blk-mq.c 78.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
37
#include "blk-mq-sched.h"
38
#include "blk-rq-qos.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
67
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90 91 92 93 94 95 96
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

97 98 99 100 101 102 103 104 105
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
106 107 108 109 110 111 112
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

113
	inflight[0] = inflight[1] = 0;
114 115 116
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

136
void blk_freeze_queue_start(struct request_queue *q)
137
{
138
	int freeze_depth;
139

140 141
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
142
		percpu_ref_kill(&q->q_usage_counter);
143 144
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
145
	}
146
}
147
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148

149
void blk_mq_freeze_queue_wait(struct request_queue *q)
150
{
151
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152
}
153
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154

155 156 157 158 159 160 161 162
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163

164 165 166 167
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
168
void blk_freeze_queue(struct request_queue *q)
169
{
170 171 172 173 174 175 176
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
177
	blk_freeze_queue_start(q);
178 179
	if (!q->mq_ops)
		blk_drain_queue(q);
180 181
	blk_mq_freeze_queue_wait(q);
}
182 183 184 185 186 187 188 189 190

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
191
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
192

193
void blk_mq_unfreeze_queue(struct request_queue *q)
194
{
195
	int freeze_depth;
196

197 198 199
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
200
		percpu_ref_reinit(&q->q_usage_counter);
201
		wake_up_all(&q->mq_freeze_wq);
202
	}
203
}
204
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
205

206 207 208 209 210 211
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
212
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
213 214 215
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

216
/**
217
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
218 219 220
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
221 222 223
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
224 225 226 227 228 229 230
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

231
	blk_mq_quiesce_queue_nowait(q);
232

233 234
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
235
			synchronize_srcu(hctx->srcu);
236 237 238 239 240 241 242 243
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

244 245 246 247 248 249 250 251 252
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
253
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
254

255 256
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
257 258 259
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

260 261 262 263 264 265 266 267 268 269
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

270 271 272 273 274 275
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

276
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
277
		unsigned int tag, unsigned int op, u64 alloc_time_ns)
278
{
279 280
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
281
	req_flags_t rq_flags = 0;
282

283 284 285 286
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
287
		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
288
			rq_flags = RQF_MQ_INFLIGHT;
289 290 291 292 293 294 295
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

296
	/* csd/requeue_work/fifo_time is initialized before use */
297 298
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
299
	rq->rq_flags = rq_flags;
300
	rq->cpu = -1;
301
	rq->cmd_flags = op;
302 303
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
304
	if (blk_queue_io_stat(data->q))
305
		rq->rq_flags |= RQF_IO_STAT;
306
	INIT_LIST_HEAD(&rq->queuelist);
307 308 309 310
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
311 312 313
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
314
	rq->start_time_ns = ktime_get_ns();
315
	rq->io_start_time_ns = 0;
316 317 318 319 320 321 322
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
323
	rq->__deadline = 0;
324 325

	INIT_LIST_HEAD(&rq->timeout_list);
326 327
	rq->timeout = 0;

328 329 330 331
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

332 333 334 335
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

336
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
337
	refcount_set(&rq->ref, 1);
338
	return rq;
339 340
}

341 342 343 344 345 346
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
347
	unsigned int tag;
348
	bool put_ctx_on_error = false;
349
	u64 alloc_time_ns = 0;
350 351

	blk_queue_enter_live(q);
352 353 354 355 356

	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

357
	data->q = q;
358 359 360 361
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
362 363
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
364 365
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
366 367 368 369 370 371

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
372 373
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
374
		 */
375 376
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
377
			e->type->ops.mq.limit_depth(op, data);
378 379
	} else {
		blk_mq_tag_busy(data->hctx);
380 381
	}

382 383
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
384 385
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
386 387
			data->ctx = NULL;
		}
388 389
		blk_queue_exit(q);
		return NULL;
390 391
	}

392
	rq = blk_mq_rq_ctx_init(data, tag, op, alloc_time_ns);
393 394
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
395
		if (e && e->type->ops.mq.prepare_request) {
396 397 398
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

399 400
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
401
		}
402 403 404
	}
	data->hctx->queued++;
	return rq;
405 406
}

407
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
408
		blk_mq_req_flags_t flags)
409
{
410
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
411
	struct request *rq;
412
	int ret;
413

414
	ret = blk_queue_enter(q, flags);
415 416
	if (ret)
		return ERR_PTR(ret);
417

418
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
419
	blk_queue_exit(q);
420

421
	if (!rq)
422
		return ERR_PTR(-EWOULDBLOCK);
423

424 425
	blk_mq_put_ctx(alloc_data.ctx);

426 427 428
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
429 430
	return rq;
}
431
EXPORT_SYMBOL(blk_mq_alloc_request);
432

433
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
434
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
435
{
436
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
437
	struct request *rq;
438
	unsigned int cpu;
M
Ming Lin 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

453
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
454 455 456
	if (ret)
		return ERR_PTR(ret);

457 458 459 460
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
461 462 463 464
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
465
	}
466
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
467
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
468

469
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
470
	blk_queue_exit(q);
471

472 473 474 475
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
476 477 478
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

494
void blk_mq_free_request(struct request *rq)
495 496
{
	struct request_queue *q = rq->q;
497 498 499 500
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

501
	if (rq->rq_flags & RQF_ELVPRIV) {
502 503 504 505 506 507 508
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
509

510
	ctx->rq_completed[rq_is_sync(rq)]++;
511
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
512
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
513

514 515 516
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

517
	rq_qos_done(q, rq);
518

S
Shaohua Li 已提交
519 520 521
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

K
Keith Busch 已提交
522 523 524
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
525
}
J
Jens Axboe 已提交
526
EXPORT_SYMBOL_GPL(blk_mq_free_request);
527

528
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
529
{
530 531
	u64 now = ktime_get_ns();

532 533
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
534
		blk_stat_add(rq, now);
535 536
	}

537
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
538

C
Christoph Hellwig 已提交
539
	if (rq->end_io) {
540
		rq_qos_done(rq->q, rq);
541
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
542 543 544
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
545
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
546
	}
547
}
548
EXPORT_SYMBOL(__blk_mq_end_request);
549

550
void blk_mq_end_request(struct request *rq, blk_status_t error)
551 552 553
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
554
	__blk_mq_end_request(rq, error);
555
}
556
EXPORT_SYMBOL(blk_mq_end_request);
557

558
static void __blk_mq_complete_request_remote(void *data)
559
{
560
	struct request *rq = data;
561

562
	rq->q->softirq_done_fn(rq);
563 564
}

565
static void __blk_mq_complete_request(struct request *rq)
566 567
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
568
	bool shared = false;
569 570
	int cpu;

571
	if (!blk_mq_mark_complete(rq))
K
Keith Busch 已提交
572
		return;
573 574 575
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
576
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
577 578 579
		rq->q->softirq_done_fn(rq);
		return;
	}
580 581

	cpu = get_cpu();
C
Christoph Hellwig 已提交
582 583 584 585
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
586
		rq->csd.func = __blk_mq_complete_request_remote;
587 588
		rq->csd.info = rq;
		rq->csd.flags = 0;
589
		smp_call_function_single_async(ctx->cpu, &rq->csd);
590
	} else {
591
		rq->q->softirq_done_fn(rq);
592
	}
593 594
	put_cpu();
}
595

596
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
597
	__releases(hctx->srcu)
598 599 600 601
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
602
		srcu_read_unlock(hctx->srcu, srcu_idx);
603 604 605
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
606
	__acquires(hctx->srcu)
607
{
608 609 610
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
611
		rcu_read_lock();
612
	} else
613
		*srcu_idx = srcu_read_lock(hctx->srcu);
614 615
}

616 617 618 619 620 621 622 623
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
624
void blk_mq_complete_request(struct request *rq)
625
{
K
Keith Busch 已提交
626
	if (unlikely(blk_should_fake_timeout(rq->q)))
627
		return;
K
Keith Busch 已提交
628
	__blk_mq_complete_request(rq);
629 630
}
EXPORT_SYMBOL(blk_mq_complete_request);
631

632 633
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
634
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
635 636 637
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

638
void blk_mq_start_request(struct request *rq)
639 640 641
{
	struct request_queue *q = rq->q;

642 643
	blk_mq_sched_started_request(rq);

644 645
	trace_block_rq_issue(q, rq);

646
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
647 648 649 650
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
651
		rq->rq_flags |= RQF_STATS;
652
		rq_qos_issue(q, rq);
653 654
	}

655
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
656

657
	blk_add_timer(rq);
K
Keith Busch 已提交
658
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
659 660 661 662 663 664 665 666 667

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
668
}
669
EXPORT_SYMBOL(blk_mq_start_request);
670

671
static void __blk_mq_requeue_request(struct request *rq)
672 673 674
{
	struct request_queue *q = rq->q;

675 676
	blk_mq_put_driver_tag(rq);

677
	trace_block_rq_requeue(q, rq);
678
	rq_qos_requeue(q, rq);
679

K
Keith Busch 已提交
680 681
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
682
		rq->rq_flags &= ~RQF_TIMED_OUT;
683 684 685
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
686 687
}

688
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
689 690 691
{
	__blk_mq_requeue_request(rq);

692 693 694
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

695
	BUG_ON(blk_queued_rq(rq));
696
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
697 698 699
}
EXPORT_SYMBOL(blk_mq_requeue_request);

700 701 702
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
703
		container_of(work, struct request_queue, requeue_work.work);
704 705 706
	LIST_HEAD(rq_list);
	struct request *rq, *next;

707
	spin_lock_irq(&q->requeue_lock);
708
	list_splice_init(&q->requeue_list, &rq_list);
709
	spin_unlock_irq(&q->requeue_lock);
710 711

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
712
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
713 714
			continue;

715
		rq->rq_flags &= ~RQF_SOFTBARRIER;
716
		list_del_init(&rq->queuelist);
717 718 719 720 721 722 723 724 725
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
			blk_mq_request_bypass_insert(rq, false);
		else
			blk_mq_sched_insert_request(rq, true, false, false);
726 727 728 729 730
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
731
		blk_mq_sched_insert_request(rq, false, false, false);
732 733
	}

734
	blk_mq_run_hw_queues(q, false);
735 736
}

737 738
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
739 740 741 742 743 744
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
745
	 * request head insertion from the workqueue.
746
	 */
747
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
748 749 750

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
751
		rq->rq_flags |= RQF_SOFTBARRIER;
752 753 754 755 756
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
757 758 759

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
760 761 762 763 764
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
765
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
766 767 768
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

769 770 771
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
772 773
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
774 775 776
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

777 778
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
779 780
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
781
		return tags->rqs[tag];
782
	}
783 784

	return NULL;
785 786 787
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

788
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
789
{
790
	req->rq_flags |= RQF_TIMED_OUT;
791 792 793 794 795 796 797
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
798
	}
799 800

	blk_add_timer(req);
801
}
802

K
Keith Busch 已提交
803
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
804
{
K
Keith Busch 已提交
805
	unsigned long deadline;
806

K
Keith Busch 已提交
807 808
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
809 810
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
811

K
Keith Busch 已提交
812 813 814
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
815

K
Keith Busch 已提交
816 817 818 819 820
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
821 822
}

K
Keith Busch 已提交
823
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
824 825
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

847
	/*
K
Keith Busch 已提交
848 849 850 851
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
852
	 */
K
Keith Busch 已提交
853
	if (blk_mq_req_expired(rq, next))
854
		blk_mq_rq_timed_out(rq, reserved);
855 856 857 858

	if (is_flush_rq(rq, hctx))
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
K
Keith Busch 已提交
859
		__blk_mq_free_request(rq);
860 861
}

862
static void blk_mq_timeout_work(struct work_struct *work)
863
{
864 865
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
866
	unsigned long next = 0;
867
	struct blk_mq_hw_ctx *hctx;
868
	int i;
869

870 871 872 873 874 875 876 877 878
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
879
	 * blk_freeze_queue_start, and the moment the last request is
880 881 882 883
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
884 885
		return;

K
Keith Busch 已提交
886
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
887

K
Keith Busch 已提交
888 889
	if (next != 0) {
		mod_timer(&q->timeout, next);
890
	} else {
891 892 893 894 895 896
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
897 898 899 900 901
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
902
	}
903
	blk_queue_exit(q);
904 905
}

906 907 908 909 910 911 912 913 914 915 916 917 918
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
919
	sbitmap_clear_bit(sb, bitnr);
920 921 922 923
	spin_unlock(&ctx->lock);
	return true;
}

924 925 926 927
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
928
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
929
{
930 931 932 933
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
934

935
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
936
}
937
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
938

939 940 941 942 943 944 945 946 947 948 949 950 951
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
952
	if (!list_empty(&ctx->rq_list)) {
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

978 979 980 981
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
982

983
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
984 985
}

986
bool blk_mq_get_driver_tag(struct request *rq)
987 988 989 990
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
991
		.flags = BLK_MQ_REQ_NOWAIT,
992
	};
993
	bool shared;
994

995 996
	if (rq->tag != -1)
		goto done;
997

998 999 1000
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1001
	shared = blk_mq_tag_busy(data.hctx);
1002 1003
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1004
		if (shared) {
1005 1006 1007
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1008 1009 1010
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1011 1012
done:
	return rq->tag != -1;
1013 1014
}

1015 1016
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1017 1018 1019 1020 1021
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1022
	spin_lock(&hctx->dispatch_wait_lock);
1023
	list_del_init(&wait->entry);
1024 1025
	spin_unlock(&hctx->dispatch_wait_lock);

1026 1027 1028 1029
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1030 1031
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1032 1033
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1034 1035
 * marking us as waiting.
 */
1036
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1037
				 struct request *rq)
1038
{
1039
	struct wait_queue_head *wq;
1040 1041
	wait_queue_entry_t *wait;
	bool ret;
1042

1043 1044 1045
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1046

1047 1048 1049 1050 1051 1052 1053 1054
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1055
		return blk_mq_get_driver_tag(rq);
1056 1057
	}

1058
	wait = &hctx->dispatch_wait;
1059 1060 1061
	if (!list_empty_careful(&wait->entry))
		return false;

1062 1063 1064 1065
	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1066
	if (!list_empty(&wait->entry)) {
1067 1068
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1069
		return false;
1070 1071
	}

1072 1073
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1074

1075
	/*
1076 1077 1078
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1079
	 */
1080
	ret = blk_mq_get_driver_tag(rq);
1081
	if (!ret) {
1082 1083
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1084
		return false;
1085
	}
1086 1087 1088 1089 1090 1091

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1092 1093
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1094 1095

	return true;
1096 1097
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1127 1128
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1129 1130 1131
/*
 * Returns true if we did some work AND can potentially do more.
 */
1132
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1133
			     bool got_budget)
1134
{
1135
	struct blk_mq_hw_ctx *hctx;
1136
	struct request *rq, *nxt;
1137
	bool no_tag = false;
1138
	int errors, queued;
1139
	blk_status_t ret = BLK_STS_OK;
1140

1141 1142 1143
	if (list_empty(list))
		return false;

1144 1145
	WARN_ON(!list_is_singular(list) && got_budget);

1146 1147 1148
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1149
	errors = queued = 0;
1150
	do {
1151
		struct blk_mq_queue_data bd;
1152

1153
		rq = list_first_entry(list, struct request, queuelist);
1154 1155 1156 1157 1158

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

1159
		if (!blk_mq_get_driver_tag(rq)) {
1160
			/*
1161
			 * The initial allocation attempt failed, so we need to
1162 1163 1164 1165
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1166
			 */
1167
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1168
				blk_mq_put_dispatch_budget(hctx);
1169 1170 1171 1172 1173 1174
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1175 1176 1177 1178
				break;
			}
		}

1179 1180
		list_del_init(&rq->queuelist);

1181
		bd.rq = rq;
1182 1183 1184 1185 1186 1187 1188 1189 1190

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1191
			bd.last = !blk_mq_get_driver_tag(nxt);
1192
		}
1193 1194

		ret = q->mq_ops->queue_rq(hctx, &bd);
1195
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1196 1197
			/*
			 * If an I/O scheduler has been configured and we got a
1198 1199
			 * driver tag for the next request already, free it
			 * again.
1200 1201 1202 1203 1204
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1205
			list_add(&rq->queuelist, list);
1206
			__blk_mq_requeue_request(rq);
1207
			break;
1208 1209 1210
		}

		if (unlikely(ret != BLK_STS_OK)) {
1211
			errors++;
1212
			blk_mq_end_request(rq, BLK_STS_IOERR);
1213
			continue;
1214 1215
		}

1216
		queued++;
1217
	} while (!list_empty(list));
1218

1219
	hctx->dispatched[queued_to_index(queued)]++;
1220 1221 1222 1223 1224

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1225
	if (!list_empty(list)) {
1226 1227
		bool needs_restart;

1228
		spin_lock(&hctx->lock);
1229
		list_splice_init(list, &hctx->dispatch);
1230
		spin_unlock(&hctx->lock);
1231

1232
		/*
1233 1234 1235
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1236
		 *
1237 1238 1239 1240
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1241
		 *
1242 1243 1244 1245 1246 1247 1248
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1249
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1250
		 *   and dm-rq.
1251 1252 1253 1254
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1255
		 */
1256 1257
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1258
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1259
			blk_mq_run_hw_queue(hctx, true);
1260 1261
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1262

1263
		blk_mq_update_dispatch_busy(hctx, true);
1264
		return false;
1265 1266
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1267

1268 1269 1270 1271 1272 1273 1274
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1275
	return (queued + errors) != 0;
1276 1277
}

1278 1279 1280 1281
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1282 1283 1284
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1298
	 */
1299 1300 1301 1302 1303 1304 1305
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1306

1307 1308 1309 1310 1311 1312
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1313
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1314

1315 1316 1317
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327 1328
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1329 1330 1331 1332 1333 1334 1335 1336
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1337
	bool tried = false;
1338
	int next_cpu = hctx->next_cpu;
1339

1340 1341
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1342 1343

	if (--hctx->next_cpu_batch <= 0) {
1344
select_cpu:
1345
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1346
				cpu_online_mask);
1347
		if (next_cpu >= nr_cpu_ids)
1348
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1349 1350 1351
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1352 1353 1354 1355
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1356
	if (!cpu_online(next_cpu)) {
1357 1358 1359 1360 1361 1362 1363 1364 1365
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1366
		hctx->next_cpu = next_cpu;
1367 1368 1369
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1370 1371 1372

	hctx->next_cpu = next_cpu;
	return next_cpu;
1373 1374
}

1375 1376
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1377
{
1378
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1379 1380
		return;

1381
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1382 1383
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1384
			__blk_mq_run_hw_queue(hctx);
1385
			put_cpu();
1386 1387
			return;
		}
1388

1389
		put_cpu();
1390
	}
1391

1392 1393
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1394 1395 1396 1397 1398 1399 1400 1401
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1402
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1403
{
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1415 1416 1417 1418
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1419 1420

	if (need_run) {
1421 1422 1423 1424 1425
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1426
}
O
Omar Sandoval 已提交
1427
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1428

1429
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1430 1431 1432 1433 1434
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1435
		if (blk_mq_hctx_stopped(hctx))
1436 1437
			continue;

1438
		blk_mq_run_hw_queue(hctx, async);
1439 1440
	}
}
1441
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1463 1464 1465
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1466
 * BLK_STS_RESOURCE is usually returned.
1467 1468 1469 1470 1471
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1472 1473
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1474
	cancel_delayed_work(&hctx->run_work);
1475

1476
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1477
}
1478
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1479

1480 1481 1482
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1483
 * BLK_STS_RESOURCE is usually returned.
1484 1485 1486 1487 1488
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1489 1490
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1491 1492 1493 1494 1495
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1496 1497 1498
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1499 1500 1501
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1502

1503
	blk_mq_run_hw_queue(hctx, false);
1504 1505 1506
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1527
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1528 1529 1530 1531
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1532 1533
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1534 1535 1536
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1537
static void blk_mq_run_work_fn(struct work_struct *work)
1538 1539 1540
{
	struct blk_mq_hw_ctx *hctx;

1541
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1542

1543
	/*
M
Ming Lei 已提交
1544
	 * If we are stopped, don't run the queue.
1545
	 */
M
Ming Lei 已提交
1546
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1547
		return;
1548 1549 1550 1551

	__blk_mq_run_hw_queue(hctx);
}

1552 1553 1554
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1555
{
J
Jens Axboe 已提交
1556 1557
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1558 1559
	lockdep_assert_held(&ctx->lock);

1560 1561
	trace_block_rq_insert(hctx->queue, rq);

1562 1563 1564 1565
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1566
}
1567

1568 1569
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1570 1571 1572
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1573 1574
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1575
	__blk_mq_insert_req_list(hctx, rq, at_head);
1576 1577 1578
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1579 1580 1581 1582
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1583
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1584 1585 1586 1587 1588 1589 1590 1591
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1592 1593
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1594 1595
}

1596 1597
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1598 1599

{
1600 1601
	struct request *rq;

1602 1603 1604 1605
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1606
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1607
		BUG_ON(rq->mq_ctx != ctx);
1608
		trace_block_rq_insert(hctx->queue, rq);
1609
	}
1610 1611 1612

	spin_lock(&ctx->lock);
	list_splice_tail_init(list, &ctx->rq_list);
1613
	blk_mq_hctx_mark_pending(hctx, ctx);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1650
				trace_block_unplug(this_q, depth, !from_schedule);
1651 1652 1653
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1670
		trace_block_unplug(this_q, depth, !from_schedule);
1671 1672
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1673 1674 1675 1676 1677
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1678
	blk_init_request_from_bio(rq, bio);
1679

S
Shaohua Li 已提交
1680 1681
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1682
	blk_account_io_start(rq, true);
1683 1684
}

1685 1686
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1687 1688 1689 1690
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1691 1692
}

1693 1694 1695
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1696 1697 1698 1699
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1700
		.last = true,
1701
	};
1702
	blk_qc_t new_cookie;
1703
	blk_status_t ret;
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1715
		blk_mq_update_dispatch_busy(hctx, false);
1716 1717 1718
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1719
	case BLK_STS_DEV_RESOURCE:
1720
		blk_mq_update_dispatch_busy(hctx, true);
1721 1722 1723
		__blk_mq_requeue_request(rq);
		break;
	default:
1724
		blk_mq_update_dispatch_busy(hctx, false);
1725 1726 1727 1728 1729 1730 1731 1732 1733
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1734 1735
						blk_qc_t *cookie,
						bool bypass_insert)
1736 1737
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1738 1739
	bool run_queue = true;

1740 1741 1742 1743
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1744
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1745 1746
	 * and avoid driver to try to dispatch again.
	 */
1747
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1748
		run_queue = false;
1749
		bypass_insert = false;
M
Ming Lei 已提交
1750 1751
		goto insert;
	}
1752

1753
	if (q->elevator && !bypass_insert)
1754 1755
		goto insert;

1756
	if (!blk_mq_get_dispatch_budget(hctx))
1757 1758
		goto insert;

1759
	if (!blk_mq_get_driver_tag(rq)) {
1760
		blk_mq_put_dispatch_budget(hctx);
1761
		goto insert;
1762
	}
1763

1764
	return __blk_mq_issue_directly(hctx, rq, cookie);
1765
insert:
1766 1767
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1768

1769
	blk_mq_request_bypass_insert(rq, run_queue);
1770
	return BLK_STS_OK;
1771 1772
}

1773 1774 1775
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1776
	blk_status_t ret;
1777
	int srcu_idx;
1778

1779
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1780

1781
	hctx_lock(hctx, &srcu_idx);
1782

1783
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1784
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1785
		blk_mq_request_bypass_insert(rq, true);
1786 1787 1788
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1789
	hctx_unlock(hctx, srcu_idx);
1790 1791
}

1792
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1805 1806
}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
	while (!list_empty(list)) {
		blk_status_t ret;
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
		ret = blk_mq_request_issue_directly(rq);
		if (ret != BLK_STS_OK) {
1818 1819
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
1820 1821
				blk_mq_request_bypass_insert(rq,
							list_empty(list));
1822 1823 1824
				break;
			}
			blk_mq_end_request(rq, ret);
1825 1826 1827 1828
		}
	}
}

1829
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1830
{
1831
	const int is_sync = op_is_sync(bio->bi_opf);
1832
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1833
	struct blk_mq_alloc_data data = { .flags = 0 };
1834
	struct request *rq;
1835
	unsigned int request_count = 0;
1836
	struct blk_plug *plug;
1837
	struct request *same_queue_rq = NULL;
1838
	blk_qc_t cookie;
1839 1840 1841

	blk_queue_bounce(q, &bio);

1842
	blk_queue_split(q, &bio);
1843

1844
	if (!bio_integrity_prep(bio))
1845
		return BLK_QC_T_NONE;
1846

1847 1848 1849
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1850

1851 1852 1853
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

1854
	rq_qos_throttle(q, bio, NULL);
J
Jens Axboe 已提交
1855

1856 1857
	trace_block_getrq(q, bio, bio->bi_opf);

1858
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1859
	if (unlikely(!rq)) {
1860
		rq_qos_cleanup(q, bio);
1861 1862
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1863
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1864 1865
	}

1866
	rq_qos_track(q, rq, bio);
1867

1868
	cookie = request_to_qc_t(data.hctx, rq);
1869

1870
	plug = current->plug;
1871
	if (unlikely(is_flush_fua)) {
1872
		blk_mq_put_ctx(data.ctx);
1873
		blk_mq_bio_to_request(rq, bio);
1874 1875 1876 1877

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1878
	} else if (plug && q->nr_hw_queues == 1) {
1879 1880
		struct request *last = NULL;

1881
		blk_mq_put_ctx(data.ctx);
1882
		blk_mq_bio_to_request(rq, bio);
1883 1884 1885 1886 1887 1888 1889

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1890 1891 1892
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1893
		if (!request_count)
1894
			trace_block_plug(q);
1895 1896
		else
			last = list_entry_rq(plug->mq_list.prev);
1897

1898 1899
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1900 1901
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1902
		}
1903

1904
		list_add_tail(&rq->queuelist, &plug->mq_list);
1905
	} else if (plug && !blk_queue_nomerges(q)) {
1906
		blk_mq_bio_to_request(rq, bio);
1907 1908

		/*
1909
		 * We do limited plugging. If the bio can be merged, do that.
1910 1911
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1912 1913
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1914
		 */
1915 1916 1917 1918 1919 1920
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1921 1922
		blk_mq_put_ctx(data.ctx);

1923 1924 1925
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1926 1927
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1928
		}
1929 1930
	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
			!data.hctx->dispatch_busy)) {
1931
		blk_mq_put_ctx(data.ctx);
1932 1933
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1934
	} else {
1935
		blk_mq_put_ctx(data.ctx);
1936
		blk_mq_bio_to_request(rq, bio);
1937
		blk_mq_sched_insert_request(rq, false, true, true);
1938
	}
1939

1940
	return cookie;
1941 1942
}

1943 1944
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1945
{
1946
	struct page *page;
1947

1948
	if (tags->rqs && set->ops->exit_request) {
1949
		int i;
1950

1951
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1952 1953 1954
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1955
				continue;
1956
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1957
			tags->static_rqs[i] = NULL;
1958
		}
1959 1960
	}

1961 1962
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1963
		list_del_init(&page->lru);
1964 1965 1966 1967 1968
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1969 1970
		__free_pages(page, page->private);
	}
1971
}
1972

1973 1974
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1975
	kfree(tags->rqs);
1976
	tags->rqs = NULL;
J
Jens Axboe 已提交
1977 1978
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1979

1980
	blk_mq_free_tags(tags);
1981 1982
}

1983 1984 1985 1986
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1987
{
1988
	struct blk_mq_tags *tags;
1989
	int node;
1990

1991 1992 1993 1994 1995
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1996
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1997 1998
	if (!tags)
		return NULL;
1999

2000
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2001
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2002
				 node);
2003 2004 2005 2006
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2007

2008 2009 2010
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2011 2012 2013 2014 2015 2016
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2017 2018 2019 2020 2021 2022 2023 2024
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2036
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2037 2038 2039
	return 0;
}

2040 2041 2042 2043 2044
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2045 2046 2047 2048 2049
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2050 2051 2052

	INIT_LIST_HEAD(&tags->page_list);

2053 2054 2055 2056
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2057
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2058
				cache_line_size());
2059
	left = rq_size * depth;
2060

2061
	for (i = 0; i < depth; ) {
2062 2063 2064 2065 2066
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2067
		while (this_order && left < order_to_size(this_order - 1))
2068 2069 2070
			this_order--;

		do {
2071
			page = alloc_pages_node(node,
2072
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2073
				this_order);
2074 2075 2076 2077 2078 2079 2080 2081 2082
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2083
			goto fail;
2084 2085

		page->private = this_order;
2086
		list_add_tail(&page->lru, &tags->page_list);
2087 2088

		p = page_address(page);
2089 2090 2091 2092
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2093
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2094
		entries_per_page = order_to_size(this_order) / rq_size;
2095
		to_do = min(entries_per_page, depth - i);
2096 2097
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2098 2099 2100
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2101 2102 2103
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2104 2105
			}

2106 2107 2108 2109
			p += rq_size;
			i++;
		}
	}
2110
	return 0;
2111

2112
fail:
2113 2114
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2115 2116
}

J
Jens Axboe 已提交
2117 2118 2119 2120 2121
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2122
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2123
{
2124
	struct blk_mq_hw_ctx *hctx;
2125 2126 2127
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2128
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2129
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2130 2131 2132 2133 2134 2135 2136 2137 2138

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2139
		return 0;
2140

J
Jens Axboe 已提交
2141 2142 2143
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2144 2145

	blk_mq_run_hw_queue(hctx, true);
2146
	return 0;
2147 2148
}

2149
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2150
{
2151 2152
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2153 2154
}

2155
/* hctx->ctxs will be freed in queue's release handler */
2156 2157 2158 2159
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2160 2161
	blk_mq_debugfs_unregister_hctx(hctx);

2162 2163
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2164

2165
	if (set->ops->exit_request)
2166
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2167

2168 2169 2170
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2171
	blk_mq_remove_cpuhp(hctx);
2172 2173
}

M
Ming Lei 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2183
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2184 2185 2186
	}
}

2187 2188 2189
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2190
{
2191 2192 2193 2194 2195 2196
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2197
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2198 2199 2200
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2201
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2202

2203
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2204 2205

	hctx->tags = set->tags[hctx_idx];
2206 2207

	/*
2208 2209
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2210
	 */
2211
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2212
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2213 2214
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2215

2216 2217
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2218
		goto free_ctxs;
2219

2220
	hctx->nr_ctx = 0;
2221

2222
	spin_lock_init(&hctx->dispatch_wait_lock);
2223 2224 2225
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2226 2227 2228
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2229

2230 2231
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2232
	if (!hctx->fq)
2233
		goto exit_hctx;
2234

2235
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2236
		goto free_fq;
2237

2238
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2239
		init_srcu_struct(hctx->srcu);
2240

2241 2242
	blk_mq_debugfs_register_hctx(q, hctx);

2243
	return 0;
2244

2245
 free_fq:
2246
	blk_free_flush_queue(hctx->fq);
2247 2248 2249
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2250
 free_bitmap:
2251
	sbitmap_free(&hctx->ctx_map);
2252 2253 2254
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2255
	blk_mq_remove_cpuhp(hctx);
2256 2257
	return -1;
}
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2277
		hctx = blk_mq_map_queue(q, i);
2278
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2279
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2280 2281 2282
	}
}

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2305 2306 2307 2308 2309
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2310 2311
}

2312
static void blk_mq_map_swqueue(struct request_queue *q)
2313
{
2314
	unsigned int i, hctx_idx;
2315 2316
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2317
	struct blk_mq_tag_set *set = q->tag_set;
2318

2319 2320 2321 2322 2323
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2324
	queue_for_each_hw_ctx(q, hctx, i) {
2325
		cpumask_clear(hctx->cpumask);
2326
		hctx->nr_ctx = 0;
2327
		hctx->dispatch_from = NULL;
2328 2329 2330
	}

	/*
2331
	 * Map software to hardware queues.
2332 2333
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2334
	 */
2335
	for_each_possible_cpu(i) {
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2349
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2350
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2351

2352
		cpumask_set_cpu(i, hctx->cpumask);
2353 2354 2355
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2356

2357 2358
	mutex_unlock(&q->sysfs_lock);

2359
	queue_for_each_hw_ctx(q, hctx, i) {
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2375

M
Ming Lei 已提交
2376 2377 2378
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2379 2380 2381 2382 2383
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2384
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2385

2386 2387 2388
		/*
		 * Initialize batch roundrobin counts
		 */
2389
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2390 2391
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2392 2393
}

2394 2395 2396 2397
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2398
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2399 2400 2401 2402
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2403
	queue_for_each_hw_ctx(q, hctx, i) {
2404
		if (shared)
2405
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2406
		else
2407 2408 2409 2410
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2411 2412
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2413 2414
{
	struct request_queue *q;
2415

2416 2417
	lockdep_assert_held(&set->tag_list_lock);

2418 2419
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2420
		queue_set_hctx_shared(q, shared);
2421 2422 2423 2424 2425 2426 2427 2428 2429
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2430
	list_del_rcu(&q->tag_set_list);
2431 2432 2433 2434 2435 2436
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2437
	mutex_unlock(&set->tag_list_lock);
2438
	INIT_LIST_HEAD(&q->tag_set_list);
2439 2440 2441 2442 2443 2444 2445 2446
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2447

2448 2449 2450 2451 2452
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2453 2454 2455 2456 2457 2458
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2459
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2460

2461 2462 2463
	mutex_unlock(&set->tag_list_lock);
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2476 2477 2478
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2479
		kobject_put(&hctx->kobj);
2480
	}
2481

2482 2483
	q->mq_map = NULL;

2484 2485
	kfree(q->queue_hw_ctx);

2486 2487 2488 2489 2490 2491
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2492 2493 2494
	free_percpu(q->queue_ctx);
}

2495
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2496 2497 2498
{
	struct request_queue *uninit_q, *q;

2499
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2511 2512 2513 2514
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2515
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2516 2517 2518 2519 2520 2521 2522 2523 2524
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2525 2526
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2527
{
K
Keith Busch 已提交
2528 2529
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2530

K
Keith Busch 已提交
2531
	blk_mq_sysfs_unregister(q);
2532 2533 2534

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2535
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2536
		int node;
2537

K
Keith Busch 已提交
2538 2539 2540 2541
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2542
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2543 2544
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				node);
2545
		if (!hctxs[i])
K
Keith Busch 已提交
2546
			break;
2547

2548 2549 2550
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node)) {
K
Keith Busch 已提交
2551 2552 2553 2554
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2555

2556
		atomic_set(&hctxs[i]->nr_active, 0);
2557
		hctxs[i]->numa_node = node;
2558
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2559 2560 2561 2562 2563 2564 2565 2566

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2567
	}
K
Keith Busch 已提交
2568 2569 2570 2571
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2572 2573
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2574 2575 2576 2577 2578 2579 2580
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2581
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2582 2583 2584 2585 2586 2587
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2588 2589 2590
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2591
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2592 2593
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2594 2595 2596
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2597 2598
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2599
		goto err_exit;
K
Keith Busch 已提交
2600

2601 2602 2603
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2604
	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
K
Keith Busch 已提交
2605 2606 2607 2608
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2609
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2610 2611 2612 2613

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2614

2615
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2616
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2617 2618 2619

	q->nr_queues = nr_cpu_ids;

2620
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2621

2622
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2623
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2624

2625 2626
	q->sg_reserved_size = INT_MAX;

2627
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2628 2629 2630
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2631
	blk_queue_make_request(q, blk_mq_make_request);
2632

2633 2634 2635 2636 2637
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2638 2639 2640 2641 2642
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2643 2644
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2645

2646
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2647
	blk_mq_add_queue_tag_set(set, q);
2648
	blk_mq_map_swqueue(q);
2649

2650 2651 2652
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2653
		ret = elevator_init_mq(q);
2654 2655 2656 2657
		if (ret)
			return ERR_PTR(ret);
	}

2658
	return q;
2659

2660
err_hctxs:
K
Keith Busch 已提交
2661
	kfree(q->queue_hw_ctx);
2662
err_percpu:
K
Keith Busch 已提交
2663
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2664 2665
err_exit:
	q->mq_ops = NULL;
2666 2667
	return ERR_PTR(-ENOMEM);
}
2668
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2669

2670 2671
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
2672
{
M
Ming Lei 已提交
2673
	struct blk_mq_tag_set	*set = q->tag_set;
2674

2675
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2676
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2677 2678 2679
}

/* Basically redo blk_mq_init_queue with queue frozen */
2680
static void blk_mq_queue_reinit(struct request_queue *q)
2681
{
2682
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2683

2684
	blk_mq_debugfs_unregister_hctxs(q);
2685 2686
	blk_mq_sysfs_unregister(q);

2687 2688
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2689 2690
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2691
	 */
2692
	blk_mq_map_swqueue(q);
2693

2694
	blk_mq_sysfs_register(q);
2695
	blk_mq_debugfs_register_hctxs(q);
2696 2697
}

2698 2699 2700 2701
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2702 2703
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2704 2705 2706 2707 2708 2709
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2710
		blk_mq_free_rq_map(set->tags[i]);
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2750 2751
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	if (set->ops->map_queues) {
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
2767
		blk_mq_clear_mq_map(set);
2768

2769
		return set->ops->map_queues(set);
2770
	} else
2771 2772 2773
		return blk_mq_map_queues(set);
}

2774 2775 2776
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
2777
 * requested depth down, if it's too large. In that case, the set
2778 2779
 * value will be stored in set->queue_depth.
 */
2780 2781
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2782 2783
	int ret;

B
Bart Van Assche 已提交
2784 2785
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2786 2787
	if (!set->nr_hw_queues)
		return -EINVAL;
2788
	if (!set->queue_depth)
2789 2790 2791 2792
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2793
	if (!set->ops->queue_rq)
2794 2795
		return -EINVAL;

2796 2797 2798
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2799 2800 2801 2802 2803
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2804

2805 2806 2807 2808 2809 2810 2811 2812 2813
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2814 2815 2816 2817 2818
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2819

2820
	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2821 2822
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2823
		return -ENOMEM;
2824

2825
	ret = -ENOMEM;
2826 2827
	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
				   GFP_KERNEL, set->numa_node);
2828 2829 2830
	if (!set->mq_map)
		goto out_free_tags;

2831
	ret = blk_mq_update_queue_map(set);
2832 2833 2834 2835 2836
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2837
		goto out_free_mq_map;
2838

2839 2840 2841
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2842
	return 0;
2843 2844 2845 2846 2847

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2848 2849
	kfree(set->tags);
	set->tags = NULL;
2850
	return ret;
2851 2852 2853 2854 2855 2856 2857
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2858 2859
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2860

2861 2862 2863
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2864
	kfree(set->tags);
2865
	set->tags = NULL;
2866 2867 2868
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2869 2870 2871 2872 2873 2874
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2875
	if (!set)
2876 2877
		return -EINVAL;

2878
	blk_mq_freeze_queue(q);
2879
	blk_mq_quiesce_queue(q);
2880

2881 2882
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2883 2884
		if (!hctx->tags)
			continue;
2885 2886 2887 2888
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2889
		if (!hctx->sched_tags) {
2890
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2891 2892 2893 2894 2895
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2896 2897
		if (ret)
			break;
2898 2899
		if (q->elevator && q->elevator->type->ops.mq.depth_updated)
			q->elevator->type->ops.mq.depth_updated(hctx);
2900 2901 2902 2903 2904
	}

	if (!ret)
		q->nr_requests = nr;

2905
	blk_mq_unquiesce_queue(q);
2906 2907
	blk_mq_unfreeze_queue(q);

2908 2909 2910
	return ret;
}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

2981 2982
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2983 2984
{
	struct request_queue *q;
2985
	LIST_HEAD(head);
K
Keith Busch 已提交
2986

2987 2988
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2989 2990 2991 2992 2993 2994 2995
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
2996 2997 2998 2999
	/*
	 * Sync with blk_mq_queue_tag_busy_iter.
	 */
	synchronize_rcu();
3000 3001 3002 3003 3004 3005 3006 3007
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3008 3009

	set->nr_hw_queues = nr_hw_queues;
3010
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
3011 3012
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3013
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
3014 3015
	}

3016 3017 3018 3019
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3020 3021 3022
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3023 3024 3025 3026 3027 3028 3029

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3030 3031
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3032 3033 3034 3035
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3036
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3058
	int bucket;
3059

3060 3061 3062 3063
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3064 3065
}

3066 3067 3068 3069 3070
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3071
	int bucket;
3072 3073 3074 3075 3076

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3077
	if (!blk_poll_stats_enable(q))
3078 3079 3080 3081 3082 3083 3084 3085
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3086 3087
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3088
	 */
3089 3090 3091 3092 3093 3094
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3095 3096 3097 3098

	return ret;
}

3099
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3100
				     struct blk_mq_hw_ctx *hctx,
3101 3102 3103 3104
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3105
	unsigned int nsecs;
3106 3107
	ktime_t kt;

J
Jens Axboe 已提交
3108
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3109 3110 3111
		return false;

	/*
3112
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3113 3114 3115 3116
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
3117
	if (q->poll_nsec > 0)
3118 3119 3120 3121 3122
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3123 3124
		return false;

J
Jens Axboe 已提交
3125
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3126 3127 3128 3129 3130

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3131
	kt = nsecs;
3132 3133 3134 3135 3136 3137 3138

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3139
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

3154 3155
static bool blk_mq_poll_hybrid(struct request_queue *q,
			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
J
Jens Axboe 已提交
3156
{
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	struct request *rq;

	if (q->poll_nsec == -1)
		return false;

	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else {
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}

	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
}

C
Christoph Hellwig 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
/**
 * blk_poll - poll for IO completions
 * @q:  the queue
 * @cookie: cookie passed back at IO submission time
 * @spin: whether to spin for completions
 *
 * Description:
 *    Poll for completions on the passed in queue. Returns number of
 *    completed entries found. If @spin is true, then blk_poll will continue
 *    looping until at least one completion is found, unless the task is
 *    otherwise marked running (or we need to reschedule).
 */
int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3192 3193
{
	struct blk_mq_hw_ctx *hctx;
J
Jens Axboe 已提交
3194 3195
	long state;

C
Christoph Hellwig 已提交
3196 3197
	if (!blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3198 3199
		return 0;

C
Christoph Hellwig 已提交
3200 3201 3202
	if (current->plug)
		blk_flush_plug_list(current->plug, false);

3203 3204
	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];

3205 3206 3207 3208 3209 3210 3211
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3212
	if (blk_mq_poll_hybrid(q, hctx, cookie))
3213
		return 1;
3214

J
Jens Axboe 已提交
3215 3216 3217 3218 3219 3220 3221 3222
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

3223
		ret = q->mq_ops->poll(hctx, -1U);
J
Jens Axboe 已提交
3224 3225 3226
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
3227
			return ret;
J
Jens Axboe 已提交
3228 3229 3230 3231 3232 3233
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
3234
			return 1;
3235
		if (ret < 0 || !spin)
J
Jens Axboe 已提交
3236 3237 3238 3239
			break;
		cpu_relax();
	}

3240
	__set_current_state(TASK_RUNNING);
3241
	return 0;
J
Jens Axboe 已提交
3242
}
C
Christoph Hellwig 已提交
3243
EXPORT_SYMBOL_GPL(blk_poll);
J
Jens Axboe 已提交
3244

3245 3246
static int __init blk_mq_init(void)
{
3247 3248
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3249 3250 3251
	return 0;
}
subsys_initcall(blk_mq_init);