
1836 1837 1838
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1839 1840

	blk_mq_run_hw_queue(hctx, true);
1841
	return 0;
1842 1843
}

1844
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1845
{
1846 1847
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1848 1849
}

1850
/* hctx->ctxs will be freed in queue's release handler */
1851 1852 1853 1854
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1855 1856
	unsigned flush_start_tag = set->queue_depth;

1857 1858
	blk_mq_tag_idle(hctx);

1859 1860 1861 1862 1863
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1864 1865
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1866 1867 1868
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1869 1870 1871
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1872
	blk_mq_remove_cpuhp(hctx);
1873
	blk_free_flush_queue(hctx->fq);
1874
	sbitmap_free(&hctx->ctx_map);
1875 1876
}

M
Ming Lei 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1886
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1887 1888 1889
	}
}

1890 1891 1892
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1893
{
1894
	int node;
1895
	unsigned flush_start_tag = set->queue_depth;
1896 1897 1898 1899 1900

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1901
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1902
	INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1903 1904 1905 1906 1907
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1908
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1909

1910
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1911 1912

	hctx->tags = set->tags[hctx_idx];
1913 1914

	/*
1915 1916
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1917
	 */
1918 1919 1920 1921
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1922

1923 1924
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1925
		goto free_ctxs;
1926

1927
	hctx->nr_ctx = 0;
1928

1929 1930 1931
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1932

1933 1934 1935
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1936 1937
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1938
		goto sched_exit_hctx;
1939

1940 1941 1942 1943 1944
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1945

1946 1947 1948
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1949
	return 0;
1950

1951 1952
 free_fq:
	kfree(hctx->fq);
1953 1954
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1955 1956 1957
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1958
 free_bitmap:
1959
	sbitmap_free(&hctx->ctx_map);
1960 1961 1962
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1963
	blk_mq_remove_cpuhp(hctx);
1964 1965
	return -1;
}
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1985
		hctx = blk_mq_map_queue(q, i);
1986

1987 1988 1989 1990 1991
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1992
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1993 1994 1995
	}
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2018 2019 2020 2021 2022
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2023 2024
}

2025 2026
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2027
{
2028
	unsigned int i, hctx_idx;
2029 2030
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2031
	struct blk_mq_tag_set *set = q->tag_set;
2032

2033 2034 2035 2036 2037
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2038
	queue_for_each_hw_ctx(q, hctx, i) {
2039
		cpumask_clear(hctx->cpumask);
2040 2041 2042 2043 2044 2045
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2046
	for_each_possible_cpu(i) {
2047
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2048
		if (!cpumask_test_cpu(i, online_mask))
2049 2050
			continue;

2051 2052
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2053 2054
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2055 2056 2057 2058 2059 2060
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2061
			q->mq_map[i] = 0;
2062 2063
		}

2064
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2065
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2066

2067
		cpumask_set_cpu(i, hctx->cpumask);
2068 2069 2070
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2071

2072 2073
	mutex_unlock(&q->sysfs_lock);

2074
	queue_for_each_hw_ctx(q, hctx, i) {
2075
		/*
2076 2077
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2078 2079
		 */
		if (!hctx->nr_ctx) {
2080 2081 2082 2083
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2084 2085 2086
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2087
			hctx->tags = NULL;
2088 2089 2090
			continue;
		}

M
Ming Lei 已提交
2091 2092 2093
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2094 2095 2096 2097 2098
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2099
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2100

2101 2102 2103
		/*
		 * Initialize batch roundrobin counts
		 */
2104 2105 2106
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2107 2108
}

2109
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2110 2111 2112 2113
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2125

2126 2127
	lockdep_assert_held(&set->tag_list_lock);

2128 2129
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2130
		queue_set_hctx_shared(q, shared);
2131 2132 2133 2134 2135 2136 2137 2138 2139
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2140 2141
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2142 2143 2144 2145 2146 2147
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2148
	mutex_unlock(&set->tag_list_lock);
2149 2150

	synchronize_rcu();
2151 2152 2153 2154 2155 2156 2157 2158
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2159 2160 2161 2162 2163 2164 2165 2166 2167

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2168
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2169

2170 2171 2172
	mutex_unlock(&set->tag_list_lock);
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2185 2186 2187
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2188
		kobject_put(&hctx->kobj);
2189
	}
2190

2191 2192
	q->mq_map = NULL;

2193 2194
	kfree(q->queue_hw_ctx);

2195 2196 2197 2198 2199 2200
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2201 2202 2203
	free_percpu(q->queue_ctx);
}

2204
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2220 2221
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2222
{
K
Keith Busch 已提交
2223 2224
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2225

K
Keith Busch 已提交
2226
	blk_mq_sysfs_unregister(q);
2227
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2228
		int node;
2229

K
Keith Busch 已提交
2230 2231 2232 2233
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2234 2235
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2236
		if (!hctxs[i])
K
Keith Busch 已提交
2237
			break;
2238

2239
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2240 2241 2242 2243 2244
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2245

2246
		atomic_set(&hctxs[i]->nr_active, 0);
2247
		hctxs[i]->numa_node = node;
2248
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2249 2250 2251 2252 2253 2254 2255 2256

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2257
	}
K
Keith Busch 已提交
2258 2259 2260 2261
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2262 2263
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2277 2278 2279
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2280
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2281 2282
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2283 2284 2285
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2286 2287
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2288
		goto err_exit;
K
Keith Busch 已提交
2289

2290 2291 2292
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2293 2294 2295 2296 2297
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2298
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2299 2300 2301 2302

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2303

2304
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2305
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2306 2307 2308

	q->nr_queues = nr_cpu_ids;

2309
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2310

2311 2312 2313
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2314 2315
	q->sg_reserved_size = INT_MAX;

2316
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2317 2318 2319
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2320
	blk_queue_make_request(q, blk_mq_make_request);
2321

2322 2323 2324 2325 2326
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2327 2328 2329 2330 2331
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2332 2333
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2334

2335
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2336

2337
	get_online_cpus();
2338 2339
	mutex_lock(&all_q_mutex);

2340
	list_add_tail(&q->all_q_node, &all_q_list);
2341
	blk_mq_add_queue_tag_set(set, q);
2342
	blk_mq_map_swqueue(q, cpu_online_mask);
2343

2344
	mutex_unlock(&all_q_mutex);
2345
	put_online_cpus();
2346

2347 2348 2349 2350 2351 2352 2353 2354
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2355
	return q;
2356

2357
err_hctxs:
K
Keith Busch 已提交
2358
	kfree(q->queue_hw_ctx);
2359
err_percpu:
K
Keith Busch 已提交
2360
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2361 2362
err_exit:
	q->mq_ops = NULL;
2363 2364
	return ERR_PTR(-ENOMEM);
}
2365
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2366 2367 2368

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2369
	struct blk_mq_tag_set	*set = q->tag_set;
2370

2371 2372 2373 2374
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2375 2376
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2377
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2378 2379 2380
}

/* Basically redo blk_mq_init_queue with queue frozen */
2381 2382
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2383
{
2384
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2385

2386 2387
	blk_mq_sysfs_unregister(q);

2388 2389 2390 2391 2392 2393
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2394
	blk_mq_map_swqueue(q, online_mask);
2395

2396
	blk_mq_sysfs_register(q);
2397 2398
}

2399 2400 2401 2402 2403 2404 2405 2406
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2407 2408 2409 2410
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2411 2412 2413 2414 2415 2416 2417 2418
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2419
		blk_freeze_queue_start(q);
2420
	list_for_each_entry(q, &all_q_list, all_q_node)
2421 2422
		blk_mq_freeze_queue_wait(q);

2423
	list_for_each_entry(q, &all_q_list, all_q_node)
2424
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2425 2426 2427 2428

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2429
	mutex_unlock(&all_q_mutex);
2430 2431 2432 2433
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2434
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2450 2451 2452 2453
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2454 2455 2456 2457 2458 2459 2460
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2461 2462
}

2463 2464 2465 2466
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2467 2468
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2469 2470 2471 2472 2473 2474
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2475
		blk_mq_free_rq_map(set->tags[i]);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2515 2516 2517 2518 2519 2520 2521 2522
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2523 2524 2525 2526 2527 2528
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2529 2530
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2531 2532
	int ret;

B
Bart Van Assche 已提交
2533 2534
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2535 2536
	if (!set->nr_hw_queues)
		return -EINVAL;
2537
	if (!set->queue_depth)
2538 2539 2540 2541
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2542
	if (!set->ops->queue_rq)
2543 2544
		return -EINVAL;

2545 2546 2547 2548 2549
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2550

2551 2552 2553 2554 2555 2556 2557 2558 2559
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2560 2561 2562 2563 2564
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2565

K
Keith Busch 已提交
2566
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2567 2568
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2569
		return -ENOMEM;
2570

2571 2572 2573
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2574 2575 2576
	if (!set->mq_map)
		goto out_free_tags;

2577
	ret = blk_mq_update_queue_map(set);
2578 2579 2580 2581 2582
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2583
		goto out_free_mq_map;
2584

2585 2586 2587
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2588
	return 0;
2589 2590 2591 2592 2593

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2594 2595
	kfree(set->tags);
	set->tags = NULL;
2596
	return ret;
2597 2598 2599 2600 2601 2602 2603
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2604 2605
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2606

2607 2608 2609
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2610
	kfree(set->tags);
2611
	set->tags = NULL;
2612 2613 2614
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2615 2616 2617 2618 2619 2620
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2621
	if (!set)
2622 2623
		return -EINVAL;

2624 2625 2626
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2627 2628
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2629 2630
		if (!hctx->tags)
			continue;
2631 2632 2633 2634
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2635 2636 2637 2638 2639 2640 2641 2642
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2643 2644 2645 2646 2647 2648 2649
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2650 2651 2652
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2653 2654 2655
	return ret;
}

K
Keith Busch 已提交
2656 2657 2658 2659
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

2660 2661
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2671
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2708
	int bucket;
2709

2710 2711 2712 2713
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2714 2715
}

2716 2717 2718 2719 2720
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2721
	int bucket;
2722 2723 2724 2725 2726

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2727
	if (!blk_poll_stats_enable(q))
2728 2729 2730 2731 2732 2733 2734 2735
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2736 2737
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2738
	 */
2739 2740 2741 2742 2743 2744
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2745 2746 2747 2748

	return ret;
}

2749
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2750
				     struct blk_mq_hw_ctx *hctx,
2751 2752 2753 2754
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2755
	unsigned int nsecs;
2756 2757
	ktime_t kt;

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2776 2777 2778 2779 2780 2781 2782 2783
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2784
	kt = nsecs;
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2807 2808 2809 2810 2811
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2812 2813 2814 2815 2816 2817 2818
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2819
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2820 2821
		return true;

J
Jens Axboe 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2865 2866 2867 2868
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2869 2870 2871 2872 2873

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2884 2885
static int __init blk_mq_init(void)
{
2886 2887
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2888

2889 2890 2891
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2892 2893 2894
	return 0;
}
subsys_initcall(blk_mq_init);