blk-mq.c 71.6 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44 45
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

46 47 48 49
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
50
	ddir = rq_data_dir(rq);
51 52 53 54 55 56 57 58 59 60 61 62
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

63 64 65
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
66
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67
{
68 69 70
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
71 72
}

73 74 75 76 77 78
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
79 80
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 82 83 84 85
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
86
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 88
}

89
void blk_freeze_queue_start(struct request_queue *q)
90
{
91
	int freeze_depth;
92

93 94
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
95
		percpu_ref_kill(&q->q_usage_counter);
96
		blk_mq_run_hw_queues(q, false);
97
	}
98
}
99
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100

101
void blk_mq_freeze_queue_wait(struct request_queue *q)
102
{
103
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104
}
105
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106

107 108 109 110 111 112 113 114
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115

116 117 118 119
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
120
void blk_freeze_queue(struct request_queue *q)
121
{
122 123 124 125 126 127 128
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
129
	blk_freeze_queue_start(q);
130 131
	blk_mq_freeze_queue_wait(q);
}
132 133 134 135 136 137 138 139 140

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
141
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142

143
void blk_mq_unfreeze_queue(struct request_queue *q)
144
{
145
	int freeze_depth;
146

147 148 149
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
150
		percpu_ref_reinit(&q->q_usage_counter);
151
		wake_up_all(&q->mq_freeze_wq);
152
	}
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155

156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

170
/**
171
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
172 173 174
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
175 176 177
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
178 179 180 181 182 183 184
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

185
	blk_mq_quiesce_queue_nowait(q);
186

187 188
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
189
			synchronize_srcu(hctx->queue_rq_srcu);
190 191 192 193 194 195 196 197
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

198 199 200 201 202 203 204 205 206
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
207 208 209
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
210
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
211
	spin_unlock_irqrestore(q->queue_lock, flags);
212

213 214
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
215 216 217
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

218 219 220 221 222 223 224 225
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
226 227 228 229 230 231 232

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
233 234
}

235 236 237 238 239 240
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

241 242
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
243
{
244 245 246
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

247 248
	rq->rq_flags = 0;

249 250 251 252 253 254 255 256 257 258 259 260 261
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

262 263
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
264 265
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
266
	rq->cmd_flags = op;
267
	if (blk_queue_io_stat(data->q))
268
		rq->rq_flags |= RQF_IO_STAT;
269 270 271 272 273 274
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
275
	rq->start_time = jiffies;
276 277
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
278
	set_start_time_ns(rq);
279 280 281 282 283 284 285 286 287 288 289
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
290 291
	rq->timeout = 0;

292 293 294 295
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

296 297
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
298 299
}

300 301 302 303 304 305
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
306
	unsigned int tag;
307 308 309 310 311 312 313

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
314 315
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
316 317 318 319 320 321 322 323

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
324 325
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
326 327
	}

328 329
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
330 331
		blk_queue_exit(q);
		return NULL;
332 333
	}

334
	rq = blk_mq_rq_ctx_init(data, tag, op);
335 336
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
337
		if (e && e->type->ops.mq.prepare_request) {
338 339 340
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

341 342
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
343
		}
344 345 346
	}
	data->hctx->queued++;
	return rq;
347 348
}

349
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
350
		unsigned int flags)
351
{
352
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
353
	struct request *rq;
354
	int ret;
355

356
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
357 358
	if (ret)
		return ERR_PTR(ret);
359

360
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
361

362 363 364 365
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
366
		return ERR_PTR(-EWOULDBLOCK);
367 368 369 370

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
371 372
	return rq;
}
373
EXPORT_SYMBOL(blk_mq_alloc_request);
374

375 376
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
377
{
378
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
379
	struct request *rq;
380
	unsigned int cpu;
M
Ming Lin 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

399 400 401 402
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
403 404 405 406
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
407
	}
408 409
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
410

411
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
412 413

	blk_queue_exit(q);
414 415 416 417 418

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
419 420 421
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

422
void blk_mq_free_request(struct request *rq)
423 424
{
	struct request_queue *q = rq->q;
425 426 427 428 429
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

430
	if (rq->rq_flags & RQF_ELVPRIV) {
431 432 433 434 435 436 437
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
438

439
	ctx->rq_completed[rq_is_sync(rq)]++;
440
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
441
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
442 443

	wbt_done(q->rq_wb, &rq->issue_stat);
444

445
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
446
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
447 448 449
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
450
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
451
	blk_mq_sched_restart(hctx);
452
	blk_queue_exit(q);
453
}
J
Jens Axboe 已提交
454
EXPORT_SYMBOL_GPL(blk_mq_free_request);
455

456
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
457
{
M
Ming Lei 已提交
458 459
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
460
	if (rq->end_io) {
J
Jens Axboe 已提交
461
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
462
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
463 464 465
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
466
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
467
	}
468
}
469
EXPORT_SYMBOL(__blk_mq_end_request);
470

471
void blk_mq_end_request(struct request *rq, blk_status_t error)
472 473 474
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
475
	__blk_mq_end_request(rq, error);
476
}
477
EXPORT_SYMBOL(blk_mq_end_request);
478

479
static void __blk_mq_complete_request_remote(void *data)
480
{
481
	struct request *rq = data;
482

483
	rq->q->softirq_done_fn(rq);
484 485
}

486
static void __blk_mq_complete_request(struct request *rq)
487 488
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
489
	bool shared = false;
490 491
	int cpu;

492 493 494 495 496 497 498
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
499
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
500 501 502
		rq->q->softirq_done_fn(rq);
		return;
	}
503 504

	cpu = get_cpu();
C
Christoph Hellwig 已提交
505 506 507 508
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
509
		rq->csd.func = __blk_mq_complete_request_remote;
510 511
		rq->csd.info = rq;
		rq->csd.flags = 0;
512
		smp_call_function_single_async(ctx->cpu, &rq->csd);
513
	} else {
514
		rq->q->softirq_done_fn(rq);
515
	}
516 517
	put_cpu();
}
518 519 520 521 522 523 524 525 526

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
527
void blk_mq_complete_request(struct request *rq)
528
{
529 530 531
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
532
		return;
533
	if (!blk_mark_rq_complete(rq))
534
		__blk_mq_complete_request(rq);
535 536
}
EXPORT_SYMBOL(blk_mq_complete_request);
537

538 539 540 541 542 543
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

544
void blk_mq_start_request(struct request *rq)
545 546 547
{
	struct request_queue *q = rq->q;

548 549
	blk_mq_sched_started_request(rq);

550 551
	trace_block_rq_issue(q, rq);

552
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
553
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
554
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
555
		wbt_issue(q->rq_wb, &rq->issue_stat);
556 557
	}

558
	blk_add_timer(rq);
559

560 561 562 563 564 565
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

566 567 568 569 570 571
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
572 573 574 575
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
576 577 578 579 580 581 582 583 584

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
585
}
586
EXPORT_SYMBOL(blk_mq_start_request);
587

588 589
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
590
 * flag isn't set yet, so there may be race with timeout handler,
591 592 593 594 595 596
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
597
static void __blk_mq_requeue_request(struct request *rq)
598 599 600 601
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
602
	wbt_requeue(q->rq_wb, &rq->issue_stat);
603
	blk_mq_sched_requeue_request(rq);
604

605 606 607 608
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
609 610
}

611
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
612 613 614 615
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
616
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
617 618 619
}
EXPORT_SYMBOL(blk_mq_requeue_request);

620 621 622
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
623
		container_of(work, struct request_queue, requeue_work.work);
624 625 626 627 628 629 630 631 632
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
633
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
634 635
			continue;

636
		rq->rq_flags &= ~RQF_SOFTBARRIER;
637
		list_del_init(&rq->queuelist);
638
		blk_mq_sched_insert_request(rq, true, false, false, true);
639 640 641 642 643
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
644
		blk_mq_sched_insert_request(rq, false, false, false, true);
645 646
	}

647
	blk_mq_run_hw_queues(q, false);
648 649
}

650 651
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
652 653 654 655 656 657 658 659
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
660
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
661 662 663

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
664
		rq->rq_flags |= RQF_SOFTBARRIER;
665 666 667 668 669
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
670 671 672

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
673 674 675 676 677
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
678
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
679 680 681
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

682 683 684 685 686 687 688 689
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

690 691
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
692 693
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
694
		return tags->rqs[tag];
695
	}
696 697

	return NULL;
698 699 700
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

701
struct blk_mq_timeout_data {
702 703
	unsigned long next;
	unsigned int next_set;
704 705
};

706
void blk_mq_rq_timed_out(struct request *req, bool reserved)
707
{
J
Jens Axboe 已提交
708
	const struct blk_mq_ops *ops = req->q->mq_ops;
709
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
710 711 712 713 714 715 716

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
717
	 * both flags will get cleared. So check here again, and ignore
718 719
	 * a timeout event with a request that isn't active.
	 */
720 721
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
722

723
	if (ops->timeout)
724
		ret = ops->timeout(req, reserved);
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
740
}
741

742 743 744 745
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
746

747
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
748
		return;
749

750 751 752 753 754 755 756 757 758 759 760 761 762
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
763 764
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
765
			blk_mq_rq_timed_out(rq, reserved);
766 767 768 769
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
770 771
}

772
static void blk_mq_timeout_work(struct work_struct *work)
773
{
774 775
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
776 777 778 779 780
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
781

782 783 784 785 786 787 788 789 790
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
791
	 * blk_freeze_queue_start, and the moment the last request is
792 793 794 795
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
796 797
		return;

798
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
799

800 801 802
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
803
	} else {
804 805
		struct blk_mq_hw_ctx *hctx;

806 807 808 809 810
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
811
	}
812
	blk_queue_exit(q);
813 814
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

833 834 835 836
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
837
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
838
{
839 840 841 842
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
843

844
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
845
}
846
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
847

848 849 850 851
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
852

853
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
854 855
}

856 857
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
858 859 860 861 862 863 864
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

865 866
	might_sleep_if(wait);

867 868
	if (rq->tag != -1)
		goto done;
869

870 871 872
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

873 874
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
875 876 877 878
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
879 880 881
		data.hctx->tags->rqs[rq->tag] = rq;
	}

882 883 884 885
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
886 887
}

888 889
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
890 891 892 893 894 895 896 897 898 899
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

944
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
945 946 947 948 949 950
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

951
	list_del(&wait->entry);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

982
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
983
{
984
	struct blk_mq_hw_ctx *hctx;
985
	struct request *rq;
986
	int errors, queued;
987

988 989 990
	if (list_empty(list))
		return false;

991 992 993
	/*
	 * Now process all the entries, sending them to the driver.
	 */
994
	errors = queued = 0;
995
	do {
996
		struct blk_mq_queue_data bd;
997
		blk_status_t ret;
998

999
		rq = list_first_entry(list, struct request, queuelist);
1000 1001 1002
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1003 1004

			/*
1005 1006
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1007
			 */
1008 1009 1010 1011 1012 1013 1014 1015 1016
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1017
				break;
1018
		}
1019

1020 1021
		list_del_init(&rq->queuelist);

1022
		bd.rq = rq;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1036 1037

		ret = q->mq_ops->queue_rq(hctx, &bd);
1038
		if (ret == BLK_STS_RESOURCE) {
1039
			blk_mq_put_driver_tag_hctx(hctx, rq);
1040
			list_add(&rq->queuelist, list);
1041
			__blk_mq_requeue_request(rq);
1042
			break;
1043 1044 1045
		}

		if (unlikely(ret != BLK_STS_OK)) {
1046
			errors++;
1047
			blk_mq_end_request(rq, BLK_STS_IOERR);
1048
			continue;
1049 1050
		}

1051
		queued++;
1052
	} while (!list_empty(list));
1053

1054
	hctx->dispatched[queued_to_index(queued)]++;
1055 1056 1057 1058 1059

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1060
	if (!list_empty(list)) {
1061
		/*
1062 1063
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1064 1065 1066 1067
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1068
		spin_lock(&hctx->lock);
1069
		list_splice_init(list, &hctx->dispatch);
1070
		spin_unlock(&hctx->lock);
1071

1072
		/*
1073 1074 1075
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1076
		 *
1077 1078 1079 1080
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1081
		 *
1082 1083 1084 1085 1086 1087 1088
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1089
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1090
		 *   and dm-rq.
1091
		 */
1092 1093
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1094
			blk_mq_run_hw_queue(hctx, true);
1095
	}
1096

1097
	return (queued + errors) != 0;
1098 1099
}

1100 1101 1102 1103 1104 1105 1106 1107 1108
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1109
		blk_mq_sched_dispatch_requests(hctx);
1110 1111
		rcu_read_unlock();
	} else {
1112 1113
		might_sleep();

1114
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1115
		blk_mq_sched_dispatch_requests(hctx);
1116
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1117 1118 1119
	}
}

1120 1121 1122 1123 1124 1125 1126 1127
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1128 1129
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1130 1131

	if (--hctx->next_cpu_batch <= 0) {
1132
		int next_cpu;
1133 1134 1135 1136 1137 1138 1139 1140 1141

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1142
	return hctx->next_cpu;
1143 1144
}

1145 1146
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1147
{
1148 1149 1150 1151
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1152 1153
		return;

1154
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1155 1156
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1157
			__blk_mq_run_hw_queue(hctx);
1158
			put_cpu();
1159 1160
			return;
		}
1161

1162
		put_cpu();
1163
	}
1164

1165 1166 1167
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1179
}
O
Omar Sandoval 已提交
1180
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1181

1182
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1183 1184 1185 1186 1187
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1188
		if (!blk_mq_hctx_has_pending(hctx) ||
1189
		    blk_mq_hctx_stopped(hctx))
1190 1191
			continue;

1192
		blk_mq_run_hw_queue(hctx, async);
1193 1194
	}
}
1195
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1217 1218 1219 1220 1221 1222 1223 1224 1225
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1226 1227
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1228
	cancel_delayed_work(&hctx->run_work);
1229

1230
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1231
}
1232
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1243 1244
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1245 1246 1247 1248 1249
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1250 1251 1252
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1253 1254 1255
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1256

1257
	blk_mq_run_hw_queue(hctx, false);
1258 1259 1260
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1281
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1282 1283 1284 1285
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1286 1287
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1288 1289 1290
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1291
static void blk_mq_run_work_fn(struct work_struct *work)
1292 1293 1294
{
	struct blk_mq_hw_ctx *hctx;

1295
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1296

1297 1298 1299 1300 1301 1302 1303 1304
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1305

1306 1307 1308
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1309 1310 1311 1312

	__blk_mq_run_hw_queue(hctx);
}

1313 1314 1315

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1316
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1317
		return;
1318

1319 1320 1321 1322 1323
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1324
	blk_mq_stop_hw_queue(hctx);
1325 1326 1327 1328
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1329 1330 1331
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1332 1333 1334
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1335
{
J
Jens Axboe 已提交
1336 1337
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1338 1339
	lockdep_assert_held(&ctx->lock);

1340 1341
	trace_block_rq_insert(hctx->queue, rq);

1342 1343 1344 1345
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1346
}
1347

1348 1349
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1350 1351 1352
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1353 1354
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1355
	__blk_mq_insert_req_list(hctx, rq, at_head);
1356 1357 1358
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1359 1360
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1372
		BUG_ON(rq->mq_ctx != ctx);
1373
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1374
		__blk_mq_insert_req_list(hctx, rq, false);
1375
	}
1376
	blk_mq_hctx_mark_pending(hctx, ctx);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1413 1414 1415 1416
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1433 1434 1435
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1436 1437 1438 1439 1440
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1441
	blk_init_request_from_bio(rq, bio);
1442

1443
	blk_account_io_start(rq, true);
1444 1445
}

1446 1447 1448 1449 1450 1451
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1452 1453 1454 1455 1456 1457 1458
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1459
}
1460

1461 1462
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1463 1464 1465 1466
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1467 1468
}

M
Ming Lei 已提交
1469 1470 1471
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1472 1473 1474 1475
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1476
		.last = true,
1477
	};
1478
	blk_qc_t new_cookie;
1479
	blk_status_t ret;
M
Ming Lei 已提交
1480 1481
	bool run_queue = true;

1482 1483
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1484 1485 1486
		run_queue = false;
		goto insert;
	}
1487

1488
	if (q->elevator)
1489 1490
		goto insert;

M
Ming Lei 已提交
1491
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1492 1493 1494 1495
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1496 1497 1498 1499 1500 1501
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1502 1503
	switch (ret) {
	case BLK_STS_OK:
1504
		*cookie = new_cookie;
1505
		return;
1506 1507 1508 1509
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1510
		*cookie = BLK_QC_T_NONE;
1511
		blk_mq_end_request(rq, ret);
1512
		return;
1513
	}
1514

1515
insert:
M
Ming Lei 已提交
1516
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1517 1518
}

1519 1520 1521 1522 1523
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1524
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1525 1526
		rcu_read_unlock();
	} else {
1527 1528 1529 1530
		unsigned int srcu_idx;

		might_sleep();

1531
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1532
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1533
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1534 1535 1536
	}
}

1537
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1538
{
1539
	const int is_sync = op_is_sync(bio->bi_opf);
1540
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1541
	struct blk_mq_alloc_data data = { .flags = 0 };
1542
	struct request *rq;
1543
	unsigned int request_count = 0;
1544
	struct blk_plug *plug;
1545
	struct request *same_queue_rq = NULL;
1546
	blk_qc_t cookie;
J
Jens Axboe 已提交
1547
	unsigned int wb_acct;
1548 1549 1550

	blk_queue_bounce(q, &bio);

1551
	blk_queue_split(q, &bio);
1552

1553
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1554
		bio_io_error(bio);
1555
		return BLK_QC_T_NONE;
1556 1557
	}

1558 1559 1560
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1561

1562 1563 1564
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1565 1566
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1567 1568
	trace_block_getrq(q, bio, bio->bi_opf);

1569
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1570 1571
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1572 1573
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1574
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1575 1576 1577
	}

	wbt_track(&rq->issue_stat, wb_acct);
1578

1579
	cookie = request_to_qc_t(data.hctx, rq);
1580

1581
	plug = current->plug;
1582
	if (unlikely(is_flush_fua)) {
1583
		blk_mq_put_ctx(data.ctx);
1584
		blk_mq_bio_to_request(rq, bio);
1585 1586 1587
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1588
		} else {
1589 1590
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1591
		}
1592
	} else if (plug && q->nr_hw_queues == 1) {
1593 1594
		struct request *last = NULL;

1595
		blk_mq_put_ctx(data.ctx);
1596
		blk_mq_bio_to_request(rq, bio);
1597 1598 1599 1600 1601 1602 1603

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1604 1605 1606
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1607
		if (!request_count)
1608
			trace_block_plug(q);
1609 1610
		else
			last = list_entry_rq(plug->mq_list.prev);
1611

1612 1613
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1614 1615
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1616
		}
1617

1618
		list_add_tail(&rq->queuelist, &plug->mq_list);
1619
	} else if (plug && !blk_queue_nomerges(q)) {
1620
		blk_mq_bio_to_request(rq, bio);
1621 1622

		/*
1623
		 * We do limited plugging. If the bio can be merged, do that.
1624 1625
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1626 1627
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1628
		 */
1629 1630 1631 1632 1633 1634
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1635 1636
		blk_mq_put_ctx(data.ctx);

1637 1638 1639
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1640 1641
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1642
		}
1643
	} else if (q->nr_hw_queues > 1 && is_sync) {
1644
		blk_mq_put_ctx(data.ctx);
1645 1646
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1647
	} else if (q->elevator) {
1648
		blk_mq_put_ctx(data.ctx);
1649
		blk_mq_bio_to_request(rq, bio);
1650
		blk_mq_sched_insert_request(rq, false, true, true, true);
1651
	} else {
1652
		blk_mq_put_ctx(data.ctx);
1653 1654
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1655
		blk_mq_run_hw_queue(data.hctx, true);
1656
	}
1657

1658
	return cookie;
1659 1660
}

1661 1662
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1663
{
1664
	struct page *page;
1665

1666
	if (tags->rqs && set->ops->exit_request) {
1667
		int i;
1668

1669
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1670 1671 1672
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1673
				continue;
1674
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1675
			tags->static_rqs[i] = NULL;
1676
		}
1677 1678
	}

1679 1680
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1681
		list_del_init(&page->lru);
1682 1683 1684 1685 1686
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1687 1688
		__free_pages(page, page->private);
	}
1689
}
1690

1691 1692
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1693
	kfree(tags->rqs);
1694
	tags->rqs = NULL;
J
Jens Axboe 已提交
1695 1696
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1697

1698
	blk_mq_free_tags(tags);
1699 1700
}

1701 1702 1703 1704
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1705
{
1706
	struct blk_mq_tags *tags;
1707
	int node;
1708

1709 1710 1711 1712 1713
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1714
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1715 1716
	if (!tags)
		return NULL;
1717

1718
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1719
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1720
				 node);
1721 1722 1723 1724
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1725

J
Jens Axboe 已提交
1726 1727
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1728
				 node);
J
Jens Axboe 已提交
1729 1730 1731 1732 1733 1734
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1748 1749 1750 1751 1752
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1753 1754 1755

	INIT_LIST_HEAD(&tags->page_list);

1756 1757 1758 1759
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1760
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1761
				cache_line_size());
1762
	left = rq_size * depth;
1763

1764
	for (i = 0; i < depth; ) {
1765 1766 1767 1768 1769
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1770
		while (this_order && left < order_to_size(this_order - 1))
1771 1772 1773
			this_order--;

		do {
1774
			page = alloc_pages_node(node,
1775
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1776
				this_order);
1777 1778 1779 1780 1781 1782 1783 1784 1785
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1786
			goto fail;
1787 1788

		page->private = this_order;
1789
		list_add_tail(&page->lru, &tags->page_list);
1790 1791

		p = page_address(page);
1792 1793 1794 1795
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1796
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1797
		entries_per_page = order_to_size(this_order) / rq_size;
1798
		to_do = min(entries_per_page, depth - i);
1799 1800
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1801 1802 1803
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1804
			if (set->ops->init_request) {
1805
				if (set->ops->init_request(set, rq, hctx_idx,
1806
						node)) {
J
Jens Axboe 已提交
1807
					tags->static_rqs[i] = NULL;
1808
					goto fail;
1809
				}
1810 1811
			}

1812 1813 1814 1815
			p += rq_size;
			i++;
		}
	}
1816
	return 0;
1817

1818
fail:
1819 1820
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1821 1822
}

J
Jens Axboe 已提交
1823 1824 1825 1826 1827
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1828
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1829
{
1830
	struct blk_mq_hw_ctx *hctx;
1831 1832 1833
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1834
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1835
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1836 1837 1838 1839 1840 1841 1842 1843 1844

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1845
		return 0;
1846

J
Jens Axboe 已提交
1847 1848 1849
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1850 1851

	blk_mq_run_hw_queue(hctx, true);
1852
	return 0;
1853 1854
}

1855
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1856
{
1857 1858
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1859 1860
}

1861
/* hctx->ctxs will be freed in queue's release handler */
1862 1863 1864 1865
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1866 1867
	blk_mq_debugfs_unregister_hctx(hctx);

1868 1869
	blk_mq_tag_idle(hctx);

1870
	if (set->ops->exit_request)
1871
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1872

1873 1874
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1875 1876 1877
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1878
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1879
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1880

1881
	blk_mq_remove_cpuhp(hctx);
1882
	blk_free_flush_queue(hctx->fq);
1883
	sbitmap_free(&hctx->ctx_map);
1884 1885
}

M
Ming Lei 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1895
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1896 1897 1898
	}
}

1899 1900 1901
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1902
{
1903 1904 1905 1906 1907 1908
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1909
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1910 1911 1912
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
1913
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1914

1915
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1916 1917

	hctx->tags = set->tags[hctx_idx];
1918 1919

	/*
1920 1921
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1922
	 */
1923 1924 1925 1926
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1927

1928 1929
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1930
		goto free_ctxs;
1931

1932
	hctx->nr_ctx = 0;
1933

1934 1935 1936
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1937

1938 1939 1940
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1941 1942
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1943
		goto sched_exit_hctx;
1944

1945
	if (set->ops->init_request &&
1946 1947
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1948
		goto free_fq;
1949

1950
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1951
		init_srcu_struct(hctx->queue_rq_srcu);
1952

1953 1954
	blk_mq_debugfs_register_hctx(q, hctx);

1955
	return 0;
1956

1957 1958
 free_fq:
	kfree(hctx->fq);
1959 1960
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1961 1962 1963
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1964
 free_bitmap:
1965
	sbitmap_free(&hctx->ctx_map);
1966 1967 1968
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1969
	blk_mq_remove_cpuhp(hctx);
1970 1971
	return -1;
}
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1991
		hctx = blk_mq_map_queue(q, i);
1992

1993 1994 1995 1996 1997
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1998
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1999 2000 2001
	}
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2024 2025 2026 2027 2028
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2029 2030
}

2031 2032
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2033
{
2034
	unsigned int i, hctx_idx;
2035 2036
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2037
	struct blk_mq_tag_set *set = q->tag_set;
2038

2039 2040 2041 2042 2043
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2044
	queue_for_each_hw_ctx(q, hctx, i) {
2045
		cpumask_clear(hctx->cpumask);
2046 2047 2048 2049 2050 2051
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2052
	for_each_possible_cpu(i) {
2053
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2054
		if (!cpumask_test_cpu(i, online_mask))
2055 2056
			continue;

2057 2058
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2059 2060
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2061 2062 2063 2064 2065 2066
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2067
			q->mq_map[i] = 0;
2068 2069
		}

2070
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2071
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2072

2073
		cpumask_set_cpu(i, hctx->cpumask);
2074 2075 2076
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2077

2078 2079
	mutex_unlock(&q->sysfs_lock);

2080
	queue_for_each_hw_ctx(q, hctx, i) {
2081
		/*
2082 2083
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2084 2085
		 */
		if (!hctx->nr_ctx) {
2086 2087 2088 2089
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2090 2091 2092
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2093
			hctx->tags = NULL;
2094 2095 2096
			continue;
		}

M
Ming Lei 已提交
2097 2098 2099
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2100 2101 2102 2103 2104
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2105
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2106

2107 2108 2109
		/*
		 * Initialize batch roundrobin counts
		 */
2110 2111 2112
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2113 2114
}

2115 2116 2117 2118
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2119
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2120 2121 2122 2123
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2124
	queue_for_each_hw_ctx(q, hctx, i) {
2125 2126 2127
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2128
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2129 2130 2131
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2132
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2133
		}
2134 2135 2136
	}
}

2137 2138
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2139 2140
{
	struct request_queue *q;
2141

2142 2143
	lockdep_assert_held(&set->tag_list_lock);

2144 2145
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2146
		queue_set_hctx_shared(q, shared);
2147 2148 2149 2150 2151 2152 2153 2154 2155
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2156 2157
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2158 2159 2160 2161 2162 2163
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2164
	mutex_unlock(&set->tag_list_lock);
2165 2166

	synchronize_rcu();
2167 2168 2169 2170 2171 2172 2173 2174
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2175 2176 2177 2178 2179 2180 2181 2182 2183

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2184
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2185

2186 2187 2188
	mutex_unlock(&set->tag_list_lock);
}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2201 2202 2203
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2204
		kobject_put(&hctx->kobj);
2205
	}
2206

2207 2208
	q->mq_map = NULL;

2209 2210
	kfree(q->queue_hw_ctx);

2211 2212 2213 2214 2215 2216
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2217 2218 2219
	free_percpu(q->queue_ctx);
}

2220
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2250 2251
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2252
{
K
Keith Busch 已提交
2253 2254
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2255

K
Keith Busch 已提交
2256
	blk_mq_sysfs_unregister(q);
2257
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2258
		int node;
2259

K
Keith Busch 已提交
2260 2261 2262 2263
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2264
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2265
					GFP_KERNEL, node);
2266
		if (!hctxs[i])
K
Keith Busch 已提交
2267
			break;
2268

2269
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2270 2271 2272 2273 2274
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2275

2276
		atomic_set(&hctxs[i]->nr_active, 0);
2277
		hctxs[i]->numa_node = node;
2278
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2279 2280 2281 2282 2283 2284 2285 2286

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2287
	}
K
Keith Busch 已提交
2288 2289 2290 2291
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2292 2293
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2307 2308 2309
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2310
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2311 2312
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2313 2314 2315
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2316 2317
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2318
		goto err_exit;
K
Keith Busch 已提交
2319

2320 2321 2322
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2323 2324 2325 2326 2327
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2328
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2329 2330 2331 2332

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2333

2334
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2335
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2336 2337 2338

	q->nr_queues = nr_cpu_ids;

2339
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2340

2341 2342 2343
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2344 2345
	q->sg_reserved_size = INT_MAX;

2346
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2347 2348 2349
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2350
	blk_queue_make_request(q, blk_mq_make_request);
2351

2352 2353 2354 2355 2356
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2357 2358 2359 2360 2361
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2362 2363
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2364

2365
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2366

2367
	get_online_cpus();
2368
	mutex_lock(&all_q_mutex);
2369

2370
	list_add_tail(&q->all_q_node, &all_q_list);
2371
	blk_mq_add_queue_tag_set(set, q);
2372
	blk_mq_map_swqueue(q, cpu_online_mask);
2373

2374
	mutex_unlock(&all_q_mutex);
2375
	put_online_cpus();
2376

2377 2378 2379 2380 2381 2382 2383 2384
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2385
	return q;
2386

2387
err_hctxs:
K
Keith Busch 已提交
2388
	kfree(q->queue_hw_ctx);
2389
err_percpu:
K
Keith Busch 已提交
2390
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2391 2392
err_exit:
	q->mq_ops = NULL;
2393 2394
	return ERR_PTR(-ENOMEM);
}
2395
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2396 2397 2398

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2399
	struct blk_mq_tag_set	*set = q->tag_set;
2400

2401 2402 2403 2404
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2405 2406
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2407
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2408 2409 2410
}

/* Basically redo blk_mq_init_queue with queue frozen */
2411 2412
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2413
{
2414
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2415

2416
	blk_mq_debugfs_unregister_hctxs(q);
2417 2418
	blk_mq_sysfs_unregister(q);

2419 2420 2421 2422 2423 2424
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2425
	blk_mq_map_swqueue(q, online_mask);
2426

2427
	blk_mq_sysfs_register(q);
2428
	blk_mq_debugfs_register_hctxs(q);
2429 2430
}

2431 2432 2433 2434 2435 2436 2437 2438
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2439 2440 2441 2442
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2443 2444 2445 2446 2447 2448 2449 2450
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2451
		blk_freeze_queue_start(q);
2452
	list_for_each_entry(q, &all_q_list, all_q_node)
2453 2454
		blk_mq_freeze_queue_wait(q);

2455
	list_for_each_entry(q, &all_q_list, all_q_node)
2456
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2457 2458 2459 2460

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2461
	mutex_unlock(&all_q_mutex);
2462 2463 2464 2465
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2466
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2482 2483 2484 2485
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2486 2487 2488 2489 2490 2491 2492
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2493 2494
}

2495 2496 2497 2498
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2499 2500
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2501 2502 2503 2504 2505 2506
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2507
		blk_mq_free_rq_map(set->tags[i]);
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2547 2548 2549 2550 2551 2552 2553 2554
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2555 2556 2557 2558 2559 2560
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2561 2562
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2563 2564
	int ret;

B
Bart Van Assche 已提交
2565 2566
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2567 2568
	if (!set->nr_hw_queues)
		return -EINVAL;
2569
	if (!set->queue_depth)
2570 2571 2572 2573
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2574
	if (!set->ops->queue_rq)
2575 2576
		return -EINVAL;

2577 2578 2579 2580 2581
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2582

2583 2584 2585 2586 2587 2588 2589 2590 2591
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2592 2593 2594 2595 2596
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2597

K
Keith Busch 已提交
2598
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2599 2600
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2601
		return -ENOMEM;
2602

2603 2604 2605
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2606 2607 2608
	if (!set->mq_map)
		goto out_free_tags;

2609
	ret = blk_mq_update_queue_map(set);
2610 2611 2612 2613 2614
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2615
		goto out_free_mq_map;
2616

2617 2618 2619
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2620
	return 0;
2621 2622 2623 2624 2625

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2626 2627
	kfree(set->tags);
	set->tags = NULL;
2628
	return ret;
2629 2630 2631 2632 2633 2634 2635
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2636 2637
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2638

2639 2640 2641
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2642
	kfree(set->tags);
2643
	set->tags = NULL;
2644 2645 2646
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2647 2648 2649 2650 2651 2652
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2653
	if (!set)
2654 2655
		return -EINVAL;

2656 2657
	blk_mq_freeze_queue(q);

2658 2659
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2660 2661
		if (!hctx->tags)
			continue;
2662 2663 2664 2665
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2666 2667 2668 2669 2670 2671 2672 2673
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2674 2675 2676 2677 2678 2679 2680
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2681 2682
	blk_mq_unfreeze_queue(q);

2683 2684 2685
	return ret;
}

2686 2687
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2688 2689 2690
{
	struct request_queue *q;

2691 2692
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2702
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2703 2704 2705 2706 2707 2708 2709 2710
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2711 2712 2713 2714 2715 2716 2717

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2718 2719
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2746
	int bucket;
2747

2748 2749 2750 2751
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2752 2753
}

2754 2755 2756 2757 2758
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2759
	int bucket;
2760 2761 2762 2763 2764

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2765
	if (!blk_poll_stats_enable(q))
2766 2767 2768 2769 2770 2771 2772 2773
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2774 2775
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2776
	 */
2777 2778 2779 2780 2781 2782
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2783 2784 2785 2786

	return ret;
}

2787
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2788
				     struct blk_mq_hw_ctx *hctx,
2789 2790 2791 2792
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2793
	unsigned int nsecs;
2794 2795
	ktime_t kt;

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2814 2815 2816 2817 2818 2819 2820 2821
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2822
	kt = nsecs;
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2845 2846 2847 2848 2849
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2850 2851 2852 2853 2854 2855 2856
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2857
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2858 2859
		return true;

J
Jens Axboe 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2903 2904
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2905
	else {
2906
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2907 2908 2909 2910 2911 2912 2913 2914 2915
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2916 2917 2918 2919 2920

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2931 2932
static int __init blk_mq_init(void)
{
2933 2934
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2935

2936 2937 2938
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2939 2940 2941
	return 0;
}
subsys_initcall(blk_mq_init);