blk-mq.c 78.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98
	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128 129
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	if (!q->mq_ops)
		blk_drain_queue(q);
165 166
	blk_mq_freeze_queue_wait(q);
}
167 168 169 170 171 172 173 174 175

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
176
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177

178
void blk_mq_unfreeze_queue(struct request_queue *q)
179
{
180
	int freeze_depth;
181

182 183 184
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
185
		percpu_ref_reinit(&q->q_usage_counter);
186
		wake_up_all(&q->mq_freeze_wq);
187
	}
188
}
189
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190

191 192 193 194 195 196
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
197
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 199 200
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

201
/**
202
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
203 204 205
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
206 207 208
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
209 210 211 212 213 214 215
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

216
	blk_mq_quiesce_queue_nowait(q);
217

218 219
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
220
			synchronize_srcu(hctx->srcu);
221 222 223 224 225 226 227 228
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

229 230 231 232 233 234 235 236 237
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
238
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
239

240 241
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
242 243 244
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

245 246 247 248 249 250 251 252 253 254
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

255 256 257 258 259 260
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

261 262
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
263
{
264 265
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
266
	req_flags_t rq_flags = 0;
267

268 269 270 271 272
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
273
			rq_flags = RQF_MQ_INFLIGHT;
274 275 276 277 278 279 280
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

281
	/* csd/requeue_work/fifo_time is initialized before use */
282 283
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
284
	rq->rq_flags = rq_flags;
285
	rq->cpu = -1;
286
	rq->cmd_flags = op;
287 288
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
289
	if (blk_queue_io_stat(data->q))
290
		rq->rq_flags |= RQF_IO_STAT;
291
	INIT_LIST_HEAD(&rq->queuelist);
292 293 294 295
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
296
	rq->start_time = jiffies;
297 298 299 300 301 302 303
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
304
	rq->__deadline = 0;
305 306

	INIT_LIST_HEAD(&rq->timeout_list);
307 308
	rq->timeout = 0;

309 310 311 312
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

313 314 315 316 317 318
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
	set_start_time_ns(rq);
	rq->io_start_time_ns = 0;
#endif

319 320
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
321 322
}

323 324 325 326 327 328
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
329
	unsigned int tag;
330
	bool put_ctx_on_error = false;
331 332 333

	blk_queue_enter_live(q);
	data->q = q;
334 335 336 337
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
338 339
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
340 341
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
342 343 344 345 346 347 348 349

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
350 351
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
352 353
	}

354 355
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
356 357
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
358 359
			data->ctx = NULL;
		}
360 361
		blk_queue_exit(q);
		return NULL;
362 363
	}

364
	rq = blk_mq_rq_ctx_init(data, tag, op);
365 366
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
367
		if (e && e->type->ops.mq.prepare_request) {
368 369 370
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

371 372
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
373
		}
374 375 376
	}
	data->hctx->queued++;
	return rq;
377 378
}

379
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
380
		blk_mq_req_flags_t flags)
381
{
382
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
383
	struct request *rq;
384
	int ret;
385

386
	ret = blk_queue_enter(q, flags);
387 388
	if (ret)
		return ERR_PTR(ret);
389

390
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
391
	blk_queue_exit(q);
392

393
	if (!rq)
394
		return ERR_PTR(-EWOULDBLOCK);
395

396 397
	blk_mq_put_ctx(alloc_data.ctx);

398 399 400
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
401 402
	return rq;
}
403
EXPORT_SYMBOL(blk_mq_alloc_request);
404

405
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
406
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
407
{
408
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
409
	struct request *rq;
410
	unsigned int cpu;
M
Ming Lin 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

425
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
426 427 428
	if (ret)
		return ERR_PTR(ret);

429 430 431 432
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
433 434 435 436
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
437
	}
438
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
439
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
440

441
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
442
	blk_queue_exit(q);
443

444 445 446 447
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
448 449 450
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

451
void blk_mq_free_request(struct request *rq)
452 453
{
	struct request_queue *q = rq->q;
454 455 456 457 458
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

459
	if (rq->rq_flags & RQF_ELVPRIV) {
460 461 462 463 464 465 466
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
467

468
	ctx->rq_completed[rq_is_sync(rq)]++;
469
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
470
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
471

472 473 474
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
475
	wbt_done(q->rq_wb, &rq->issue_stat);
476

S
Shaohua Li 已提交
477 478 479
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

480
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
481 482 483
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
484
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
485
	blk_mq_sched_restart(hctx);
486
	blk_queue_exit(q);
487
}
J
Jens Axboe 已提交
488
EXPORT_SYMBOL_GPL(blk_mq_free_request);
489

490
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
491
{
M
Ming Lei 已提交
492 493
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
494
	if (rq->end_io) {
J
Jens Axboe 已提交
495
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
496
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
497 498 499
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
500
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
501
	}
502
}
503
EXPORT_SYMBOL(__blk_mq_end_request);
504

505
void blk_mq_end_request(struct request *rq, blk_status_t error)
506 507 508
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
509
	__blk_mq_end_request(rq, error);
510
}
511
EXPORT_SYMBOL(blk_mq_end_request);
512

513
static void __blk_mq_complete_request_remote(void *data)
514
{
515
	struct request *rq = data;
516

517
	rq->q->softirq_done_fn(rq);
518 519
}

520
static void __blk_mq_complete_request(struct request *rq)
521 522
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
523
	bool shared = false;
524 525
	int cpu;

526
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
527
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
528

529 530 531 532 533 534 535
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
536
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
537 538 539
		rq->q->softirq_done_fn(rq);
		return;
	}
540 541

	cpu = get_cpu();
C
Christoph Hellwig 已提交
542 543 544 545
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
546
		rq->csd.func = __blk_mq_complete_request_remote;
547 548
		rq->csd.info = rq;
		rq->csd.flags = 0;
549
		smp_call_function_single_async(ctx->cpu, &rq->csd);
550
	} else {
551
		rq->q->softirq_done_fn(rq);
552
	}
553 554
	put_cpu();
}
555

556
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
557
	__releases(hctx->srcu)
558 559 560 561
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
562
		srcu_read_unlock(hctx->srcu, srcu_idx);
563 564 565
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
566
	__acquires(hctx->srcu)
567
{
568 569 570
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
571
		rcu_read_lock();
572
	} else
573
		*srcu_idx = srcu_read_lock(hctx->srcu);
574 575
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

606 607 608 609 610 611 612 613
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
614
void blk_mq_complete_request(struct request *rq)
615
{
616
	struct request_queue *q = rq->q;
617 618
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
619 620

	if (unlikely(blk_should_fake_timeout(q)))
621
		return;
622

623 624 625 626 627 628 629 630 631 632 633
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
634
	hctx_lock(hctx, &srcu_idx);
635
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
636
		__blk_mq_complete_request(rq);
637
	hctx_unlock(hctx, srcu_idx);
638 639
}
EXPORT_SYMBOL(blk_mq_complete_request);
640

641 642
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
643
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 645 646
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

647
void blk_mq_start_request(struct request *rq)
648 649 650
{
	struct request_queue *q = rq->q;

651 652
	blk_mq_sched_started_request(rq);

653 654
	trace_block_rq_issue(q, rq);

655
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
657
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
658
		wbt_issue(q->rq_wb, &rq->issue_stat);
659 660
	}

661
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
662

663
	/*
664 665 666 667
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
668
	 *
669 670 671 672
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
673
	 */
674 675 676 677 678 679 680 681
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();
682 683 684 685 686 687 688 689 690

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
691
}
692
EXPORT_SYMBOL(blk_mq_start_request);
693

694
/*
T
Tejun Heo 已提交
695 696 697
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
698
 */
699
static void __blk_mq_requeue_request(struct request *rq)
700 701 702
{
	struct request_queue *q = rq->q;

703 704
	blk_mq_put_driver_tag(rq);

705
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
706
	wbt_requeue(q->rq_wb, &rq->issue_stat);
707

T
Tejun Heo 已提交
708
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
709
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
710 711 712
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
713 714
}

715
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
716 717 718
{
	__blk_mq_requeue_request(rq);

719 720 721
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

722
	BUG_ON(blk_queued_rq(rq));
723
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
724 725 726
}
EXPORT_SYMBOL(blk_mq_requeue_request);

727 728 729
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
730
		container_of(work, struct request_queue, requeue_work.work);
731 732 733
	LIST_HEAD(rq_list);
	struct request *rq, *next;

734
	spin_lock_irq(&q->requeue_lock);
735
	list_splice_init(&q->requeue_list, &rq_list);
736
	spin_unlock_irq(&q->requeue_lock);
737 738

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
739
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
740 741
			continue;

742
		rq->rq_flags &= ~RQF_SOFTBARRIER;
743
		list_del_init(&rq->queuelist);
744
		blk_mq_sched_insert_request(rq, true, false, false);
745 746 747 748 749
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
750
		blk_mq_sched_insert_request(rq, false, false, false);
751 752
	}

753
	blk_mq_run_hw_queues(q, false);
754 755
}

756 757
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
758 759 760 761 762 763
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
764
	 * request head insertion from the workqueue.
765
	 */
766
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
767 768 769

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
770
		rq->rq_flags |= RQF_SOFTBARRIER;
771 772 773 774 775
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
776 777 778

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
779 780 781 782 783
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
784
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
785 786 787
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

788 789 790
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
791 792
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
793 794 795
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

796 797
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
798 799
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
800
		return tags->rqs[tag];
801
	}
802 803

	return NULL;
804 805 806
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

807
struct blk_mq_timeout_data {
808 809
	unsigned long next;
	unsigned int next_set;
810
	unsigned int nr_expired;
811 812
};

813
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
814
{
J
Jens Axboe 已提交
815
	const struct blk_mq_ops *ops = req->q->mq_ops;
816
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
817

818
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
819

820
	if (ops->timeout)
821
		ret = ops->timeout(req, reserved);
822 823 824 825 826 827

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
828 829 830 831 832 833
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
834 835 836 837 838 839 840 841
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
842
}
843

844 845 846 847
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
848 849
	unsigned long gstate, deadline;
	int start;
850

851
	might_sleep();
852

T
Tejun Heo 已提交
853
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
854
		return;
855

856 857 858 859
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
860
		deadline = blk_rq_deadline(rq);
861 862 863 864
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
865

866 867 868 869 870 871
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
872 873
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
874 875
		data->next_set = 1;
	}
876 877
}

878 879 880 881 882 883 884 885 886 887
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
888 889
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
890 891 892
		blk_mq_rq_timed_out(rq, reserved);
}

893
static void blk_mq_timeout_work(struct work_struct *work)
894
{
895 896
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
897 898 899
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
900
		.nr_expired	= 0,
901
	};
902
	struct blk_mq_hw_ctx *hctx;
903
	int i;
904

905 906 907 908 909 910 911 912 913
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
914
	 * blk_freeze_queue_start, and the moment the last request is
915 916 917 918
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
919 920
		return;

921
	/* scan for the expired ones and set their ->aborted_gstate */
922
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
940
				synchronize_srcu(hctx->srcu);
941 942 943 944 945 946 947 948 949 950

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

951 952 953
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
954
	} else {
955 956 957 958 959 960
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
961 962 963 964 965
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
966
	}
967
	blk_queue_exit(q);
968 969
}

970 971 972 973 974 975 976 977 978 979 980 981 982
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
983
	sbitmap_clear_bit(sb, bitnr);
984 985 986 987
	spin_unlock(&ctx->lock);
	return true;
}

988 989 990 991
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
992
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
993
{
994 995 996 997
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
998

999
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1000
}
1001
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1042 1043 1044 1045
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1046

1047
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1048 1049
}

1050 1051
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1052 1053 1054 1055 1056 1057 1058
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1059 1060
	might_sleep_if(wait);

1061 1062
	if (rq->tag != -1)
		goto done;
1063

1064 1065 1066
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1067 1068
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1069 1070 1071 1072
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1073 1074 1075
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1076 1077 1078 1079
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1080 1081
}

1082 1083
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1084 1085 1086 1087 1088
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1089
	list_del_init(&wait->entry);
1090 1091 1092 1093
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1094 1095
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1096 1097
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1098 1099 1100 1101
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1102
{
1103
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1104
	struct sbq_wait_state *ws;
1105 1106
	wait_queue_entry_t *wait;
	bool ret;
1107

1108
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1109 1110 1111
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1112 1113 1114 1115 1116 1117 1118 1119 1120
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1121 1122
	}

1123 1124 1125 1126 1127 1128 1129 1130
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1131 1132
	}

1133 1134 1135
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1136
	/*
1137 1138 1139
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1140
	 */
1141
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1142
	if (!ret) {
1143
		spin_unlock(&this_hctx->lock);
1144
		return false;
1145
	}
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1157 1158
}

1159 1160
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1161
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1162
			     bool got_budget)
1163
{
1164
	struct blk_mq_hw_ctx *hctx;
1165
	struct request *rq, *nxt;
1166
	bool no_tag = false;
1167
	int errors, queued;
1168
	blk_status_t ret = BLK_STS_OK;
1169

1170 1171 1172
	if (list_empty(list))
		return false;

1173 1174
	WARN_ON(!list_is_singular(list) && got_budget);

1175 1176 1177
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1178
	errors = queued = 0;
1179
	do {
1180
		struct blk_mq_queue_data bd;
1181

1182
		rq = list_first_entry(list, struct request, queuelist);
1183 1184 1185 1186 1187 1188

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1189
			/*
1190
			 * The initial allocation attempt failed, so we need to
1191 1192 1193 1194
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1195
			 */
1196
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1197
				blk_mq_put_dispatch_budget(hctx);
1198 1199 1200 1201 1202 1203
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1204 1205 1206 1207
				break;
			}
		}

1208 1209
		list_del_init(&rq->queuelist);

1210
		bd.rq = rq;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1222 1223

		ret = q->mq_ops->queue_rq(hctx, &bd);
1224
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1225 1226
			/*
			 * If an I/O scheduler has been configured and we got a
1227 1228
			 * driver tag for the next request already, free it
			 * again.
1229 1230 1231 1232 1233
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1234
			list_add(&rq->queuelist, list);
1235
			__blk_mq_requeue_request(rq);
1236
			break;
1237 1238 1239
		}

		if (unlikely(ret != BLK_STS_OK)) {
1240
			errors++;
1241
			blk_mq_end_request(rq, BLK_STS_IOERR);
1242
			continue;
1243 1244
		}

1245
		queued++;
1246
	} while (!list_empty(list));
1247

1248
	hctx->dispatched[queued_to_index(queued)]++;
1249 1250 1251 1252 1253

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1254
	if (!list_empty(list)) {
1255 1256
		bool needs_restart;

1257
		spin_lock(&hctx->lock);
1258
		list_splice_init(list, &hctx->dispatch);
1259
		spin_unlock(&hctx->lock);
1260

1261
		/*
1262 1263 1264
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1265
		 *
1266 1267 1268 1269
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1270
		 *
1271 1272 1273 1274 1275 1276 1277
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1278
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1279
		 *   and dm-rq.
1280 1281 1282 1283
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1284
		 */
1285 1286
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1287
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1288
			blk_mq_run_hw_queue(hctx, true);
1289 1290
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1291
	}
1292

1293
	return (queued + errors) != 0;
1294 1295
}

1296 1297 1298 1299
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1300 1301 1302
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1316
	 */
1317 1318 1319 1320 1321 1322 1323
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1324

1325 1326 1327 1328 1329 1330
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1331
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1332

1333 1334 1335
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1336 1337
}

1338 1339 1340 1341 1342 1343 1344 1345
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1346 1347
	bool tried = false;

1348 1349
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1350 1351

	if (--hctx->next_cpu_batch <= 0) {
1352
		int next_cpu;
1353
select_cpu:
1354 1355
		next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
				cpu_online_mask);
1356
		if (next_cpu >= nr_cpu_ids)
1357
			next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1358

1359 1360 1361 1362 1363 1364 1365 1366
		/*
		 * No online CPU is found, so have to make sure hctx->next_cpu
		 * is set correctly for not breaking workqueue.
		 */
		if (next_cpu >= nr_cpu_ids)
			hctx->next_cpu = cpumask_first(hctx->cpumask);
		else
			hctx->next_cpu = next_cpu;
1367 1368 1369
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
	if (!cpu_online(hctx->next_cpu)) {
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1387
	return hctx->next_cpu;
1388 1389
}

1390 1391
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1392
{
1393 1394 1395 1396
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1397 1398
		return;

1399
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1400 1401
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1402
			__blk_mq_run_hw_queue(hctx);
1403
			put_cpu();
1404 1405
			return;
		}
1406

1407
		put_cpu();
1408
	}
1409

1410 1411
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1412 1413 1414 1415 1416 1417 1418 1419
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1420
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1421
{
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1433 1434 1435 1436
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1437 1438

	if (need_run) {
1439 1440 1441 1442 1443
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1444
}
O
Omar Sandoval 已提交
1445
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1446

1447
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1448 1449 1450 1451 1452
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1453
		if (blk_mq_hctx_stopped(hctx))
1454 1455
			continue;

1456
		blk_mq_run_hw_queue(hctx, async);
1457 1458
	}
}
1459
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1460

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1481 1482 1483
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1484
 * BLK_STS_RESOURCE is usually returned.
1485 1486 1487 1488 1489
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1490 1491
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1492
	cancel_delayed_work(&hctx->run_work);
1493

1494
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1495
}
1496
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1497

1498 1499 1500
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1501
 * BLK_STS_RESOURCE is usually returned.
1502 1503 1504 1505 1506
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1507 1508
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1509 1510 1511 1512 1513
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1514 1515 1516
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1517 1518 1519
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1520

1521
	blk_mq_run_hw_queue(hctx, false);
1522 1523 1524
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1545
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1546 1547 1548 1549
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1550 1551
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1552 1553 1554
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1555
static void blk_mq_run_work_fn(struct work_struct *work)
1556 1557 1558
{
	struct blk_mq_hw_ctx *hctx;

1559
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1560

1561 1562 1563 1564 1565 1566 1567 1568
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1569

1570 1571 1572
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1573 1574 1575 1576

	__blk_mq_run_hw_queue(hctx);
}

1577 1578 1579

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1580
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1581
		return;
1582

1583 1584 1585 1586 1587
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1588
	blk_mq_stop_hw_queue(hctx);
1589 1590 1591 1592
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1593 1594 1595
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1596 1597 1598
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1599
{
J
Jens Axboe 已提交
1600 1601
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1602 1603
	lockdep_assert_held(&ctx->lock);

1604 1605
	trace_block_rq_insert(hctx->queue, rq);

1606 1607 1608 1609
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1610
}
1611

1612 1613
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1614 1615 1616
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1617 1618
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1619
	__blk_mq_insert_req_list(hctx, rq, at_head);
1620 1621 1622
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1623 1624 1625 1626
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1627
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1628 1629 1630 1631 1632 1633 1634 1635
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1636 1637
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1638 1639
}

1640 1641
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1653
		BUG_ON(rq->mq_ctx != ctx);
1654
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1655
		__blk_mq_insert_req_list(hctx, rq, false);
1656
	}
1657
	blk_mq_hctx_mark_pending(hctx, ctx);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1694 1695 1696 1697
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1714 1715 1716
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1717 1718 1719 1720 1721
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1722
	blk_init_request_from_bio(rq, bio);
1723

S
Shaohua Li 已提交
1724 1725
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1726
	blk_account_io_start(rq, true);
1727 1728
}

1729 1730 1731 1732 1733 1734 1735
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1736
}
1737

1738 1739
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1740 1741 1742 1743
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1744 1745
}

1746 1747 1748
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1749 1750 1751 1752
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1753
		.last = true,
1754
	};
1755
	blk_qc_t new_cookie;
1756
	blk_status_t ret;
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1771
	case BLK_STS_DEV_RESOURCE:
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1784 1785
						blk_qc_t *cookie,
						bool bypass_insert)
1786 1787
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1788 1789
	bool run_queue = true;

1790 1791 1792 1793
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1794
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1795 1796
	 * and avoid driver to try to dispatch again.
	 */
1797
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1798
		run_queue = false;
1799
		bypass_insert = false;
M
Ming Lei 已提交
1800 1801
		goto insert;
	}
1802

1803
	if (q->elevator && !bypass_insert)
1804 1805
		goto insert;

1806
	if (!blk_mq_get_dispatch_budget(hctx))
1807 1808
		goto insert;

1809 1810
	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
		blk_mq_put_dispatch_budget(hctx);
1811
		goto insert;
1812
	}
1813

1814
	return __blk_mq_issue_directly(hctx, rq, cookie);
1815
insert:
1816 1817
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1818

1819
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1820
	return BLK_STS_OK;
1821 1822
}

1823 1824 1825
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1826
	blk_status_t ret;
1827
	int srcu_idx;
1828

1829
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1830

1831
	hctx_lock(hctx, &srcu_idx);
1832

1833
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1834
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1835
		blk_mq_sched_insert_request(rq, false, true, false);
1836 1837 1838
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1839
	hctx_unlock(hctx, srcu_idx);
1840 1841
}

1842
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1855 1856
}

1857
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1858
{
1859
	const int is_sync = op_is_sync(bio->bi_opf);
1860
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1861
	struct blk_mq_alloc_data data = { .flags = 0 };
1862
	struct request *rq;
1863
	unsigned int request_count = 0;
1864
	struct blk_plug *plug;
1865
	struct request *same_queue_rq = NULL;
1866
	blk_qc_t cookie;
J
Jens Axboe 已提交
1867
	unsigned int wb_acct;
1868 1869 1870

	blk_queue_bounce(q, &bio);

1871
	blk_queue_split(q, &bio);
1872

1873
	if (!bio_integrity_prep(bio))
1874
		return BLK_QC_T_NONE;
1875

1876 1877 1878
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1879

1880 1881 1882
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1883 1884
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1885 1886
	trace_block_getrq(q, bio, bio->bi_opf);

1887
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1888 1889
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1890 1891
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1892
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1893 1894 1895
	}

	wbt_track(&rq->issue_stat, wb_acct);
1896

1897
	cookie = request_to_qc_t(data.hctx, rq);
1898

1899
	plug = current->plug;
1900
	if (unlikely(is_flush_fua)) {
1901
		blk_mq_put_ctx(data.ctx);
1902
		blk_mq_bio_to_request(rq, bio);
1903 1904 1905 1906

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1907
	} else if (plug && q->nr_hw_queues == 1) {
1908 1909
		struct request *last = NULL;

1910
		blk_mq_put_ctx(data.ctx);
1911
		blk_mq_bio_to_request(rq, bio);
1912 1913 1914 1915 1916 1917 1918

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1919 1920 1921
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1922
		if (!request_count)
1923
			trace_block_plug(q);
1924 1925
		else
			last = list_entry_rq(plug->mq_list.prev);
1926

1927 1928
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1929 1930
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1931
		}
1932

1933
		list_add_tail(&rq->queuelist, &plug->mq_list);
1934
	} else if (plug && !blk_queue_nomerges(q)) {
1935
		blk_mq_bio_to_request(rq, bio);
1936 1937

		/*
1938
		 * We do limited plugging. If the bio can be merged, do that.
1939 1940
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1941 1942
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1943
		 */
1944 1945 1946 1947 1948 1949
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1950 1951
		blk_mq_put_ctx(data.ctx);

1952 1953 1954
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1955 1956
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1957
		}
1958
	} else if (q->nr_hw_queues > 1 && is_sync) {
1959
		blk_mq_put_ctx(data.ctx);
1960 1961
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1962
	} else if (q->elevator) {
1963
		blk_mq_put_ctx(data.ctx);
1964
		blk_mq_bio_to_request(rq, bio);
1965
		blk_mq_sched_insert_request(rq, false, true, true);
1966
	} else {
1967
		blk_mq_put_ctx(data.ctx);
1968 1969
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1970
		blk_mq_run_hw_queue(data.hctx, true);
1971
	}
1972

1973
	return cookie;
1974 1975
}

1976 1977
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1978
{
1979
	struct page *page;
1980

1981
	if (tags->rqs && set->ops->exit_request) {
1982
		int i;
1983

1984
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1985 1986 1987
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1988
				continue;
1989
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1990
			tags->static_rqs[i] = NULL;
1991
		}
1992 1993
	}

1994 1995
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1996
		list_del_init(&page->lru);
1997 1998 1999 2000 2001
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
2002 2003
		__free_pages(page, page->private);
	}
2004
}
2005

2006 2007
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2008
	kfree(tags->rqs);
2009
	tags->rqs = NULL;
J
Jens Axboe 已提交
2010 2011
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2012

2013
	blk_mq_free_tags(tags);
2014 2015
}

2016 2017 2018 2019
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2020
{
2021
	struct blk_mq_tags *tags;
2022
	int node;
2023

2024 2025 2026 2027 2028
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2029
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2030 2031
	if (!tags)
		return NULL;
2032

2033
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2034
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2035
				 node);
2036 2037 2038 2039
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2040

J
Jens Axboe 已提交
2041 2042
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2043
				 node);
J
Jens Axboe 已提交
2044 2045 2046 2047 2048 2049
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2050 2051 2052 2053 2054 2055 2056 2057
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
	return 0;
}

2074 2075 2076 2077 2078
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2079 2080 2081 2082 2083
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2084 2085 2086

	INIT_LIST_HEAD(&tags->page_list);

2087 2088 2089 2090
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2091
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2092
				cache_line_size());
2093
	left = rq_size * depth;
2094

2095
	for (i = 0; i < depth; ) {
2096 2097 2098 2099 2100
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2101
		while (this_order && left < order_to_size(this_order - 1))
2102 2103 2104
			this_order--;

		do {
2105
			page = alloc_pages_node(node,
2106
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2107
				this_order);
2108 2109 2110 2111 2112 2113 2114 2115 2116
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2117
			goto fail;
2118 2119

		page->private = this_order;
2120
		list_add_tail(&page->lru, &tags->page_list);
2121 2122

		p = page_address(page);
2123 2124 2125 2126
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2127
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2128
		entries_per_page = order_to_size(this_order) / rq_size;
2129
		to_do = min(entries_per_page, depth - i);
2130 2131
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2132 2133 2134
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2135 2136 2137
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2138 2139
			}

2140 2141 2142 2143
			p += rq_size;
			i++;
		}
	}
2144
	return 0;
2145

2146
fail:
2147 2148
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2149 2150
}

J
Jens Axboe 已提交
2151 2152 2153 2154 2155
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2156
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2157
{
2158
	struct blk_mq_hw_ctx *hctx;
2159 2160 2161
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2162
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2163
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2164 2165 2166 2167 2168 2169 2170 2171 2172

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2173
		return 0;
2174

J
Jens Axboe 已提交
2175 2176 2177
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2178 2179

	blk_mq_run_hw_queue(hctx, true);
2180
	return 0;
2181 2182
}

2183
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2184
{
2185 2186
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2187 2188
}

2189
/* hctx->ctxs will be freed in queue's release handler */
2190 2191 2192 2193
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2194 2195
	blk_mq_debugfs_unregister_hctx(hctx);

2196 2197
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2198

2199
	if (set->ops->exit_request)
2200
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2201

2202 2203
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2204 2205 2206
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2207
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2208
		cleanup_srcu_struct(hctx->srcu);
2209

2210
	blk_mq_remove_cpuhp(hctx);
2211
	blk_free_flush_queue(hctx->fq);
2212
	sbitmap_free(&hctx->ctx_map);
2213 2214
}

M
Ming Lei 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2224
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2225 2226 2227
	}
}

2228 2229 2230
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2231
{
2232 2233 2234 2235 2236 2237
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2238
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2239 2240 2241
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2242
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2243

2244
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2245 2246

	hctx->tags = set->tags[hctx_idx];
2247 2248

	/*
2249 2250
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2251
	 */
2252
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2253 2254 2255
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2256

2257 2258
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2259
		goto free_ctxs;
2260

2261
	hctx->nr_ctx = 0;
2262

2263 2264 2265
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2266 2267 2268
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2269

2270 2271 2272
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2273 2274
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2275
		goto sched_exit_hctx;
2276

2277
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2278
		goto free_fq;
2279

2280
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2281
		init_srcu_struct(hctx->srcu);
2282

2283 2284
	blk_mq_debugfs_register_hctx(q, hctx);

2285
	return 0;
2286

2287 2288
 free_fq:
	kfree(hctx->fq);
2289 2290
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2291 2292 2293
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2294
 free_bitmap:
2295
	sbitmap_free(&hctx->ctx_map);
2296 2297 2298
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2299
	blk_mq_remove_cpuhp(hctx);
2300 2301
	return -1;
}
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2321
		hctx = blk_mq_map_queue(q, i);
2322
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2323
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2324 2325 2326
	}
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2349 2350 2351 2352 2353
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2354 2355
}

2356
static void blk_mq_map_swqueue(struct request_queue *q)
2357
{
2358
	unsigned int i, hctx_idx;
2359 2360
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2361
	struct blk_mq_tag_set *set = q->tag_set;
2362

2363 2364 2365 2366 2367
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2368
	queue_for_each_hw_ctx(q, hctx, i) {
2369
		cpumask_clear(hctx->cpumask);
2370 2371 2372 2373
		hctx->nr_ctx = 0;
	}

	/*
2374 2375 2376
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2377
	 */
2378
	for_each_possible_cpu(i) {
2379 2380
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2381 2382
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2383 2384 2385 2386 2387 2388
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2389
			q->mq_map[i] = 0;
2390 2391
		}

2392
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2393
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2394

2395
		cpumask_set_cpu(i, hctx->cpumask);
2396 2397 2398
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2399

2400 2401
	mutex_unlock(&q->sysfs_lock);

2402
	queue_for_each_hw_ctx(q, hctx, i) {
2403
		/*
2404 2405
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2406 2407
		 */
		if (!hctx->nr_ctx) {
2408 2409 2410 2411
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2412 2413 2414
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2415
			hctx->tags = NULL;
2416 2417 2418
			continue;
		}

M
Ming Lei 已提交
2419 2420 2421
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2422 2423 2424 2425 2426
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2427
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2428

2429 2430 2431
		/*
		 * Initialize batch roundrobin counts
		 */
2432 2433
		hctx->next_cpu = cpumask_first_and(hctx->cpumask,
				cpu_online_mask);
2434 2435
		if (hctx->next_cpu >= nr_cpu_ids)
			hctx->next_cpu = cpumask_first(hctx->cpumask);
2436 2437
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2438 2439
}

2440 2441 2442 2443
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2444
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2445 2446 2447 2448
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2449
	queue_for_each_hw_ctx(q, hctx, i) {
2450 2451 2452
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2453
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2454 2455 2456
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2457
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2458
		}
2459 2460 2461
	}
}

2462 2463
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2464 2465
{
	struct request_queue *q;
2466

2467 2468
	lockdep_assert_held(&set->tag_list_lock);

2469 2470
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2471
		queue_set_hctx_shared(q, shared);
2472 2473 2474 2475 2476 2477 2478 2479 2480
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2481 2482
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2483 2484 2485 2486 2487 2488
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2489
	mutex_unlock(&set->tag_list_lock);
2490 2491

	synchronize_rcu();
2492 2493 2494 2495 2496 2497 2498 2499
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2500

2501 2502 2503 2504 2505
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2506 2507 2508 2509 2510 2511
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2512
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2513

2514 2515 2516
	mutex_unlock(&set->tag_list_lock);
}

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2529 2530 2531
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2532
		kobject_put(&hctx->kobj);
2533
	}
2534

2535 2536
	q->mq_map = NULL;

2537 2538
	kfree(q->queue_hw_ctx);

2539 2540 2541 2542 2543 2544
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2545 2546 2547
	free_percpu(q->queue_ctx);
}

2548
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2549 2550 2551
{
	struct request_queue *uninit_q, *q;

2552
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2564 2565 2566 2567
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2568
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2569 2570 2571 2572 2573 2574 2575 2576 2577
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2578 2579
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2580
{
K
Keith Busch 已提交
2581 2582
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2583

K
Keith Busch 已提交
2584
	blk_mq_sysfs_unregister(q);
2585 2586 2587

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2588
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2589
		int node;
2590

K
Keith Busch 已提交
2591 2592 2593 2594
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2595
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2596
					GFP_KERNEL, node);
2597
		if (!hctxs[i])
K
Keith Busch 已提交
2598
			break;
2599

2600
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2601 2602 2603 2604 2605
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2606

2607
		atomic_set(&hctxs[i]->nr_active, 0);
2608
		hctxs[i]->numa_node = node;
2609
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2610 2611 2612 2613 2614 2615 2616 2617

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2618
	}
K
Keith Busch 已提交
2619 2620 2621 2622
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2623 2624
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2625 2626 2627 2628 2629 2630 2631
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2632
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2633 2634 2635 2636 2637 2638
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2639 2640 2641
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2642
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2643 2644
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2645 2646 2647
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2648 2649
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2650
		goto err_exit;
K
Keith Busch 已提交
2651

2652 2653 2654
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2655 2656 2657 2658 2659
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2660
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2661 2662 2663 2664

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2665

2666
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2667
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2668 2669 2670

	q->nr_queues = nr_cpu_ids;

2671
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2672

2673
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2674
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2675

2676 2677
	q->sg_reserved_size = INT_MAX;

2678
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2679 2680 2681
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2682
	blk_queue_make_request(q, blk_mq_make_request);
2683 2684
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2685

2686 2687 2688 2689 2690
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2691 2692 2693 2694 2695
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2696 2697
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2698

2699
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2700
	blk_mq_add_queue_tag_set(set, q);
2701
	blk_mq_map_swqueue(q);
2702

2703 2704 2705 2706 2707 2708 2709 2710
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2711
	return q;
2712

2713
err_hctxs:
K
Keith Busch 已提交
2714
	kfree(q->queue_hw_ctx);
2715
err_percpu:
K
Keith Busch 已提交
2716
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2717 2718
err_exit:
	q->mq_ops = NULL;
2719 2720
	return ERR_PTR(-ENOMEM);
}
2721
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2722 2723 2724

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2725
	struct blk_mq_tag_set	*set = q->tag_set;
2726

2727
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2728
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2729 2730 2731
}

/* Basically redo blk_mq_init_queue with queue frozen */
2732
static void blk_mq_queue_reinit(struct request_queue *q)
2733
{
2734
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2735

2736
	blk_mq_debugfs_unregister_hctxs(q);
2737 2738
	blk_mq_sysfs_unregister(q);

2739 2740
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2741 2742
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2743
	 */
2744
	blk_mq_map_swqueue(q);
2745

2746
	blk_mq_sysfs_register(q);
2747
	blk_mq_debugfs_register_hctxs(q);
2748 2749
}

2750 2751 2752 2753
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2754 2755
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2756 2757 2758 2759 2760 2761
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2762
		blk_mq_free_rq_map(set->tags[i]);
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2802 2803
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2823
		return set->ops->map_queues(set);
2824
	} else
2825 2826 2827
		return blk_mq_map_queues(set);
}

2828 2829 2830 2831 2832 2833
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2834 2835
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2836 2837
	int ret;

B
Bart Van Assche 已提交
2838 2839
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2840 2841
	if (!set->nr_hw_queues)
		return -EINVAL;
2842
	if (!set->queue_depth)
2843 2844 2845 2846
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2847
	if (!set->ops->queue_rq)
2848 2849
		return -EINVAL;

2850 2851 2852
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2853 2854 2855 2856 2857
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2858

2859 2860 2861 2862 2863 2864 2865 2866 2867
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2868 2869 2870 2871 2872
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2873

K
Keith Busch 已提交
2874
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2875 2876
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2877
		return -ENOMEM;
2878

2879 2880 2881
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2882 2883 2884
	if (!set->mq_map)
		goto out_free_tags;

2885
	ret = blk_mq_update_queue_map(set);
2886 2887 2888 2889 2890
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2891
		goto out_free_mq_map;
2892

2893 2894 2895
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2896
	return 0;
2897 2898 2899 2900 2901

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2902 2903
	kfree(set->tags);
	set->tags = NULL;
2904
	return ret;
2905 2906 2907 2908 2909 2910 2911
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2912 2913
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2914

2915 2916 2917
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2918
	kfree(set->tags);
2919
	set->tags = NULL;
2920 2921 2922
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2923 2924 2925 2926 2927 2928
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2929
	if (!set)
2930 2931
		return -EINVAL;

2932
	blk_mq_freeze_queue(q);
2933
	blk_mq_quiesce_queue(q);
2934

2935 2936
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2937 2938
		if (!hctx->tags)
			continue;
2939 2940 2941 2942
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2943
		if (!hctx->sched_tags) {
2944
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2945 2946 2947 2948 2949
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2950 2951 2952 2953 2954 2955 2956
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2957
	blk_mq_unquiesce_queue(q);
2958 2959
	blk_mq_unfreeze_queue(q);

2960 2961 2962
	return ret;
}

2963 2964
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2965 2966 2967
{
	struct request_queue *q;

2968 2969
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2979
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2980 2981
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2982
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2983 2984 2985 2986 2987
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2988 2989 2990 2991 2992 2993 2994

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2995 2996
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2997 2998 2999 3000
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3001
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3023
	int bucket;
3024

3025 3026 3027 3028
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3029 3030
}

3031 3032 3033 3034 3035
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3036
	int bucket;
3037 3038 3039 3040 3041

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3042
	if (!blk_poll_stats_enable(q))
3043 3044 3045 3046 3047 3048 3049 3050
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3051 3052
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3053
	 */
3054 3055 3056 3057 3058 3059
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3060 3061 3062 3063

	return ret;
}

3064
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3065
				     struct blk_mq_hw_ctx *hctx,
3066 3067 3068 3069
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3070
	unsigned int nsecs;
3071 3072
	ktime_t kt;

J
Jens Axboe 已提交
3073
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3091 3092
		return false;

J
Jens Axboe 已提交
3093
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3094 3095 3096 3097 3098

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3099
	kt = nsecs;
3100 3101 3102 3103 3104 3105 3106

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3107
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3122 3123 3124 3125 3126
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3127 3128 3129 3130 3131 3132 3133
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3134
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3135 3136
		return true;

J
Jens Axboe 已提交
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3162
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3163 3164 3165
	return false;
}

3166
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3167 3168 3169 3170
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3171
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3172 3173 3174
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3175 3176
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3177
	else {
3178
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3179 3180 3181 3182 3183 3184 3185 3186 3187
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3188 3189 3190 3191

	return __blk_mq_poll(hctx, rq);
}

3192 3193
static int __init blk_mq_init(void)
{
3194 3195
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3196 3197 3198
	return 0;
}
subsys_initcall(blk_mq_init);