blk-mq.c 74.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98 99 100 101 102 103 104 105 106
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
107 108 109 110 111 112 113
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

114
	inflight[0] = inflight[1] = 0;
115 116 117
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

137
void blk_freeze_queue_start(struct request_queue *q)
138
{
139
	int freeze_depth;
140

141 142
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
143
		percpu_ref_kill(&q->q_usage_counter);
144 145
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
146
	}
147
}
148
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149

150
void blk_mq_freeze_queue_wait(struct request_queue *q)
151
{
152
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155

156 157 158 159 160 161 162 163
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164

165 166 167 168
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
169
void blk_freeze_queue(struct request_queue *q)
170
{
171 172 173 174 175 176 177
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
178
	blk_freeze_queue_start(q);
179 180
	if (!q->mq_ops)
		blk_drain_queue(q);
181 182
	blk_mq_freeze_queue_wait(q);
}
183 184 185 186 187 188 189 190 191

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193

194
void blk_mq_unfreeze_queue(struct request_queue *q)
195
{
196
	int freeze_depth;
197

198 199 200
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
201
		percpu_ref_reinit(&q->q_usage_counter);
202
		wake_up_all(&q->mq_freeze_wq);
203
	}
204
}
205
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206

207 208 209 210 211 212
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
213
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 215 216
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

217
/**
218
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 220 221
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
222 223 224
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
225 226 227 228 229 230 231
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

232
	blk_mq_quiesce_queue_nowait(q);
233

234 235
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
236
			synchronize_srcu(hctx->srcu);
237 238 239 240 241 242 243 244
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

245 246 247 248 249 250 251 252 253
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
254
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255

256 257
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
258 259 260
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

261 262 263 264 265 266 267 268 269 270
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

271 272 273 274 275 276
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

277 278
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
279
{
280 281
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
282
	req_flags_t rq_flags = 0;
283

284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
289
			rq_flags = RQF_MQ_INFLIGHT;
290 291 292 293 294 295 296
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

297
	/* csd/requeue_work/fifo_time is initialized before use */
298 299
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
300
	rq->rq_flags = rq_flags;
301
	rq->cpu = -1;
302
	rq->cmd_flags = op;
303 304
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
305
	if (blk_queue_io_stat(data->q))
306
		rq->rq_flags |= RQF_IO_STAT;
307
	INIT_LIST_HEAD(&rq->queuelist);
308 309 310 311
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
312
	rq->start_time_ns = ktime_get_ns();
313
	rq->io_start_time_ns = 0;
314 315 316 317 318 319 320
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
321
	rq->__deadline = 0;
322 323

	INIT_LIST_HEAD(&rq->timeout_list);
324 325
	rq->timeout = 0;

326 327 328 329
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

330 331 332 333
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

334
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
335
	refcount_set(&rq->ref, 1);
336
	return rq;
337 338
}

339 340 341 342 343 344
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
345
	unsigned int tag;
346
	bool put_ctx_on_error = false;
347 348 349

	blk_queue_enter_live(q);
	data->q = q;
350 351 352 353
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
354 355
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 357
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
358 359 360 361 362 363

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
364 365
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
366
		 */
367 368
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
369
			e->type->ops.mq.limit_depth(op, data);
370 371
	}

372 373
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
374 375
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
376 377
			data->ctx = NULL;
		}
378 379
		blk_queue_exit(q);
		return NULL;
380 381
	}

382
	rq = blk_mq_rq_ctx_init(data, tag, op);
383 384
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
385
		if (e && e->type->ops.mq.prepare_request) {
386 387 388
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

389 390
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
391
		}
392 393 394
	}
	data->hctx->queued++;
	return rq;
395 396
}

397
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398
		blk_mq_req_flags_t flags)
399
{
400
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
401
	struct request *rq;
402
	int ret;
403

404
	ret = blk_queue_enter(q, flags);
405 406
	if (ret)
		return ERR_PTR(ret);
407

408
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409
	blk_queue_exit(q);
410

411
	if (!rq)
412
		return ERR_PTR(-EWOULDBLOCK);
413

414 415
	blk_mq_put_ctx(alloc_data.ctx);

416 417 418
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
419 420
	return rq;
}
421
EXPORT_SYMBOL(blk_mq_alloc_request);
422

423
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
425
{
426
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
427
	struct request *rq;
428
	unsigned int cpu;
M
Ming Lin 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

443
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
444 445 446
	if (ret)
		return ERR_PTR(ret);

447 448 449 450
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
451 452 453 454
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
455
	}
456
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
458

459
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460
	blk_queue_exit(q);
461

462 463 464 465
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
466 467 468
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

484
void blk_mq_free_request(struct request *rq)
485 486
{
	struct request_queue *q = rq->q;
487 488 489 490
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

491
	if (rq->rq_flags & RQF_ELVPRIV) {
492 493 494 495 496 497 498
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
499

500
	ctx->rq_completed[rq_is_sync(rq)]++;
501
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
502
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
503

504 505 506
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

507
	wbt_done(q->rq_wb, rq);
508

S
Shaohua Li 已提交
509 510 511
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

K
Keith Busch 已提交
512 513 514
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
515
}
J
Jens Axboe 已提交
516
EXPORT_SYMBOL_GPL(blk_mq_free_request);
517

518
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519
{
520 521
	u64 now = ktime_get_ns();

522 523
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
524
		blk_stat_add(rq, now);
525 526
	}

527
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
528

C
Christoph Hellwig 已提交
529
	if (rq->end_io) {
530
		wbt_done(rq->q->rq_wb, rq);
531
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
532 533 534
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
535
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
536
	}
537
}
538
EXPORT_SYMBOL(__blk_mq_end_request);
539

540
void blk_mq_end_request(struct request *rq, blk_status_t error)
541 542 543
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
544
	__blk_mq_end_request(rq, error);
545
}
546
EXPORT_SYMBOL(blk_mq_end_request);
547

548
static void __blk_mq_complete_request_remote(void *data)
549
{
550
	struct request *rq = data;
551

552
	rq->q->softirq_done_fn(rq);
553 554
}

555
static void __blk_mq_complete_request(struct request *rq)
556 557
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
558
	bool shared = false;
559 560
	int cpu;

K
Keith Busch 已提交
561 562 563
	if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) !=
			MQ_RQ_IN_FLIGHT)
		return;
564

565 566 567
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);

C
Christoph Hellwig 已提交
568
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 570 571
		rq->q->softirq_done_fn(rq);
		return;
	}
572 573

	cpu = get_cpu();
C
Christoph Hellwig 已提交
574 575 576 577
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578
		rq->csd.func = __blk_mq_complete_request_remote;
579 580
		rq->csd.info = rq;
		rq->csd.flags = 0;
581
		smp_call_function_single_async(ctx->cpu, &rq->csd);
582
	} else {
583
		rq->q->softirq_done_fn(rq);
584
	}
585 586
	put_cpu();
}
587

588
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589
	__releases(hctx->srcu)
590 591 592 593
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
594
		srcu_read_unlock(hctx->srcu, srcu_idx);
595 596 597
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598
	__acquires(hctx->srcu)
599
{
600 601 602
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
603
		rcu_read_lock();
604
	} else
605
		*srcu_idx = srcu_read_lock(hctx->srcu);
606 607
}

608 609 610 611 612 613 614 615
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
616
void blk_mq_complete_request(struct request *rq)
617
{
K
Keith Busch 已提交
618
	if (unlikely(blk_should_fake_timeout(rq->q)))
619
		return;
K
Keith Busch 已提交
620
	__blk_mq_complete_request(rq);
621 622
}
EXPORT_SYMBOL(blk_mq_complete_request);
623

624 625
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
626
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 628 629
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

630
void blk_mq_start_request(struct request *rq)
631 632 633
{
	struct request_queue *q = rq->q;

634 635
	blk_mq_sched_started_request(rq);

636 637
	trace_block_rq_issue(q, rq);

638
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 640 641 642
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
643
		rq->rq_flags |= RQF_STATS;
644
		wbt_issue(q->rq_wb, rq);
645 646
	}

647
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648

649
	blk_add_timer(rq);
K
Keith Busch 已提交
650
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 652 653 654 655 656 657 658 659

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
660
}
661
EXPORT_SYMBOL(blk_mq_start_request);
662

663
static void __blk_mq_requeue_request(struct request *rq)
664 665 666
{
	struct request_queue *q = rq->q;

667 668
	blk_mq_put_driver_tag(rq);

669
	trace_block_rq_requeue(q, rq);
670
	wbt_requeue(q->rq_wb, rq);
671

K
Keith Busch 已提交
672 673
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674
		rq->rq_flags &= ~RQF_TIMED_OUT;
675 676 677
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
678 679
}

680
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 682 683
{
	__blk_mq_requeue_request(rq);

684 685 686
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

687
	BUG_ON(blk_queued_rq(rq));
688
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 690 691
}
EXPORT_SYMBOL(blk_mq_requeue_request);

692 693 694
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
695
		container_of(work, struct request_queue, requeue_work.work);
696 697 698
	LIST_HEAD(rq_list);
	struct request *rq, *next;

699
	spin_lock_irq(&q->requeue_lock);
700
	list_splice_init(&q->requeue_list, &rq_list);
701
	spin_unlock_irq(&q->requeue_lock);
702 703

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
705 706
			continue;

707
		rq->rq_flags &= ~RQF_SOFTBARRIER;
708
		list_del_init(&rq->queuelist);
709
		blk_mq_sched_insert_request(rq, true, false, false);
710 711 712 713 714
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
715
		blk_mq_sched_insert_request(rq, false, false, false);
716 717
	}

718
	blk_mq_run_hw_queues(q, false);
719 720
}

721 722
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
723 724 725 726 727 728
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
729
	 * request head insertion from the workqueue.
730
	 */
731
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
732 733 734

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
735
		rq->rq_flags |= RQF_SOFTBARRIER;
736 737 738 739 740
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
741 742 743

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
744 745 746 747 748
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
749
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
750 751 752
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

753 754 755
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
756 757
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
758 759 760
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

761 762
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
763 764
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
765
		return tags->rqs[tag];
766
	}
767 768

	return NULL;
769 770 771
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

772
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
773
{
774
	req->rq_flags |= RQF_TIMED_OUT;
775 776 777 778 779 780 781
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
782
	}
783 784

	blk_add_timer(req);
785
}
786

K
Keith Busch 已提交
787
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
788
{
K
Keith Busch 已提交
789
	unsigned long deadline;
790

K
Keith Busch 已提交
791 792
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
793 794
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
795

K
Keith Busch 已提交
796 797 798
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
799

K
Keith Busch 已提交
800 801 802 803 804
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
805 806
}

K
Keith Busch 已提交
807
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808 809
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

831
	/*
K
Keith Busch 已提交
832 833 834 835
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
836
	 */
K
Keith Busch 已提交
837
	if (blk_mq_req_expired(rq, next))
838
		blk_mq_rq_timed_out(rq, reserved);
K
Keith Busch 已提交
839 840
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
841 842
}

843
static void blk_mq_timeout_work(struct work_struct *work)
844
{
845 846
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
847
	unsigned long next = 0;
848
	struct blk_mq_hw_ctx *hctx;
849
	int i;
850

851 852 853 854 855 856 857 858 859
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
860
	 * blk_freeze_queue_start, and the moment the last request is
861 862 863 864
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
865 866
		return;

K
Keith Busch 已提交
867
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
868

K
Keith Busch 已提交
869 870
	if (next != 0) {
		mod_timer(&q->timeout, next);
871
	} else {
872 873 874 875 876 877
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
878 879 880 881 882
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
883
	}
884
	blk_queue_exit(q);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
900
	sbitmap_clear_bit(sb, bitnr);
901 902 903 904
	spin_unlock(&ctx->lock);
	return true;
}

905 906 907 908
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
909
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910
{
911 912 913 914
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
915

916
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917
}
918
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919

920 921 922 923 924 925 926 927 928 929 930 931 932
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
933
	if (!list_empty(&ctx->rq_list)) {
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

959 960 961 962
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
963

964
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 966
}

967
bool blk_mq_get_driver_tag(struct request *rq)
968 969 970 971
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
972
		.flags = BLK_MQ_REQ_NOWAIT,
973 974
	};

975 976
	if (rq->tag != -1)
		goto done;
977

978 979 980
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

981 982
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
983 984 985 986
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
987 988 989
		data.hctx->tags->rqs[rq->tag] = rq;
	}

990 991
done:
	return rq->tag != -1;
992 993
}

994 995
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
996 997 998 999 1000
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1001
	list_del_init(&wait->entry);
1002 1003 1004 1005
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1006 1007
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1008 1009
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1010 1011 1012 1013
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1014
{
1015
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1016
	struct sbq_wait_state *ws;
1017 1018
	wait_queue_entry_t *wait;
	bool ret;
1019

1020
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1021 1022 1023
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1024 1025 1026 1027 1028 1029 1030 1031
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1032
		return blk_mq_get_driver_tag(rq);
1033 1034
	}

1035 1036 1037 1038 1039 1040 1041 1042
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1043 1044
	}

1045 1046 1047
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1048
	/*
1049 1050 1051
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1052
	 */
1053
	ret = blk_mq_get_driver_tag(rq);
1054
	if (!ret) {
1055
		spin_unlock(&this_hctx->lock);
1056
		return false;
1057
	}
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1069 1070
}

1071 1072
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1073 1074 1075
/*
 * Returns true if we did some work AND can potentially do more.
 */
1076
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1077
			     bool got_budget)
1078
{
1079
	struct blk_mq_hw_ctx *hctx;
1080
	struct request *rq, *nxt;
1081
	bool no_tag = false;
1082
	int errors, queued;
1083
	blk_status_t ret = BLK_STS_OK;
1084

1085 1086 1087
	if (list_empty(list))
		return false;

1088 1089
	WARN_ON(!list_is_singular(list) && got_budget);

1090 1091 1092
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1093
	errors = queued = 0;
1094
	do {
1095
		struct blk_mq_queue_data bd;
1096

1097
		rq = list_first_entry(list, struct request, queuelist);
1098 1099 1100 1101 1102

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

1103
		if (!blk_mq_get_driver_tag(rq)) {
1104
			/*
1105
			 * The initial allocation attempt failed, so we need to
1106 1107 1108 1109
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1110
			 */
1111
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1112
				blk_mq_put_dispatch_budget(hctx);
1113 1114 1115 1116 1117 1118
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1119 1120 1121 1122
				break;
			}
		}

1123 1124
		list_del_init(&rq->queuelist);

1125
		bd.rq = rq;
1126 1127 1128 1129 1130 1131 1132 1133 1134

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1135
			bd.last = !blk_mq_get_driver_tag(nxt);
1136
		}
1137 1138

		ret = q->mq_ops->queue_rq(hctx, &bd);
1139
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1140 1141
			/*
			 * If an I/O scheduler has been configured and we got a
1142 1143
			 * driver tag for the next request already, free it
			 * again.
1144 1145 1146 1147 1148
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1149
			list_add(&rq->queuelist, list);
1150
			__blk_mq_requeue_request(rq);
1151
			break;
1152 1153 1154
		}

		if (unlikely(ret != BLK_STS_OK)) {
1155
			errors++;
1156
			blk_mq_end_request(rq, BLK_STS_IOERR);
1157
			continue;
1158 1159
		}

1160
		queued++;
1161
	} while (!list_empty(list));
1162

1163
	hctx->dispatched[queued_to_index(queued)]++;
1164 1165 1166 1167 1168

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1169
	if (!list_empty(list)) {
1170 1171
		bool needs_restart;

1172
		spin_lock(&hctx->lock);
1173
		list_splice_init(list, &hctx->dispatch);
1174
		spin_unlock(&hctx->lock);
1175

1176
		/*
1177 1178 1179
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1180
		 *
1181 1182 1183 1184
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1185
		 *
1186 1187 1188 1189 1190 1191 1192
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1193
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1194
		 *   and dm-rq.
1195 1196 1197 1198
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1199
		 */
1200 1201
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1202
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1203
			blk_mq_run_hw_queue(hctx, true);
1204 1205
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1206 1207

		return false;
1208
	}
1209

1210 1211 1212 1213 1214 1215 1216
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1217
	return (queued + errors) != 0;
1218 1219
}

1220 1221 1222 1223
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1224 1225 1226
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1240
	 */
1241 1242 1243 1244 1245 1246 1247
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1248

1249 1250 1251 1252 1253 1254
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1255
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1256

1257 1258 1259
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1260 1261
}

1262 1263 1264 1265 1266 1267 1268 1269 1270
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1271 1272 1273 1274 1275 1276 1277 1278
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1279
	bool tried = false;
1280
	int next_cpu = hctx->next_cpu;
1281

1282 1283
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1284 1285

	if (--hctx->next_cpu_batch <= 0) {
1286
select_cpu:
1287
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1288
				cpu_online_mask);
1289
		if (next_cpu >= nr_cpu_ids)
1290
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1291 1292 1293
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1294 1295 1296 1297
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1298
	if (!cpu_online(next_cpu)) {
1299 1300 1301 1302 1303 1304 1305 1306 1307
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1308
		hctx->next_cpu = next_cpu;
1309 1310 1311
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1312 1313 1314

	hctx->next_cpu = next_cpu;
	return next_cpu;
1315 1316
}

1317 1318
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1319
{
1320
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1321 1322
		return;

1323
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1324 1325
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1326
			__blk_mq_run_hw_queue(hctx);
1327
			put_cpu();
1328 1329
			return;
		}
1330

1331
		put_cpu();
1332
	}
1333

1334 1335
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1336 1337 1338 1339 1340 1341 1342 1343
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1344
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1345
{
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1357 1358 1359 1360
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1361 1362

	if (need_run) {
1363 1364 1365 1366 1367
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1368
}
O
Omar Sandoval 已提交
1369
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1370

1371
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1372 1373 1374 1375 1376
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1377
		if (blk_mq_hctx_stopped(hctx))
1378 1379
			continue;

1380
		blk_mq_run_hw_queue(hctx, async);
1381 1382
	}
}
1383
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1405 1406 1407
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1408
 * BLK_STS_RESOURCE is usually returned.
1409 1410 1411 1412 1413
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1414 1415
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1416
	cancel_delayed_work(&hctx->run_work);
1417

1418
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1419
}
1420
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1421

1422 1423 1424
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1425
 * BLK_STS_RESOURCE is usually returned.
1426 1427 1428 1429 1430
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1431 1432
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1433 1434 1435 1436 1437
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1438 1439 1440
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1441 1442 1443
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1444

1445
	blk_mq_run_hw_queue(hctx, false);
1446 1447 1448
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1469
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1470 1471 1472 1473
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1474 1475
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1476 1477 1478
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1479
static void blk_mq_run_work_fn(struct work_struct *work)
1480 1481 1482
{
	struct blk_mq_hw_ctx *hctx;

1483
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1484

1485
	/*
M
Ming Lei 已提交
1486
	 * If we are stopped, don't run the queue.
1487
	 */
M
Ming Lei 已提交
1488
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1489
		return;
1490 1491 1492 1493

	__blk_mq_run_hw_queue(hctx);
}

1494 1495 1496
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1497
{
J
Jens Axboe 已提交
1498 1499
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1500 1501
	lockdep_assert_held(&ctx->lock);

1502 1503
	trace_block_rq_insert(hctx->queue, rq);

1504 1505 1506 1507
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1508
}
1509

1510 1511
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1512 1513 1514
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1515 1516
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1517
	__blk_mq_insert_req_list(hctx, rq, at_head);
1518 1519 1520
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1521 1522 1523 1524
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1525
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1526 1527 1528 1529 1530 1531 1532 1533
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1534 1535
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1536 1537
}

1538 1539
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1551
		BUG_ON(rq->mq_ctx != ctx);
1552
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1553
		__blk_mq_insert_req_list(hctx, rq, false);
1554
	}
1555
	blk_mq_hctx_mark_pending(hctx, ctx);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1592 1593 1594 1595
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1612 1613 1614
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1615 1616 1617 1618 1619
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1620
	blk_init_request_from_bio(rq, bio);
1621

S
Shaohua Li 已提交
1622 1623
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1624
	blk_account_io_start(rq, true);
1625 1626
}

1627 1628
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1629 1630 1631 1632
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1633 1634
}

1635 1636 1637
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1638 1639 1640 1641
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1642
		.last = true,
1643
	};
1644
	blk_qc_t new_cookie;
1645
	blk_status_t ret;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1660
	case BLK_STS_DEV_RESOURCE:
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1673 1674
						blk_qc_t *cookie,
						bool bypass_insert)
1675 1676
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1677 1678
	bool run_queue = true;

1679 1680 1681 1682
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1683
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1684 1685
	 * and avoid driver to try to dispatch again.
	 */
1686
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1687
		run_queue = false;
1688
		bypass_insert = false;
M
Ming Lei 已提交
1689 1690
		goto insert;
	}
1691

1692
	if (q->elevator && !bypass_insert)
1693 1694
		goto insert;

1695
	if (!blk_mq_get_dispatch_budget(hctx))
1696 1697
		goto insert;

1698
	if (!blk_mq_get_driver_tag(rq)) {
1699
		blk_mq_put_dispatch_budget(hctx);
1700
		goto insert;
1701
	}
1702

1703
	return __blk_mq_issue_directly(hctx, rq, cookie);
1704
insert:
1705 1706
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1707

1708
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1709
	return BLK_STS_OK;
1710 1711
}

1712 1713 1714
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1715
	blk_status_t ret;
1716
	int srcu_idx;
1717

1718
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1719

1720
	hctx_lock(hctx, &srcu_idx);
1721

1722
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1723
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1724
		blk_mq_sched_insert_request(rq, false, true, false);
1725 1726 1727
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1728
	hctx_unlock(hctx, srcu_idx);
1729 1730
}

1731
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1744 1745
}

1746
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1747
{
1748
	const int is_sync = op_is_sync(bio->bi_opf);
1749
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1750
	struct blk_mq_alloc_data data = { .flags = 0 };
1751
	struct request *rq;
1752
	unsigned int request_count = 0;
1753
	struct blk_plug *plug;
1754
	struct request *same_queue_rq = NULL;
1755
	blk_qc_t cookie;
J
Jens Axboe 已提交
1756
	unsigned int wb_acct;
1757 1758 1759

	blk_queue_bounce(q, &bio);

1760
	blk_queue_split(q, &bio);
1761

1762
	if (!bio_integrity_prep(bio))
1763
		return BLK_QC_T_NONE;
1764

1765 1766 1767
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1768

1769 1770 1771
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1772 1773
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1774 1775
	trace_block_getrq(q, bio, bio->bi_opf);

1776
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1777 1778
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1779 1780
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1781
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1782 1783
	}

1784
	wbt_track(rq, wb_acct);
1785

1786
	cookie = request_to_qc_t(data.hctx, rq);
1787

1788
	plug = current->plug;
1789
	if (unlikely(is_flush_fua)) {
1790
		blk_mq_put_ctx(data.ctx);
1791
		blk_mq_bio_to_request(rq, bio);
1792 1793 1794 1795

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1796
	} else if (plug && q->nr_hw_queues == 1) {
1797 1798
		struct request *last = NULL;

1799
		blk_mq_put_ctx(data.ctx);
1800
		blk_mq_bio_to_request(rq, bio);
1801 1802 1803 1804 1805 1806 1807

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1808 1809 1810
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1811
		if (!request_count)
1812
			trace_block_plug(q);
1813 1814
		else
			last = list_entry_rq(plug->mq_list.prev);
1815

1816 1817
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1818 1819
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1820
		}
1821

1822
		list_add_tail(&rq->queuelist, &plug->mq_list);
1823
	} else if (plug && !blk_queue_nomerges(q)) {
1824
		blk_mq_bio_to_request(rq, bio);
1825 1826

		/*
1827
		 * We do limited plugging. If the bio can be merged, do that.
1828 1829
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1830 1831
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1832
		 */
1833 1834 1835 1836 1837 1838
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1839 1840
		blk_mq_put_ctx(data.ctx);

1841 1842 1843
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1844 1845
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1846
		}
1847
	} else if (q->nr_hw_queues > 1 && is_sync) {
1848
		blk_mq_put_ctx(data.ctx);
1849 1850
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1851
	} else {
1852
		blk_mq_put_ctx(data.ctx);
1853
		blk_mq_bio_to_request(rq, bio);
1854
		blk_mq_sched_insert_request(rq, false, true, true);
1855
	}
1856

1857
	return cookie;
1858 1859
}

1860 1861
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1862
{
1863
	struct page *page;
1864

1865
	if (tags->rqs && set->ops->exit_request) {
1866
		int i;
1867

1868
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1869 1870 1871
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1872
				continue;
1873
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1874
			tags->static_rqs[i] = NULL;
1875
		}
1876 1877
	}

1878 1879
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1880
		list_del_init(&page->lru);
1881 1882 1883 1884 1885
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1886 1887
		__free_pages(page, page->private);
	}
1888
}
1889

1890 1891
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1892
	kfree(tags->rqs);
1893
	tags->rqs = NULL;
J
Jens Axboe 已提交
1894 1895
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1896

1897
	blk_mq_free_tags(tags);
1898 1899
}

1900 1901 1902 1903
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1904
{
1905
	struct blk_mq_tags *tags;
1906
	int node;
1907

1908 1909 1910 1911 1912
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1913
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1914 1915
	if (!tags)
		return NULL;
1916

1917
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1918
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1919
				 node);
1920 1921 1922 1923
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1924

1925 1926 1927
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
1928 1929 1930 1931 1932 1933
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1934 1935 1936 1937 1938 1939 1940 1941
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
1953
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1954 1955 1956
	return 0;
}

1957 1958 1959 1960 1961
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1962 1963 1964 1965 1966
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1967 1968 1969

	INIT_LIST_HEAD(&tags->page_list);

1970 1971 1972 1973
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1974
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1975
				cache_line_size());
1976
	left = rq_size * depth;
1977

1978
	for (i = 0; i < depth; ) {
1979 1980 1981 1982 1983
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1984
		while (this_order && left < order_to_size(this_order - 1))
1985 1986 1987
			this_order--;

		do {
1988
			page = alloc_pages_node(node,
1989
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1990
				this_order);
1991 1992 1993 1994 1995 1996 1997 1998 1999
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2000
			goto fail;
2001 2002

		page->private = this_order;
2003
		list_add_tail(&page->lru, &tags->page_list);
2004 2005

		p = page_address(page);
2006 2007 2008 2009
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2010
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2011
		entries_per_page = order_to_size(this_order) / rq_size;
2012
		to_do = min(entries_per_page, depth - i);
2013 2014
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2015 2016 2017
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2018 2019 2020
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2021 2022
			}

2023 2024 2025 2026
			p += rq_size;
			i++;
		}
	}
2027
	return 0;
2028

2029
fail:
2030 2031
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2032 2033
}

J
Jens Axboe 已提交
2034 2035 2036 2037 2038
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2039
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2040
{
2041
	struct blk_mq_hw_ctx *hctx;
2042 2043 2044
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2045
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2046
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2047 2048 2049 2050 2051 2052 2053 2054 2055

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2056
		return 0;
2057

J
Jens Axboe 已提交
2058 2059 2060
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2061 2062

	blk_mq_run_hw_queue(hctx, true);
2063
	return 0;
2064 2065
}

2066
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2067
{
2068 2069
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2070 2071
}

2072
/* hctx->ctxs will be freed in queue's release handler */
2073 2074 2075 2076
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2077 2078
	blk_mq_debugfs_unregister_hctx(hctx);

2079 2080
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2081

2082
	if (set->ops->exit_request)
2083
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2084

2085 2086
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2087 2088 2089
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2090
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2091
		cleanup_srcu_struct(hctx->srcu);
2092

2093
	blk_mq_remove_cpuhp(hctx);
2094
	blk_free_flush_queue(hctx->fq);
2095
	sbitmap_free(&hctx->ctx_map);
2096 2097
}

M
Ming Lei 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2107
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2108 2109 2110
	}
}

2111 2112 2113
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2114
{
2115 2116 2117 2118 2119 2120
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2121
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2122 2123 2124
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2125
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2126

2127
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2128 2129

	hctx->tags = set->tags[hctx_idx];
2130 2131

	/*
2132 2133
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2134
	 */
2135
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2136 2137 2138
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2139

2140 2141
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2142
		goto free_ctxs;
2143

2144
	hctx->nr_ctx = 0;
2145

2146 2147 2148
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2149 2150 2151
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2152

2153 2154 2155
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2156 2157
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2158
		goto sched_exit_hctx;
2159

2160
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2161
		goto free_fq;
2162

2163
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2164
		init_srcu_struct(hctx->srcu);
2165

2166 2167
	blk_mq_debugfs_register_hctx(q, hctx);

2168
	return 0;
2169

2170 2171
 free_fq:
	kfree(hctx->fq);
2172 2173
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2174 2175 2176
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2177
 free_bitmap:
2178
	sbitmap_free(&hctx->ctx_map);
2179 2180 2181
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2182
	blk_mq_remove_cpuhp(hctx);
2183 2184
	return -1;
}
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2204
		hctx = blk_mq_map_queue(q, i);
2205
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2206
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2207 2208 2209
	}
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2232 2233 2234 2235 2236
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2237 2238
}

2239
static void blk_mq_map_swqueue(struct request_queue *q)
2240
{
2241
	unsigned int i, hctx_idx;
2242 2243
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2244
	struct blk_mq_tag_set *set = q->tag_set;
2245

2246 2247 2248 2249 2250
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2251
	queue_for_each_hw_ctx(q, hctx, i) {
2252
		cpumask_clear(hctx->cpumask);
2253
		hctx->nr_ctx = 0;
2254
		hctx->dispatch_from = NULL;
2255 2256 2257
	}

	/*
2258
	 * Map software to hardware queues.
2259 2260
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2261
	 */
2262
	for_each_possible_cpu(i) {
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2276
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2277
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2278

2279
		cpumask_set_cpu(i, hctx->cpumask);
2280 2281 2282
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2283

2284 2285
	mutex_unlock(&q->sysfs_lock);

2286
	queue_for_each_hw_ctx(q, hctx, i) {
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2302

M
Ming Lei 已提交
2303 2304 2305
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2306 2307 2308 2309 2310
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2311
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2312

2313 2314 2315
		/*
		 * Initialize batch roundrobin counts
		 */
2316
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2317 2318
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2319 2320
}

2321 2322 2323 2324
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2325
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2326 2327 2328 2329
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2330
	queue_for_each_hw_ctx(q, hctx, i) {
2331 2332 2333
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2334
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2335 2336 2337
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2338
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2339
		}
2340 2341 2342
	}
}

2343 2344
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2345 2346
{
	struct request_queue *q;
2347

2348 2349
	lockdep_assert_held(&set->tag_list_lock);

2350 2351
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2352
		queue_set_hctx_shared(q, shared);
2353 2354 2355 2356 2357 2358 2359 2360 2361
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2362
	list_del_rcu(&q->tag_set_list);
2363 2364 2365 2366 2367 2368
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2369
	mutex_unlock(&set->tag_list_lock);
2370
	synchronize_rcu();
2371
	INIT_LIST_HEAD(&q->tag_set_list);
2372 2373 2374 2375 2376 2377 2378 2379
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2380

2381 2382 2383 2384 2385
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2386 2387 2388 2389 2390 2391
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2392
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2393

2394 2395 2396
	mutex_unlock(&set->tag_list_lock);
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2409 2410 2411
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2412
		kobject_put(&hctx->kobj);
2413
	}
2414

2415 2416
	q->mq_map = NULL;

2417 2418
	kfree(q->queue_hw_ctx);

2419 2420 2421 2422 2423 2424
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2425 2426 2427
	free_percpu(q->queue_ctx);
}

2428
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2429 2430 2431
{
	struct request_queue *uninit_q, *q;

2432
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2444 2445 2446 2447
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2448
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2449 2450 2451 2452 2453 2454 2455 2456 2457
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2458 2459
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2460
{
K
Keith Busch 已提交
2461 2462
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2463

K
Keith Busch 已提交
2464
	blk_mq_sysfs_unregister(q);
2465 2466 2467

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2468
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2469
		int node;
2470

K
Keith Busch 已提交
2471 2472 2473 2474
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2475
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2476
					GFP_KERNEL, node);
2477
		if (!hctxs[i])
K
Keith Busch 已提交
2478
			break;
2479

2480
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2481 2482 2483 2484 2485
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2486

2487
		atomic_set(&hctxs[i]->nr_active, 0);
2488
		hctxs[i]->numa_node = node;
2489
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2490 2491 2492 2493 2494 2495 2496 2497

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2498
	}
K
Keith Busch 已提交
2499 2500 2501 2502
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2503 2504
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2505 2506 2507 2508 2509 2510 2511
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2512
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2513 2514 2515 2516 2517 2518
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2519 2520 2521
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2522
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2523 2524
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2525 2526 2527
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2528 2529
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2530
		goto err_exit;
K
Keith Busch 已提交
2531

2532 2533 2534
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2535
	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
K
Keith Busch 已提交
2536 2537 2538 2539
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2540
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2541 2542 2543 2544

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2545

2546
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2547
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2548 2549 2550

	q->nr_queues = nr_cpu_ids;

2551
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2552

2553
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2554
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2555

2556 2557
	q->sg_reserved_size = INT_MAX;

2558
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2559 2560 2561
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2562
	blk_queue_make_request(q, blk_mq_make_request);
2563 2564
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2565

2566 2567 2568 2569 2570
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2571 2572 2573 2574 2575
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2576 2577
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2578

2579
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2580
	blk_mq_add_queue_tag_set(set, q);
2581
	blk_mq_map_swqueue(q);
2582

2583 2584 2585
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2586
		ret = elevator_init_mq(q);
2587 2588 2589 2590
		if (ret)
			return ERR_PTR(ret);
	}

2591
	return q;
2592

2593
err_hctxs:
K
Keith Busch 已提交
2594
	kfree(q->queue_hw_ctx);
2595
err_percpu:
K
Keith Busch 已提交
2596
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2597 2598
err_exit:
	q->mq_ops = NULL;
2599 2600
	return ERR_PTR(-ENOMEM);
}
2601
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2602 2603 2604

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2605
	struct blk_mq_tag_set	*set = q->tag_set;
2606

2607
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2608
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2609 2610 2611
}

/* Basically redo blk_mq_init_queue with queue frozen */
2612
static void blk_mq_queue_reinit(struct request_queue *q)
2613
{
2614
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2615

2616
	blk_mq_debugfs_unregister_hctxs(q);
2617 2618
	blk_mq_sysfs_unregister(q);

2619 2620
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2621 2622
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2623
	 */
2624
	blk_mq_map_swqueue(q);
2625

2626
	blk_mq_sysfs_register(q);
2627
	blk_mq_debugfs_register_hctxs(q);
2628 2629
}

2630 2631 2632 2633
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2634 2635
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2636 2637 2638 2639 2640 2641
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2642
		blk_mq_free_rq_map(set->tags[i]);
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2682 2683
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2703
		return set->ops->map_queues(set);
2704
	} else
2705 2706 2707
		return blk_mq_map_queues(set);
}

2708 2709 2710 2711 2712 2713
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2714 2715
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2716 2717
	int ret;

B
Bart Van Assche 已提交
2718 2719
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2720 2721
	if (!set->nr_hw_queues)
		return -EINVAL;
2722
	if (!set->queue_depth)
2723 2724 2725 2726
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2727
	if (!set->ops->queue_rq)
2728 2729
		return -EINVAL;

2730 2731 2732
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2733 2734 2735 2736 2737
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2738

2739 2740 2741 2742 2743 2744 2745 2746 2747
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2748 2749 2750 2751 2752
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2753

2754
	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2755 2756
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2757
		return -ENOMEM;
2758

2759
	ret = -ENOMEM;
2760 2761
	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
				   GFP_KERNEL, set->numa_node);
2762 2763 2764
	if (!set->mq_map)
		goto out_free_tags;

2765
	ret = blk_mq_update_queue_map(set);
2766 2767 2768 2769 2770
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2771
		goto out_free_mq_map;
2772

2773 2774 2775
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2776
	return 0;
2777 2778 2779 2780 2781

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2782 2783
	kfree(set->tags);
	set->tags = NULL;
2784
	return ret;
2785 2786 2787 2788 2789 2790 2791
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2792 2793
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2794

2795 2796 2797
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2798
	kfree(set->tags);
2799
	set->tags = NULL;
2800 2801 2802
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2803 2804 2805 2806 2807 2808
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2809
	if (!set)
2810 2811
		return -EINVAL;

2812
	blk_mq_freeze_queue(q);
2813
	blk_mq_quiesce_queue(q);
2814

2815 2816
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2817 2818
		if (!hctx->tags)
			continue;
2819 2820 2821 2822
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2823
		if (!hctx->sched_tags) {
2824
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2825 2826 2827 2828 2829
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2830 2831 2832 2833 2834 2835 2836
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2837
	blk_mq_unquiesce_queue(q);
2838 2839
	blk_mq_unfreeze_queue(q);

2840 2841 2842
	return ret;
}

2843 2844
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2845 2846 2847
{
	struct request_queue *q;

2848 2849
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2859
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2860 2861
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2862
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2863 2864 2865 2866 2867
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2868 2869 2870 2871 2872 2873 2874

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2875 2876
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2877 2878 2879 2880
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2881
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2903
	int bucket;
2904

2905 2906 2907 2908
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2909 2910
}

2911 2912 2913 2914 2915
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2916
	int bucket;
2917 2918 2919 2920 2921

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2922
	if (!blk_poll_stats_enable(q))
2923 2924 2925 2926 2927 2928 2929 2930
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2931 2932
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2933
	 */
2934 2935 2936 2937 2938 2939
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2940 2941 2942 2943

	return ret;
}

2944
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2945
				     struct blk_mq_hw_ctx *hctx,
2946 2947 2948 2949
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2950
	unsigned int nsecs;
2951 2952
	ktime_t kt;

J
Jens Axboe 已提交
2953
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2971 2972
		return false;

J
Jens Axboe 已提交
2973
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2974 2975 2976 2977 2978

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2979
	kt = nsecs;
2980 2981 2982 2983 2984 2985 2986

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
2987
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3002 3003 3004 3005 3006
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3007 3008 3009 3010 3011 3012 3013
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3014
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3015 3016
		return true;

J
Jens Axboe 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3042
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3043 3044 3045
	return false;
}

3046
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3047 3048 3049 3050
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3051
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3052 3053 3054
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3055 3056
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3057
	else {
3058
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3059 3060 3061 3062 3063 3064 3065 3066 3067
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3068 3069 3070 3071

	return __blk_mq_poll(hctx, rq);
}

3072 3073
static int __init blk_mq_init(void)
{
3074 3075
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3076 3077 3078
	return 0;
}
subsys_initcall(blk_mq_init);