blk-mq.c 69.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128
		blk_mq_run_hw_queues(q, false);
129
	}
130
}
131
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132

133
void blk_mq_freeze_queue_wait(struct request_queue *q)
134
{
135
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138

139 140 141 142 143 144 145 146
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147

148 149 150 151
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
152
void blk_freeze_queue(struct request_queue *q)
153
{
154 155 156 157 158 159 160
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
161
	blk_freeze_queue_start(q);
162 163
	blk_mq_freeze_queue_wait(q);
}
164 165 166 167 168 169 170 171 172

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
173
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174

175
void blk_mq_unfreeze_queue(struct request_queue *q)
176
{
177
	int freeze_depth;
178

179 180 181
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
182
		percpu_ref_reinit(&q->q_usage_counter);
183
		wake_up_all(&q->mq_freeze_wq);
184
	}
185
}
186
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

202
/**
203
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 205 206
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
207 208 209
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
210 211 212 213 214 215 216
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

217
	blk_mq_quiesce_queue_nowait(q);
218

219 220
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
221
			synchronize_srcu(hctx->queue_rq_srcu);
222 223 224 225 226 227 228 229
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

230 231 232 233 234 235 236 237 238
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
239 240 241
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
242
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243
	spin_unlock_irqrestore(q->queue_lock, flags);
244

245 246
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
247 248 249
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

250 251 252 253 254 255 256 257
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
258 259 260 261 262 263 264

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
265 266
}

267 268 269 270 271 272
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

273 274
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
275
{
276 277 278
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

279 280
	rq->rq_flags = 0;

281 282 283 284 285 286 287 288 289 290 291 292 293
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

294 295
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
296 297
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
298
	rq->cmd_flags = op;
299
	if (blk_queue_io_stat(data->q))
300
		rq->rq_flags |= RQF_IO_STAT;
301 302 303 304 305 306
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
307
	rq->start_time = jiffies;
308 309
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
310
	set_start_time_ns(rq);
311 312 313 314 315 316 317 318 319 320 321
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
322 323
	rq->timeout = 0;

324 325 326 327
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

328 329
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
330 331
}

332 333 334 335 336 337
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
338
	unsigned int tag;
339 340 341 342 343 344 345

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
346 347
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
348 349 350 351 352 353 354 355

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
356 357
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
358 359
	}

360 361
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
362 363
		blk_queue_exit(q);
		return NULL;
364 365
	}

366
	rq = blk_mq_rq_ctx_init(data, tag, op);
367 368
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
369
		if (e && e->type->ops.mq.prepare_request) {
370 371 372
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

373 374
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
375
		}
376 377 378
	}
	data->hctx->queued++;
	return rq;
379 380
}

381
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
382
		unsigned int flags)
383
{
384
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
385
	struct request *rq;
386
	int ret;
387

388
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
389 390
	if (ret)
		return ERR_PTR(ret);
391

392
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
393

394 395 396 397
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
398
		return ERR_PTR(-EWOULDBLOCK);
399 400 401 402

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
403 404
	return rq;
}
405
EXPORT_SYMBOL(blk_mq_alloc_request);
406

407 408
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
409
{
410
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
411
	struct request *rq;
412
	unsigned int cpu;
M
Ming Lin 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

431 432 433 434
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
435 436 437 438
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
439
	}
440 441
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
442

443
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
444 445

	blk_queue_exit(q);
446 447 448 449 450

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
451 452 453
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

454
void blk_mq_free_request(struct request *rq)
455 456
{
	struct request_queue *q = rq->q;
457 458 459 460 461
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

462
	if (rq->rq_flags & RQF_ELVPRIV) {
463 464 465 466 467 468 469
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
470

471
	ctx->rq_completed[rq_is_sync(rq)]++;
472
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
473
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
474 475

	wbt_done(q->rq_wb, &rq->issue_stat);
476

477
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
478
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
479 480 481
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
482
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
483
	blk_mq_sched_restart(hctx);
484
	blk_queue_exit(q);
485
}
J
Jens Axboe 已提交
486
EXPORT_SYMBOL_GPL(blk_mq_free_request);
487

488
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
489
{
M
Ming Lei 已提交
490 491
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
492
	if (rq->end_io) {
J
Jens Axboe 已提交
493
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
494
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
495 496 497
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
498
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
499
	}
500
}
501
EXPORT_SYMBOL(__blk_mq_end_request);
502

503
void blk_mq_end_request(struct request *rq, blk_status_t error)
504 505 506
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
507
	__blk_mq_end_request(rq, error);
508
}
509
EXPORT_SYMBOL(blk_mq_end_request);
510

511
static void __blk_mq_complete_request_remote(void *data)
512
{
513
	struct request *rq = data;
514

515
	rq->q->softirq_done_fn(rq);
516 517
}

518
static void __blk_mq_complete_request(struct request *rq)
519 520
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
521
	bool shared = false;
522 523
	int cpu;

524 525 526 527 528 529 530
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
531
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
532 533 534
		rq->q->softirq_done_fn(rq);
		return;
	}
535 536

	cpu = get_cpu();
C
Christoph Hellwig 已提交
537 538 539 540
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
541
		rq->csd.func = __blk_mq_complete_request_remote;
542 543
		rq->csd.info = rq;
		rq->csd.flags = 0;
544
		smp_call_function_single_async(ctx->cpu, &rq->csd);
545
	} else {
546
		rq->q->softirq_done_fn(rq);
547
	}
548 549
	put_cpu();
}
550 551 552 553 554 555 556 557 558

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
559
void blk_mq_complete_request(struct request *rq)
560
{
561 562 563
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
564
		return;
565
	if (!blk_mark_rq_complete(rq))
566
		__blk_mq_complete_request(rq);
567 568
}
EXPORT_SYMBOL(blk_mq_complete_request);
569

570 571 572 573 574 575
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

576
void blk_mq_start_request(struct request *rq)
577 578 579
{
	struct request_queue *q = rq->q;

580 581
	blk_mq_sched_started_request(rq);

582 583
	trace_block_rq_issue(q, rq);

584
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
585
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
586
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
587
		wbt_issue(q->rq_wb, &rq->issue_stat);
588 589
	}

590
	blk_add_timer(rq);
591

592 593 594 595 596 597
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

598 599 600 601 602 603
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
604 605 606 607
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
608 609 610 611 612 613 614 615 616

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
617
}
618
EXPORT_SYMBOL(blk_mq_start_request);
619

620 621
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
622
 * flag isn't set yet, so there may be race with timeout handler,
623 624 625 626 627 628
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
629
static void __blk_mq_requeue_request(struct request *rq)
630 631 632 633
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
634
	wbt_requeue(q->rq_wb, &rq->issue_stat);
635
	blk_mq_sched_requeue_request(rq);
636

637 638 639 640
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
641 642
}

643
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
644 645 646 647
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
648
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
649 650 651
}
EXPORT_SYMBOL(blk_mq_requeue_request);

652 653 654
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
655
		container_of(work, struct request_queue, requeue_work.work);
656 657 658
	LIST_HEAD(rq_list);
	struct request *rq, *next;

659
	spin_lock_irq(&q->requeue_lock);
660
	list_splice_init(&q->requeue_list, &rq_list);
661
	spin_unlock_irq(&q->requeue_lock);
662 663

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
664
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
665 666
			continue;

667
		rq->rq_flags &= ~RQF_SOFTBARRIER;
668
		list_del_init(&rq->queuelist);
669
		blk_mq_sched_insert_request(rq, true, false, false, true);
670 671 672 673 674
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
675
		blk_mq_sched_insert_request(rq, false, false, false, true);
676 677
	}

678
	blk_mq_run_hw_queues(q, false);
679 680
}

681 682
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
683 684 685 686 687 688 689 690
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
691
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
692 693 694

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
695
		rq->rq_flags |= RQF_SOFTBARRIER;
696 697 698 699 700
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
701 702 703

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
704 705 706 707 708
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
709
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
710 711 712
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

713 714 715 716 717 718 719 720
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

721 722
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
723 724
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
725
		return tags->rqs[tag];
726
	}
727 728

	return NULL;
729 730 731
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

732
struct blk_mq_timeout_data {
733 734
	unsigned long next;
	unsigned int next_set;
735 736
};

737
void blk_mq_rq_timed_out(struct request *req, bool reserved)
738
{
J
Jens Axboe 已提交
739
	const struct blk_mq_ops *ops = req->q->mq_ops;
740
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
741 742 743 744 745 746 747

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
748
	 * both flags will get cleared. So check here again, and ignore
749 750
	 * a timeout event with a request that isn't active.
	 */
751 752
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
753

754
	if (ops->timeout)
755
		ret = ops->timeout(req, reserved);
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
771
}
772

773 774 775 776
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
777

778
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
779
		return;
780

781 782 783 784 785 786 787 788 789 790 791 792 793
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
794 795
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
796
			blk_mq_rq_timed_out(rq, reserved);
797 798 799 800
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
801 802
}

803
static void blk_mq_timeout_work(struct work_struct *work)
804
{
805 806
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
807 808 809 810 811
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
812

813 814 815 816 817 818 819 820 821
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
822
	 * blk_freeze_queue_start, and the moment the last request is
823 824 825 826
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
827 828
		return;

829
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
830

831 832 833
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
834
	} else {
835 836
		struct blk_mq_hw_ctx *hctx;

837 838 839 840 841
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
842
	}
843
	blk_queue_exit(q);
844 845
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

864 865 866 867
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
868
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
869
{
870 871 872 873
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
874

875
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
876
}
877
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
878

879 880 881 882
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
883

884
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
885 886
}

887 888
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
889 890 891 892 893 894 895
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

896 897
	might_sleep_if(wait);

898 899
	if (rq->tag != -1)
		goto done;
900

901 902 903
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

904 905
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
906 907 908 909
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
910 911 912
		data.hctx->tags->rqs[rq->tag] = rq;
	}

913 914 915 916
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
917 918
}

919 920
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
921 922 923 924 925 926 927 928 929 930
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

975
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
976 977 978 979 980 981
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

982
	list_del(&wait->entry);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1013
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1014
{
1015
	struct blk_mq_hw_ctx *hctx;
1016
	struct request *rq;
1017
	int errors, queued;
1018

1019 1020 1021
	if (list_empty(list))
		return false;

1022 1023 1024
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1025
	errors = queued = 0;
1026
	do {
1027
		struct blk_mq_queue_data bd;
1028
		blk_status_t ret;
1029

1030
		rq = list_first_entry(list, struct request, queuelist);
1031 1032 1033
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1034 1035

			/*
1036 1037
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1038
			 */
1039 1040 1041 1042 1043 1044 1045 1046 1047
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1048
				break;
1049
		}
1050

1051 1052
		list_del_init(&rq->queuelist);

1053
		bd.rq = rq;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1067 1068

		ret = q->mq_ops->queue_rq(hctx, &bd);
1069
		if (ret == BLK_STS_RESOURCE) {
1070
			blk_mq_put_driver_tag_hctx(hctx, rq);
1071
			list_add(&rq->queuelist, list);
1072
			__blk_mq_requeue_request(rq);
1073
			break;
1074 1075 1076
		}

		if (unlikely(ret != BLK_STS_OK)) {
1077
			errors++;
1078
			blk_mq_end_request(rq, BLK_STS_IOERR);
1079
			continue;
1080 1081
		}

1082
		queued++;
1083
	} while (!list_empty(list));
1084

1085
	hctx->dispatched[queued_to_index(queued)]++;
1086 1087 1088 1089 1090

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1091
	if (!list_empty(list)) {
1092
		/*
1093 1094
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1095 1096 1097 1098
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1099
		spin_lock(&hctx->lock);
1100
		list_splice_init(list, &hctx->dispatch);
1101
		spin_unlock(&hctx->lock);
1102

1103
		/*
1104 1105 1106
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1107
		 *
1108 1109 1110 1111
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1112
		 *
1113 1114 1115 1116 1117 1118 1119
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1120
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1121
		 *   and dm-rq.
1122
		 */
1123 1124
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1125
			blk_mq_run_hw_queue(hctx, true);
1126
	}
1127

1128
	return (queued + errors) != 0;
1129 1130
}

1131 1132 1133 1134
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1135 1136 1137 1138
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1139 1140 1141
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1142 1143 1144 1145 1146 1147
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1148 1149
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1150
		blk_mq_sched_dispatch_requests(hctx);
1151 1152
		rcu_read_unlock();
	} else {
1153 1154
		might_sleep();

1155
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1156
		blk_mq_sched_dispatch_requests(hctx);
1157
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1158 1159 1160
	}
}

1161 1162 1163 1164 1165 1166 1167 1168
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1169 1170
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1171 1172

	if (--hctx->next_cpu_batch <= 0) {
1173
		int next_cpu;
1174 1175 1176 1177 1178 1179 1180 1181 1182

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1183
	return hctx->next_cpu;
1184 1185
}

1186 1187
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1188
{
1189 1190 1191 1192
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1193 1194
		return;

1195
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1196 1197
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1198
			__blk_mq_run_hw_queue(hctx);
1199
			put_cpu();
1200 1201
			return;
		}
1202

1203
		put_cpu();
1204
	}
1205

1206 1207 1208
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1220
}
O
Omar Sandoval 已提交
1221
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1222

1223
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1224 1225 1226 1227 1228
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1229
		if (!blk_mq_hctx_has_pending(hctx) ||
1230
		    blk_mq_hctx_stopped(hctx))
1231 1232
			continue;

1233
		blk_mq_run_hw_queue(hctx, async);
1234 1235
	}
}
1236
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1258 1259 1260 1261 1262 1263 1264 1265 1266
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1267 1268
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1269
	cancel_delayed_work(&hctx->run_work);
1270

1271
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1272
}
1273
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1284 1285
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1286 1287 1288 1289 1290
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1291 1292 1293
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1294 1295 1296
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1297

1298
	blk_mq_run_hw_queue(hctx, false);
1299 1300 1301
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1322
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1323 1324 1325 1326
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1327 1328
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1329 1330 1331
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1332
static void blk_mq_run_work_fn(struct work_struct *work)
1333 1334 1335
{
	struct blk_mq_hw_ctx *hctx;

1336
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1337

1338 1339 1340 1341 1342 1343 1344 1345
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1346

1347 1348 1349
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1350 1351 1352 1353

	__blk_mq_run_hw_queue(hctx);
}

1354 1355 1356

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1357
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1358
		return;
1359

1360 1361 1362 1363 1364
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1365
	blk_mq_stop_hw_queue(hctx);
1366 1367 1368 1369
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1370 1371 1372
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1373 1374 1375
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1376
{
J
Jens Axboe 已提交
1377 1378
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1379 1380
	lockdep_assert_held(&ctx->lock);

1381 1382
	trace_block_rq_insert(hctx->queue, rq);

1383 1384 1385 1386
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1387
}
1388

1389 1390
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1391 1392 1393
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1394 1395
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1396
	__blk_mq_insert_req_list(hctx, rq, at_head);
1397 1398 1399
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1400 1401
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1413
		BUG_ON(rq->mq_ctx != ctx);
1414
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1415
		__blk_mq_insert_req_list(hctx, rq, false);
1416
	}
1417
	blk_mq_hctx_mark_pending(hctx, ctx);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1454 1455 1456 1457
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1474 1475 1476
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1477 1478 1479 1480 1481
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1482
	blk_init_request_from_bio(rq, bio);
1483

1484
	blk_account_io_start(rq, true);
1485 1486
}

1487 1488 1489 1490 1491 1492
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1493 1494 1495 1496 1497 1498 1499
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1500
}
1501

1502 1503
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1504 1505 1506 1507
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1508 1509
}

M
Ming Lei 已提交
1510 1511 1512
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1513 1514 1515 1516
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1517
		.last = true,
1518
	};
1519
	blk_qc_t new_cookie;
1520
	blk_status_t ret;
M
Ming Lei 已提交
1521 1522
	bool run_queue = true;

1523 1524
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1525 1526 1527
		run_queue = false;
		goto insert;
	}
1528

1529
	if (q->elevator)
1530 1531
		goto insert;

M
Ming Lei 已提交
1532
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1533 1534 1535 1536
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1537 1538 1539 1540 1541 1542
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1543 1544
	switch (ret) {
	case BLK_STS_OK:
1545
		*cookie = new_cookie;
1546
		return;
1547 1548 1549 1550
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1551
		*cookie = BLK_QC_T_NONE;
1552
		blk_mq_end_request(rq, ret);
1553
		return;
1554
	}
1555

1556
insert:
M
Ming Lei 已提交
1557
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1558 1559
}

1560 1561 1562 1563 1564
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1565
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1566 1567
		rcu_read_unlock();
	} else {
1568 1569 1570 1571
		unsigned int srcu_idx;

		might_sleep();

1572
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1573
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1574
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1575 1576 1577
	}
}

1578
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1579
{
1580
	const int is_sync = op_is_sync(bio->bi_opf);
1581
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1582
	struct blk_mq_alloc_data data = { .flags = 0 };
1583
	struct request *rq;
1584
	unsigned int request_count = 0;
1585
	struct blk_plug *plug;
1586
	struct request *same_queue_rq = NULL;
1587
	blk_qc_t cookie;
J
Jens Axboe 已提交
1588
	unsigned int wb_acct;
1589 1590 1591

	blk_queue_bounce(q, &bio);

1592
	blk_queue_split(q, &bio);
1593

1594
	if (!bio_integrity_prep(bio))
1595
		return BLK_QC_T_NONE;
1596

1597 1598 1599
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1600

1601 1602 1603
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1604 1605
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1606 1607
	trace_block_getrq(q, bio, bio->bi_opf);

1608
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1609 1610
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1611 1612
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1613
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1614 1615 1616
	}

	wbt_track(&rq->issue_stat, wb_acct);
1617

1618
	cookie = request_to_qc_t(data.hctx, rq);
1619

1620
	plug = current->plug;
1621
	if (unlikely(is_flush_fua)) {
1622
		blk_mq_put_ctx(data.ctx);
1623
		blk_mq_bio_to_request(rq, bio);
1624 1625 1626
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1627
		} else {
1628 1629
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1630
		}
1631
	} else if (plug && q->nr_hw_queues == 1) {
1632 1633
		struct request *last = NULL;

1634
		blk_mq_put_ctx(data.ctx);
1635
		blk_mq_bio_to_request(rq, bio);
1636 1637 1638 1639 1640 1641 1642

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1643 1644 1645
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1646
		if (!request_count)
1647
			trace_block_plug(q);
1648 1649
		else
			last = list_entry_rq(plug->mq_list.prev);
1650

1651 1652
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1653 1654
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1655
		}
1656

1657
		list_add_tail(&rq->queuelist, &plug->mq_list);
1658
	} else if (plug && !blk_queue_nomerges(q)) {
1659
		blk_mq_bio_to_request(rq, bio);
1660 1661

		/*
1662
		 * We do limited plugging. If the bio can be merged, do that.
1663 1664
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1665 1666
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1667
		 */
1668 1669 1670 1671 1672 1673
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1674 1675
		blk_mq_put_ctx(data.ctx);

1676 1677 1678
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1679 1680
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1681
		}
1682
	} else if (q->nr_hw_queues > 1 && is_sync) {
1683
		blk_mq_put_ctx(data.ctx);
1684 1685
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1686
	} else if (q->elevator) {
1687
		blk_mq_put_ctx(data.ctx);
1688
		blk_mq_bio_to_request(rq, bio);
1689
		blk_mq_sched_insert_request(rq, false, true, true, true);
1690
	} else {
1691
		blk_mq_put_ctx(data.ctx);
1692 1693
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1694
		blk_mq_run_hw_queue(data.hctx, true);
1695
	}
1696

1697
	return cookie;
1698 1699
}

1700 1701
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1702
{
1703
	struct page *page;
1704

1705
	if (tags->rqs && set->ops->exit_request) {
1706
		int i;
1707

1708
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1709 1710 1711
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1712
				continue;
1713
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1714
			tags->static_rqs[i] = NULL;
1715
		}
1716 1717
	}

1718 1719
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1720
		list_del_init(&page->lru);
1721 1722 1723 1724 1725
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1726 1727
		__free_pages(page, page->private);
	}
1728
}
1729

1730 1731
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1732
	kfree(tags->rqs);
1733
	tags->rqs = NULL;
J
Jens Axboe 已提交
1734 1735
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1736

1737
	blk_mq_free_tags(tags);
1738 1739
}

1740 1741 1742 1743
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1744
{
1745
	struct blk_mq_tags *tags;
1746
	int node;
1747

1748 1749 1750 1751 1752
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1753
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1754 1755
	if (!tags)
		return NULL;
1756

1757
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1758
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1759
				 node);
1760 1761 1762 1763
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1764

J
Jens Axboe 已提交
1765 1766
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1767
				 node);
J
Jens Axboe 已提交
1768 1769 1770 1771 1772 1773
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1787 1788 1789 1790 1791
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1792 1793 1794

	INIT_LIST_HEAD(&tags->page_list);

1795 1796 1797 1798
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1799
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1800
				cache_line_size());
1801
	left = rq_size * depth;
1802

1803
	for (i = 0; i < depth; ) {
1804 1805 1806 1807 1808
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1809
		while (this_order && left < order_to_size(this_order - 1))
1810 1811 1812
			this_order--;

		do {
1813
			page = alloc_pages_node(node,
1814
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1815
				this_order);
1816 1817 1818 1819 1820 1821 1822 1823 1824
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1825
			goto fail;
1826 1827

		page->private = this_order;
1828
		list_add_tail(&page->lru, &tags->page_list);
1829 1830

		p = page_address(page);
1831 1832 1833 1834
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1835
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1836
		entries_per_page = order_to_size(this_order) / rq_size;
1837
		to_do = min(entries_per_page, depth - i);
1838 1839
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1840 1841 1842
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1843
			if (set->ops->init_request) {
1844
				if (set->ops->init_request(set, rq, hctx_idx,
1845
						node)) {
J
Jens Axboe 已提交
1846
					tags->static_rqs[i] = NULL;
1847
					goto fail;
1848
				}
1849 1850
			}

1851 1852 1853 1854
			p += rq_size;
			i++;
		}
	}
1855
	return 0;
1856

1857
fail:
1858 1859
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1860 1861
}

J
Jens Axboe 已提交
1862 1863 1864 1865 1866
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1867
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1868
{
1869
	struct blk_mq_hw_ctx *hctx;
1870 1871 1872
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1873
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1874
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1875 1876 1877 1878 1879 1880 1881 1882 1883

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1884
		return 0;
1885

J
Jens Axboe 已提交
1886 1887 1888
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1889 1890

	blk_mq_run_hw_queue(hctx, true);
1891
	return 0;
1892 1893
}

1894
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1895
{
1896 1897
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1898 1899
}

1900
/* hctx->ctxs will be freed in queue's release handler */
1901 1902 1903 1904
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1905 1906
	blk_mq_debugfs_unregister_hctx(hctx);

1907 1908
	blk_mq_tag_idle(hctx);

1909
	if (set->ops->exit_request)
1910
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1911

1912 1913
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1914 1915 1916
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1917
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1918
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1919

1920
	blk_mq_remove_cpuhp(hctx);
1921
	blk_free_flush_queue(hctx->fq);
1922
	sbitmap_free(&hctx->ctx_map);
1923 1924
}

M
Ming Lei 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1934
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1935 1936 1937
	}
}

1938 1939 1940
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1941
{
1942 1943 1944 1945 1946 1947
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1948
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1949 1950 1951
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
1952
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1953

1954
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1955 1956

	hctx->tags = set->tags[hctx_idx];
1957 1958

	/*
1959 1960
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1961
	 */
1962 1963 1964 1965
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1966

1967 1968
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1969
		goto free_ctxs;
1970

1971
	hctx->nr_ctx = 0;
1972

1973 1974 1975
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1976

1977 1978 1979
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1980 1981
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1982
		goto sched_exit_hctx;
1983

1984
	if (set->ops->init_request &&
1985 1986
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1987
		goto free_fq;
1988

1989
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1990
		init_srcu_struct(hctx->queue_rq_srcu);
1991

1992 1993
	blk_mq_debugfs_register_hctx(q, hctx);

1994
	return 0;
1995

1996 1997
 free_fq:
	kfree(hctx->fq);
1998 1999
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2000 2001 2002
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2003
 free_bitmap:
2004
	sbitmap_free(&hctx->ctx_map);
2005 2006 2007
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2008
	blk_mq_remove_cpuhp(hctx);
2009 2010
	return -1;
}
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2026 2027
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2028 2029
			continue;

C
Christoph Hellwig 已提交
2030
		hctx = blk_mq_map_queue(q, i);
2031

2032 2033 2034 2035 2036
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2037
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2038 2039 2040
	}
}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2063 2064 2065 2066 2067
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2068 2069
}

2070
static void blk_mq_map_swqueue(struct request_queue *q)
2071
{
2072
	unsigned int i, hctx_idx;
2073 2074
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2075
	struct blk_mq_tag_set *set = q->tag_set;
2076

2077 2078 2079 2080 2081
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2082
	queue_for_each_hw_ctx(q, hctx, i) {
2083
		cpumask_clear(hctx->cpumask);
2084 2085 2086 2087
		hctx->nr_ctx = 0;
	}

	/*
2088 2089 2090
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2091
	 */
2092
	for_each_present_cpu(i) {
2093 2094
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2095 2096
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2097 2098 2099 2100 2101 2102
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2103
			q->mq_map[i] = 0;
2104 2105
		}

2106
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2107
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2108

2109
		cpumask_set_cpu(i, hctx->cpumask);
2110 2111 2112
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2113

2114 2115
	mutex_unlock(&q->sysfs_lock);

2116
	queue_for_each_hw_ctx(q, hctx, i) {
2117
		/*
2118 2119
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2120 2121
		 */
		if (!hctx->nr_ctx) {
2122 2123 2124 2125
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2126 2127 2128
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2129
			hctx->tags = NULL;
2130 2131 2132
			continue;
		}

M
Ming Lei 已提交
2133 2134 2135
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2136 2137 2138 2139 2140
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2141
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2142

2143 2144 2145
		/*
		 * Initialize batch roundrobin counts
		 */
2146 2147 2148
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2149 2150
}

2151 2152 2153 2154
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2155
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2156 2157 2158 2159
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2160
	queue_for_each_hw_ctx(q, hctx, i) {
2161 2162 2163
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2164
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2165 2166 2167
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2168
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2169
		}
2170 2171 2172
	}
}

2173 2174
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2175 2176
{
	struct request_queue *q;
2177

2178 2179
	lockdep_assert_held(&set->tag_list_lock);

2180 2181
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2182
		queue_set_hctx_shared(q, shared);
2183 2184 2185 2186 2187 2188 2189 2190 2191
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2192 2193
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2194 2195 2196 2197 2198 2199
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2200
	mutex_unlock(&set->tag_list_lock);
2201 2202

	synchronize_rcu();
2203 2204 2205 2206 2207 2208 2209 2210
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2211 2212 2213 2214 2215 2216 2217 2218 2219

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2220
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2221

2222 2223 2224
	mutex_unlock(&set->tag_list_lock);
}

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2237 2238 2239
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2240
		kobject_put(&hctx->kobj);
2241
	}
2242

2243 2244
	q->mq_map = NULL;

2245 2246
	kfree(q->queue_hw_ctx);

2247 2248 2249 2250 2251 2252
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2253 2254 2255
	free_percpu(q->queue_ctx);
}

2256
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2286 2287
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2288
{
K
Keith Busch 已提交
2289 2290
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2291

K
Keith Busch 已提交
2292
	blk_mq_sysfs_unregister(q);
2293
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2294
		int node;
2295

K
Keith Busch 已提交
2296 2297 2298 2299
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2300
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2301
					GFP_KERNEL, node);
2302
		if (!hctxs[i])
K
Keith Busch 已提交
2303
			break;
2304

2305
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2306 2307 2308 2309 2310
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2311

2312
		atomic_set(&hctxs[i]->nr_active, 0);
2313
		hctxs[i]->numa_node = node;
2314
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2315 2316 2317 2318 2319 2320 2321 2322

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2323
	}
K
Keith Busch 已提交
2324 2325 2326 2327
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2328 2329
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2343 2344 2345
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2346
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2347 2348
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2349 2350 2351
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2352 2353
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2354
		goto err_exit;
K
Keith Busch 已提交
2355

2356 2357 2358
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2359 2360 2361 2362 2363
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2364
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2365 2366 2367 2368

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2369

2370
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2371
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2372 2373 2374

	q->nr_queues = nr_cpu_ids;

2375
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2376

2377 2378 2379
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2380 2381
	q->sg_reserved_size = INT_MAX;

2382
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2383 2384 2385
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2386
	blk_queue_make_request(q, blk_mq_make_request);
2387

2388 2389 2390 2391 2392
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2393 2394 2395 2396 2397
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2398 2399
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2400

2401
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2402
	blk_mq_add_queue_tag_set(set, q);
2403
	blk_mq_map_swqueue(q);
2404

2405 2406 2407 2408 2409 2410 2411 2412
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2413
	return q;
2414

2415
err_hctxs:
K
Keith Busch 已提交
2416
	kfree(q->queue_hw_ctx);
2417
err_percpu:
K
Keith Busch 已提交
2418
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2419 2420
err_exit:
	q->mq_ops = NULL;
2421 2422
	return ERR_PTR(-ENOMEM);
}
2423
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2424 2425 2426

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2427
	struct blk_mq_tag_set	*set = q->tag_set;
2428

2429
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2430
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2431 2432 2433
}

/* Basically redo blk_mq_init_queue with queue frozen */
2434
static void blk_mq_queue_reinit(struct request_queue *q)
2435
{
2436
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2437

2438
	blk_mq_debugfs_unregister_hctxs(q);
2439 2440
	blk_mq_sysfs_unregister(q);

2441 2442 2443 2444 2445 2446
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2447
	blk_mq_map_swqueue(q);
2448

2449
	blk_mq_sysfs_register(q);
2450
	blk_mq_debugfs_register_hctxs(q);
2451 2452
}

2453 2454 2455 2456
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2457 2458
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2459 2460 2461 2462 2463 2464
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2465
		blk_mq_free_rq_map(set->tags[i]);
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2505 2506 2507 2508 2509 2510 2511 2512
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2513 2514 2515 2516 2517 2518
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2519 2520
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2521 2522
	int ret;

B
Bart Van Assche 已提交
2523 2524
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2525 2526
	if (!set->nr_hw_queues)
		return -EINVAL;
2527
	if (!set->queue_depth)
2528 2529 2530 2531
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2532
	if (!set->ops->queue_rq)
2533 2534
		return -EINVAL;

2535 2536 2537 2538 2539
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2540

2541 2542 2543 2544 2545 2546 2547 2548 2549
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2550 2551 2552 2553 2554
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2555

K
Keith Busch 已提交
2556
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2557 2558
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2559
		return -ENOMEM;
2560

2561 2562 2563
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2564 2565 2566
	if (!set->mq_map)
		goto out_free_tags;

2567
	ret = blk_mq_update_queue_map(set);
2568 2569 2570 2571 2572
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2573
		goto out_free_mq_map;
2574

2575 2576 2577
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2578
	return 0;
2579 2580 2581 2582 2583

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2584 2585
	kfree(set->tags);
	set->tags = NULL;
2586
	return ret;
2587 2588 2589 2590 2591 2592 2593
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2594 2595
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2596

2597 2598 2599
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2600
	kfree(set->tags);
2601
	set->tags = NULL;
2602 2603 2604
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2605 2606 2607 2608 2609 2610
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2611
	if (!set)
2612 2613
		return -EINVAL;

2614 2615
	blk_mq_freeze_queue(q);

2616 2617
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2618 2619
		if (!hctx->tags)
			continue;
2620 2621 2622 2623
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2624 2625 2626 2627 2628 2629 2630 2631
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2632 2633 2634 2635 2636 2637 2638
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2639 2640
	blk_mq_unfreeze_queue(q);

2641 2642 2643
	return ret;
}

2644 2645
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2646 2647 2648
{
	struct request_queue *q;

2649 2650
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2660
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2661 2662
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2663
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2664 2665 2666 2667 2668
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2669 2670 2671 2672 2673 2674 2675

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2676 2677
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2704
	int bucket;
2705

2706 2707 2708 2709
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2710 2711
}

2712 2713 2714 2715 2716
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2717
	int bucket;
2718 2719 2720 2721 2722

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2723
	if (!blk_poll_stats_enable(q))
2724 2725 2726 2727 2728 2729 2730 2731
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2732 2733
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2734
	 */
2735 2736 2737 2738 2739 2740
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2741 2742 2743 2744

	return ret;
}

2745
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2746
				     struct blk_mq_hw_ctx *hctx,
2747 2748 2749 2750
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2751
	unsigned int nsecs;
2752 2753
	ktime_t kt;

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2772 2773 2774 2775 2776 2777 2778 2779
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2780
	kt = nsecs;
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2803 2804 2805 2806 2807
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2808 2809 2810 2811 2812 2813 2814
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2815
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2816 2817
		return true;

J
Jens Axboe 已提交
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2861 2862
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2863
	else {
2864
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2865 2866 2867 2868 2869 2870 2871 2872 2873
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2874 2875 2876 2877 2878

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2879 2880
static int __init blk_mq_init(void)
{
2881 2882
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2883 2884 2885
	return 0;
}
subsys_initcall(blk_mq_init);