blk-mq.c 70.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44 45
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

46 47 48 49
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
50
	ddir = rq_data_dir(rq);
51 52 53 54 55 56 57 58 59 60 61 62
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

63 64 65
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
66
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67
{
68 69 70
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
71 72
}

73 74 75 76 77 78
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
79 80
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 82 83 84 85
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
86
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 88
}

89
void blk_freeze_queue_start(struct request_queue *q)
90
{
91
	int freeze_depth;
92

93 94
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
95
		percpu_ref_kill(&q->q_usage_counter);
96
		blk_mq_run_hw_queues(q, false);
97
	}
98
}
99
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100

101
void blk_mq_freeze_queue_wait(struct request_queue *q)
102
{
103
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104
}
105
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106

107 108 109 110 111 112 113 114
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115

116 117 118 119
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
120
void blk_freeze_queue(struct request_queue *q)
121
{
122 123 124 125 126 127 128
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
129
	blk_freeze_queue_start(q);
130 131
	blk_mq_freeze_queue_wait(q);
}
132 133 134 135 136 137 138 139 140

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
141
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142

143
void blk_mq_unfreeze_queue(struct request_queue *q)
144
{
145
	int freeze_depth;
146

147 148 149
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
150
		percpu_ref_reinit(&q->q_usage_counter);
151
		wake_up_all(&q->mq_freeze_wq);
152
	}
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155

156
/**
157
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
158 159 160
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
161 162 163
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
164 165 166 167 168 169 170
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

171
	blk_mq_quiesce_queue_nowait(q);
172

173 174 175 176 177 178 179 180 181 182 183
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

184 185 186 187 188 189 190 191 192
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
193 194 195 196
	spin_lock_irq(q->queue_lock);
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irq(q->queue_lock);

197 198
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
199 200 201
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

202 203 204 205 206 207 208 209
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
210 211 212 213 214 215 216

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
217 218
}

219 220 221 222 223 224
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

225 226
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
227
{
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

244 245
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
246 247
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
248
	rq->cmd_flags = op;
249
	if (blk_queue_io_stat(data->q))
250
		rq->rq_flags |= RQF_IO_STAT;
251 252 253 254 255 256
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
257
	rq->start_time = jiffies;
258 259
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
260
	set_start_time_ns(rq);
261 262 263 264 265 266 267 268 269 270 271
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
272 273
	rq->timeout = 0;

274 275 276 277
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

278 279
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
280 281
}

282 283 284 285 286 287
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
288
	unsigned int tag;
289 290 291 292 293 294 295

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
296 297
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
298 299 300 301 302 303 304 305

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
306 307
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
308 309
	}

310 311
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
312 313
		blk_queue_exit(q);
		return NULL;
314 315
	}

316
	rq = blk_mq_rq_ctx_init(data, tag, op);
317 318
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
319
		if (e && e->type->ops.mq.prepare_request) {
320 321 322
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

323 324
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
325
		}
326 327 328
	}
	data->hctx->queued++;
	return rq;
329 330
}

331 332
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
333
{
334
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
335
	struct request *rq;
336
	int ret;
337

338
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
339 340
	if (ret)
		return ERR_PTR(ret);
341

342
	rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
343

344 345 346 347
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
348
		return ERR_PTR(-EWOULDBLOCK);
349 350 351 352

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
353 354
	return rq;
}
355
EXPORT_SYMBOL(blk_mq_alloc_request);
356

M
Ming Lin 已提交
357 358 359
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
360
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
361
	struct request *rq;
362
	unsigned int cpu;
M
Ming Lin 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

381 382 383 384
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
385 386 387 388
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
389
	}
390 391
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
392

393
	rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
394 395

	blk_queue_exit(q);
396 397 398 399 400

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
401 402 403
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

404
void blk_mq_free_request(struct request *rq)
405 406
{
	struct request_queue *q = rq->q;
407 408 409 410 411
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

412
	if (rq->rq_flags & RQF_ELVPRIV) {
413 414 415 416 417 418 419
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
420

421
	ctx->rq_completed[rq_is_sync(rq)]++;
422
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
423
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
424 425

	wbt_done(q->rq_wb, &rq->issue_stat);
426
	rq->rq_flags = 0;
427

428
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
429
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
430 431 432
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
433
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
434
	blk_mq_sched_restart(hctx);
435
	blk_queue_exit(q);
436
}
J
Jens Axboe 已提交
437
EXPORT_SYMBOL_GPL(blk_mq_free_request);
438

439
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
440
{
M
Ming Lei 已提交
441 442
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
443
	if (rq->end_io) {
J
Jens Axboe 已提交
444
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
445
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
446 447 448
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
449
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
450
	}
451
}
452
EXPORT_SYMBOL(__blk_mq_end_request);
453

454
void blk_mq_end_request(struct request *rq, blk_status_t error)
455 456 457
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
458
	__blk_mq_end_request(rq, error);
459
}
460
EXPORT_SYMBOL(blk_mq_end_request);
461

462
static void __blk_mq_complete_request_remote(void *data)
463
{
464
	struct request *rq = data;
465

466
	rq->q->softirq_done_fn(rq);
467 468
}

469
static void __blk_mq_complete_request(struct request *rq)
470 471
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
472
	bool shared = false;
473 474
	int cpu;

475 476 477 478 479 480 481
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
482
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
483 484 485
		rq->q->softirq_done_fn(rq);
		return;
	}
486 487

	cpu = get_cpu();
C
Christoph Hellwig 已提交
488 489 490 491
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
492
		rq->csd.func = __blk_mq_complete_request_remote;
493 494
		rq->csd.info = rq;
		rq->csd.flags = 0;
495
		smp_call_function_single_async(ctx->cpu, &rq->csd);
496
	} else {
497
		rq->q->softirq_done_fn(rq);
498
	}
499 500
	put_cpu();
}
501 502 503 504 505 506 507 508 509

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
510
void blk_mq_complete_request(struct request *rq)
511
{
512 513 514
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
515
		return;
516
	if (!blk_mark_rq_complete(rq))
517
		__blk_mq_complete_request(rq);
518 519
}
EXPORT_SYMBOL(blk_mq_complete_request);
520

521 522 523 524 525 526
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

527
void blk_mq_start_request(struct request *rq)
528 529 530
{
	struct request_queue *q = rq->q;

531 532
	blk_mq_sched_started_request(rq);

533 534
	trace_block_rq_issue(q, rq);

535
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
536
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
537
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
538
		wbt_issue(q->rq_wb, &rq->issue_stat);
539 540
	}

541
	blk_add_timer(rq);
542

543 544 545 546 547 548
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

549 550 551 552 553 554
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
555 556 557 558
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
559 560 561 562 563 564 565 566 567

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
568
}
569
EXPORT_SYMBOL(blk_mq_start_request);
570

571 572
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
573
 * flag isn't set yet, so there may be race with timeout handler,
574 575 576 577 578 579
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
580
static void __blk_mq_requeue_request(struct request *rq)
581 582 583 584
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
585
	wbt_requeue(q->rq_wb, &rq->issue_stat);
586
	blk_mq_sched_requeue_request(rq);
587

588 589 590 591
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
592 593
}

594
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
595 596 597 598
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
599
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
600 601 602
}
EXPORT_SYMBOL(blk_mq_requeue_request);

603 604 605
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
606
		container_of(work, struct request_queue, requeue_work.work);
607 608 609 610 611 612 613 614 615
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
616
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
617 618
			continue;

619
		rq->rq_flags &= ~RQF_SOFTBARRIER;
620
		list_del_init(&rq->queuelist);
621
		blk_mq_sched_insert_request(rq, true, false, false, true);
622 623 624 625 626
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
627
		blk_mq_sched_insert_request(rq, false, false, false, true);
628 629
	}

630
	blk_mq_run_hw_queues(q, false);
631 632
}

633 634
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
635 636 637 638 639 640 641 642
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
643
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
644 645 646

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
647
		rq->rq_flags |= RQF_SOFTBARRIER;
648 649 650 651 652
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
653 654 655

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
656 657 658 659 660
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
661
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
662 663 664
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

665 666 667 668 669 670 671 672
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

673 674
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
675 676
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
677
		return tags->rqs[tag];
678
	}
679 680

	return NULL;
681 682 683
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

684
struct blk_mq_timeout_data {
685 686
	unsigned long next;
	unsigned int next_set;
687 688
};

689
void blk_mq_rq_timed_out(struct request *req, bool reserved)
690
{
J
Jens Axboe 已提交
691
	const struct blk_mq_ops *ops = req->q->mq_ops;
692
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
693 694 695 696 697 698 699

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
700
	 * both flags will get cleared. So check here again, and ignore
701 702
	 * a timeout event with a request that isn't active.
	 */
703 704
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
705

706
	if (ops->timeout)
707
		ret = ops->timeout(req, reserved);
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
723
}
724

725 726 727 728
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
729

730
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
731
		return;
732

733 734 735 736 737 738 739 740 741 742 743 744 745
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
746 747
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
748
			blk_mq_rq_timed_out(rq, reserved);
749 750 751 752
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
753 754
}

755
static void blk_mq_timeout_work(struct work_struct *work)
756
{
757 758
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
759 760 761 762 763
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
764

765 766 767 768 769 770 771 772 773
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
774
	 * blk_freeze_queue_start, and the moment the last request is
775 776 777 778
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
779 780
		return;

781
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
782

783 784 785
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
786
	} else {
787 788
		struct blk_mq_hw_ctx *hctx;

789 790 791 792 793
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
794
	}
795
	blk_queue_exit(q);
796 797
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

816 817 818 819
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
820
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
821
{
822 823 824 825
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
826

827
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
828
}
829
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
830

831 832 833 834
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
835

836
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
837 838
}

839 840
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
841 842 843 844 845 846 847
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

848 849
	might_sleep_if(wait);

850 851
	if (rq->tag != -1)
		goto done;
852

853 854 855
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

856 857
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
858 859 860 861
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
862 863 864
		data.hctx->tags->rqs[rq->tag] = rq;
	}

865 866 867 868
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
869 870
}

871 872
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
873 874 875 876 877 878 879 880 881 882
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

965
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
966
{
967
	struct blk_mq_hw_ctx *hctx;
968
	struct request *rq;
969
	int errors, queued;
970

971 972 973
	if (list_empty(list))
		return false;

974 975 976
	/*
	 * Now process all the entries, sending them to the driver.
	 */
977
	errors = queued = 0;
978
	do {
979
		struct blk_mq_queue_data bd;
980
		blk_status_t ret;
981

982
		rq = list_first_entry(list, struct request, queuelist);
983 984 985
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
986 987

			/*
988 989
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
990
			 */
991 992 993 994 995 996 997 998 999
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1000
				break;
1001
		}
1002

1003 1004
		list_del_init(&rq->queuelist);

1005
		bd.rq = rq;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1019 1020

		ret = q->mq_ops->queue_rq(hctx, &bd);
1021
		if (ret == BLK_STS_RESOURCE) {
1022
			blk_mq_put_driver_tag_hctx(hctx, rq);
1023
			list_add(&rq->queuelist, list);
1024
			__blk_mq_requeue_request(rq);
1025
			break;
1026 1027 1028
		}

		if (unlikely(ret != BLK_STS_OK)) {
1029
			errors++;
1030
			blk_mq_end_request(rq, BLK_STS_IOERR);
1031
			continue;
1032 1033
		}

1034
		queued++;
1035
	} while (!list_empty(list));
1036

1037
	hctx->dispatched[queued_to_index(queued)]++;
1038 1039 1040 1041 1042

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1043
	if (!list_empty(list)) {
1044
		/*
1045 1046
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1047 1048 1049 1050
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1051
		spin_lock(&hctx->lock);
1052
		list_splice_init(list, &hctx->dispatch);
1053
		spin_unlock(&hctx->lock);
1054

1055
		/*
1056 1057 1058
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1059
		 *
1060 1061 1062 1063
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1064
		 *
1065 1066 1067 1068 1069 1070 1071
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1072
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1073
		 *   and dm-rq.
1074
		 */
1075 1076
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1077
			blk_mq_run_hw_queue(hctx, true);
1078
	}
1079

1080
	return (queued + errors) != 0;
1081 1082
}

1083 1084 1085 1086 1087 1088 1089 1090 1091
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1092
		blk_mq_sched_dispatch_requests(hctx);
1093 1094
		rcu_read_unlock();
	} else {
1095 1096
		might_sleep();

1097
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1098
		blk_mq_sched_dispatch_requests(hctx);
1099 1100 1101 1102
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1103 1104 1105 1106 1107 1108 1109 1110
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1111 1112
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1113 1114

	if (--hctx->next_cpu_batch <= 0) {
1115
		int next_cpu;
1116 1117 1118 1119 1120 1121 1122 1123 1124

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1125
	return hctx->next_cpu;
1126 1127
}

1128 1129
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1130
{
1131 1132
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1133 1134
		return;

1135
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1136 1137
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1138
			__blk_mq_run_hw_queue(hctx);
1139
			put_cpu();
1140 1141
			return;
		}
1142

1143
		put_cpu();
1144
	}
1145

1146 1147 1148
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1160
}
O
Omar Sandoval 已提交
1161
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1162

1163
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1164 1165 1166 1167 1168
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1169
		if (!blk_mq_hctx_has_pending(hctx) ||
1170
		    blk_mq_hctx_stopped(hctx))
1171 1172
			continue;

1173
		blk_mq_run_hw_queue(hctx, async);
1174 1175
	}
}
1176
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1198 1199 1200 1201 1202 1203 1204 1205 1206
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1207 1208
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1209
	cancel_delayed_work(&hctx->run_work);
1210

1211
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1212
}
1213
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1214

1215 1216 1217 1218 1219 1220 1221 1222 1223
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1224 1225
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1226 1227 1228 1229 1230
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1231 1232 1233
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1234 1235 1236
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1237

1238
	blk_mq_run_hw_queue(hctx, false);
1239 1240 1241
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1262
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1263 1264 1265 1266
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1267 1268
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1269 1270 1271
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1272
static void blk_mq_run_work_fn(struct work_struct *work)
1273 1274 1275
{
	struct blk_mq_hw_ctx *hctx;

1276
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1277

1278 1279 1280 1281 1282 1283 1284 1285
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1286

1287 1288 1289
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1290 1291 1292 1293

	__blk_mq_run_hw_queue(hctx);
}

1294 1295 1296

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1297 1298
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1299

1300 1301 1302 1303 1304
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1305
	blk_mq_stop_hw_queue(hctx);
1306 1307 1308 1309
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1310 1311 1312
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1313 1314 1315
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1316
{
J
Jens Axboe 已提交
1317 1318
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1319 1320
	trace_block_rq_insert(hctx->queue, rq);

1321 1322 1323 1324
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1325
}
1326

1327 1328
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1329 1330 1331
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1332
	__blk_mq_insert_req_list(hctx, rq, at_head);
1333 1334 1335
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1336 1337
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1349
		BUG_ON(rq->mq_ctx != ctx);
1350
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1351
		__blk_mq_insert_req_list(hctx, rq, false);
1352
	}
1353
	blk_mq_hctx_mark_pending(hctx, ctx);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1390 1391 1392 1393
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1410 1411 1412
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1413 1414 1415 1416 1417
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1418
	blk_init_request_from_bio(rq, bio);
1419

1420
	blk_account_io_start(rq, true);
1421 1422
}

1423 1424 1425 1426 1427 1428
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1429 1430 1431 1432 1433 1434 1435
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1436
}
1437

1438 1439
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1440 1441 1442 1443
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1444 1445
}

M
Ming Lei 已提交
1446 1447 1448
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1449 1450 1451 1452
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1453
		.last = true,
1454
	};
1455
	blk_qc_t new_cookie;
1456
	blk_status_t ret;
M
Ming Lei 已提交
1457 1458
	bool run_queue = true;

1459 1460
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1461 1462 1463
		run_queue = false;
		goto insert;
	}
1464

1465
	if (q->elevator)
1466 1467
		goto insert;

M
Ming Lei 已提交
1468
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1469 1470 1471 1472
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1473 1474 1475 1476 1477 1478
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1479 1480
	switch (ret) {
	case BLK_STS_OK:
1481
		*cookie = new_cookie;
1482
		return;
1483 1484 1485 1486
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1487
		*cookie = BLK_QC_T_NONE;
1488
		blk_mq_end_request(rq, ret);
1489
		return;
1490
	}
1491

1492
insert:
M
Ming Lei 已提交
1493
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1494 1495
}

1496 1497 1498 1499 1500
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1501
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1502 1503
		rcu_read_unlock();
	} else {
1504 1505 1506 1507 1508
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
M
Ming Lei 已提交
1509
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1510 1511 1512 1513
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1514
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1515
{
1516
	const int is_sync = op_is_sync(bio->bi_opf);
1517
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1518
	struct blk_mq_alloc_data data = { .flags = 0 };
1519
	struct request *rq;
1520
	unsigned int request_count = 0;
1521
	struct blk_plug *plug;
1522
	struct request *same_queue_rq = NULL;
1523
	blk_qc_t cookie;
J
Jens Axboe 已提交
1524
	unsigned int wb_acct;
1525 1526 1527

	blk_queue_bounce(q, &bio);

1528
	blk_queue_split(q, &bio);
1529

1530
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1531
		bio_io_error(bio);
1532
		return BLK_QC_T_NONE;
1533 1534
	}

1535 1536 1537
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1538

1539 1540 1541
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1542 1543
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1544 1545
	trace_block_getrq(q, bio, bio->bi_opf);

1546
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1547 1548
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1549 1550
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1551
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1552 1553 1554
	}

	wbt_track(&rq->issue_stat, wb_acct);
1555

1556
	cookie = request_to_qc_t(data.hctx, rq);
1557

1558
	plug = current->plug;
1559
	if (unlikely(is_flush_fua)) {
1560
		blk_mq_put_ctx(data.ctx);
1561
		blk_mq_bio_to_request(rq, bio);
1562 1563 1564
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1565
		} else {
1566 1567
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1568
		}
1569
	} else if (plug && q->nr_hw_queues == 1) {
1570 1571
		struct request *last = NULL;

1572
		blk_mq_put_ctx(data.ctx);
1573
		blk_mq_bio_to_request(rq, bio);
1574 1575 1576 1577 1578 1579 1580

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1581 1582 1583
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1584
		if (!request_count)
1585
			trace_block_plug(q);
1586 1587
		else
			last = list_entry_rq(plug->mq_list.prev);
1588

1589 1590
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1591 1592
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1593
		}
1594

1595
		list_add_tail(&rq->queuelist, &plug->mq_list);
1596
	} else if (plug && !blk_queue_nomerges(q)) {
1597
		blk_mq_bio_to_request(rq, bio);
1598 1599

		/*
1600
		 * We do limited plugging. If the bio can be merged, do that.
1601 1602
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1603 1604
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1605
		 */
1606 1607 1608 1609 1610 1611
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1612 1613
		blk_mq_put_ctx(data.ctx);

1614 1615 1616
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1617 1618
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1619
		}
1620
	} else if (q->nr_hw_queues > 1 && is_sync) {
1621
		blk_mq_put_ctx(data.ctx);
1622 1623
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1624
	} else if (q->elevator) {
1625
		blk_mq_put_ctx(data.ctx);
1626
		blk_mq_bio_to_request(rq, bio);
1627
		blk_mq_sched_insert_request(rq, false, true, true, true);
1628
	} else {
1629
		blk_mq_put_ctx(data.ctx);
1630 1631
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1632
		blk_mq_run_hw_queue(data.hctx, true);
1633
	}
1634

1635
	return cookie;
1636 1637
}

1638 1639
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1640
{
1641
	struct page *page;
1642

1643
	if (tags->rqs && set->ops->exit_request) {
1644
		int i;
1645

1646
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1647 1648 1649
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1650
				continue;
1651
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1652
			tags->static_rqs[i] = NULL;
1653
		}
1654 1655
	}

1656 1657
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1658
		list_del_init(&page->lru);
1659 1660 1661 1662 1663
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1664 1665
		__free_pages(page, page->private);
	}
1666
}
1667

1668 1669
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1670
	kfree(tags->rqs);
1671
	tags->rqs = NULL;
J
Jens Axboe 已提交
1672 1673
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1674

1675
	blk_mq_free_tags(tags);
1676 1677
}

1678 1679 1680 1681
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1682
{
1683
	struct blk_mq_tags *tags;
1684
	int node;
1685

1686 1687 1688 1689 1690
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1691
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1692 1693
	if (!tags)
		return NULL;
1694

1695
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1696
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1697
				 node);
1698 1699 1700 1701
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1702

J
Jens Axboe 已提交
1703 1704
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1705
				 node);
J
Jens Axboe 已提交
1706 1707 1708 1709 1710 1711
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1725 1726 1727 1728 1729
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1730 1731 1732

	INIT_LIST_HEAD(&tags->page_list);

1733 1734 1735 1736
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1737
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1738
				cache_line_size());
1739
	left = rq_size * depth;
1740

1741
	for (i = 0; i < depth; ) {
1742 1743 1744 1745 1746
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1747
		while (this_order && left < order_to_size(this_order - 1))
1748 1749 1750
			this_order--;

		do {
1751
			page = alloc_pages_node(node,
1752
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1753
				this_order);
1754 1755 1756 1757 1758 1759 1760 1761 1762
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1763
			goto fail;
1764 1765

		page->private = this_order;
1766
		list_add_tail(&page->lru, &tags->page_list);
1767 1768

		p = page_address(page);
1769 1770 1771 1772
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1773
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1774
		entries_per_page = order_to_size(this_order) / rq_size;
1775
		to_do = min(entries_per_page, depth - i);
1776 1777
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1778 1779 1780
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1781
			if (set->ops->init_request) {
1782
				if (set->ops->init_request(set, rq, hctx_idx,
1783
						node)) {
J
Jens Axboe 已提交
1784
					tags->static_rqs[i] = NULL;
1785
					goto fail;
1786
				}
1787 1788
			}

1789 1790 1791 1792
			p += rq_size;
			i++;
		}
	}
1793
	return 0;
1794

1795
fail:
1796 1797
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1798 1799
}

J
Jens Axboe 已提交
1800 1801 1802 1803 1804
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1805
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1806
{
1807
	struct blk_mq_hw_ctx *hctx;
1808 1809 1810
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1811
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1812
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1813 1814 1815 1816 1817 1818 1819 1820 1821

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1822
		return 0;
1823

J
Jens Axboe 已提交
1824 1825 1826
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1827 1828

	blk_mq_run_hw_queue(hctx, true);
1829
	return 0;
1830 1831
}

1832
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1833
{
1834 1835
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1836 1837
}

1838
/* hctx->ctxs will be freed in queue's release handler */
1839 1840 1841 1842
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1843 1844
	blk_mq_debugfs_unregister_hctx(hctx);

1845 1846
	blk_mq_tag_idle(hctx);

1847
	if (set->ops->exit_request)
1848
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1849

1850 1851
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1852 1853 1854
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1855 1856 1857
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1858
	blk_mq_remove_cpuhp(hctx);
1859
	blk_free_flush_queue(hctx->fq);
1860
	sbitmap_free(&hctx->ctx_map);
1861 1862
}

M
Ming Lei 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1872
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1873 1874 1875
	}
}

1876 1877 1878
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1879
{
1880 1881 1882 1883 1884 1885
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1886
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1887 1888 1889 1890
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1891
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1892

1893
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1894 1895

	hctx->tags = set->tags[hctx_idx];
1896 1897

	/*
1898 1899
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1900
	 */
1901 1902 1903 1904
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1905

1906 1907
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1908
		goto free_ctxs;
1909

1910
	hctx->nr_ctx = 0;
1911

1912 1913 1914
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1915

1916 1917 1918
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1919 1920
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1921
		goto sched_exit_hctx;
1922

1923
	if (set->ops->init_request &&
1924 1925
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1926
		goto free_fq;
1927

1928 1929 1930
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1931 1932
	blk_mq_debugfs_register_hctx(q, hctx);

1933
	return 0;
1934

1935 1936
 free_fq:
	kfree(hctx->fq);
1937 1938
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1939 1940 1941
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1942
 free_bitmap:
1943
	sbitmap_free(&hctx->ctx_map);
1944 1945 1946
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1947
	blk_mq_remove_cpuhp(hctx);
1948 1949
	return -1;
}
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1969
		hctx = blk_mq_map_queue(q, i);
1970

1971 1972 1973 1974 1975
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1976
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1977 1978 1979
	}
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2002 2003 2004 2005 2006
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2007 2008
}

2009 2010
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2011
{
2012
	unsigned int i, hctx_idx;
2013 2014
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2015
	struct blk_mq_tag_set *set = q->tag_set;
2016

2017 2018 2019 2020 2021
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2022
	queue_for_each_hw_ctx(q, hctx, i) {
2023
		cpumask_clear(hctx->cpumask);
2024 2025 2026 2027 2028 2029
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2030
	for_each_possible_cpu(i) {
2031
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2032
		if (!cpumask_test_cpu(i, online_mask))
2033 2034
			continue;

2035 2036
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2037 2038
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2039 2040 2041 2042 2043 2044
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2045
			q->mq_map[i] = 0;
2046 2047
		}

2048
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2049
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2050

2051
		cpumask_set_cpu(i, hctx->cpumask);
2052 2053 2054
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2055

2056 2057
	mutex_unlock(&q->sysfs_lock);

2058
	queue_for_each_hw_ctx(q, hctx, i) {
2059
		/*
2060 2061
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2062 2063
		 */
		if (!hctx->nr_ctx) {
2064 2065 2066 2067
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2068 2069 2070
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2071
			hctx->tags = NULL;
2072 2073 2074
			continue;
		}

M
Ming Lei 已提交
2075 2076 2077
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2078 2079 2080 2081 2082
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2083
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2084

2085 2086 2087
		/*
		 * Initialize batch roundrobin counts
		 */
2088 2089 2090
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2091 2092
}

2093
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2094 2095 2096 2097
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2109

2110 2111
	lockdep_assert_held(&set->tag_list_lock);

2112 2113
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2114
		queue_set_hctx_shared(q, shared);
2115 2116 2117 2118 2119 2120 2121 2122 2123
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2124 2125
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2126 2127 2128 2129 2130 2131
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2132
	mutex_unlock(&set->tag_list_lock);
2133 2134

	synchronize_rcu();
2135 2136 2137 2138 2139 2140 2141 2142
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2143 2144 2145 2146 2147 2148 2149 2150 2151

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2152
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2153

2154 2155 2156
	mutex_unlock(&set->tag_list_lock);
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2169 2170 2171
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2172
		kobject_put(&hctx->kobj);
2173
	}
2174

2175 2176
	q->mq_map = NULL;

2177 2178
	kfree(q->queue_hw_ctx);

2179 2180 2181 2182 2183 2184
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2185 2186 2187
	free_percpu(q->queue_ctx);
}

2188
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2204 2205
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2206
{
K
Keith Busch 已提交
2207 2208
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2209

K
Keith Busch 已提交
2210
	blk_mq_sysfs_unregister(q);
2211
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2212
		int node;
2213

K
Keith Busch 已提交
2214 2215 2216 2217
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2218 2219
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2220
		if (!hctxs[i])
K
Keith Busch 已提交
2221
			break;
2222

2223
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2224 2225 2226 2227 2228
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2229

2230
		atomic_set(&hctxs[i]->nr_active, 0);
2231
		hctxs[i]->numa_node = node;
2232
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2233 2234 2235 2236 2237 2238 2239 2240

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2241
	}
K
Keith Busch 已提交
2242 2243 2244 2245
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2246 2247
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2261 2262 2263
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2264
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2265 2266
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2267 2268 2269
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2270 2271
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2272
		goto err_exit;
K
Keith Busch 已提交
2273

2274 2275 2276
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2277 2278 2279 2280 2281
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2282
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2283 2284 2285 2286

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2287

2288
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2289
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2290 2291 2292

	q->nr_queues = nr_cpu_ids;

2293
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2294

2295 2296 2297
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2298 2299
	q->sg_reserved_size = INT_MAX;

2300
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2301 2302 2303
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2304
	blk_queue_make_request(q, blk_mq_make_request);
2305

2306 2307 2308 2309 2310
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2311 2312 2313 2314 2315
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2316 2317
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2318

2319
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2320

2321
	get_online_cpus();
2322
	mutex_lock(&all_q_mutex);
2323

2324
	list_add_tail(&q->all_q_node, &all_q_list);
2325
	blk_mq_add_queue_tag_set(set, q);
2326
	blk_mq_map_swqueue(q, cpu_online_mask);
2327

2328
	mutex_unlock(&all_q_mutex);
2329
	put_online_cpus();
2330

2331 2332 2333 2334 2335 2336 2337 2338
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2339
	return q;
2340

2341
err_hctxs:
K
Keith Busch 已提交
2342
	kfree(q->queue_hw_ctx);
2343
err_percpu:
K
Keith Busch 已提交
2344
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2345 2346
err_exit:
	q->mq_ops = NULL;
2347 2348
	return ERR_PTR(-ENOMEM);
}
2349
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2350 2351 2352

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2353
	struct blk_mq_tag_set	*set = q->tag_set;
2354

2355 2356 2357 2358
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2359 2360
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2361
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2362 2363 2364
}

/* Basically redo blk_mq_init_queue with queue frozen */
2365 2366
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2367
{
2368
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2369

2370
	blk_mq_debugfs_unregister_hctxs(q);
2371 2372
	blk_mq_sysfs_unregister(q);

2373 2374 2375 2376 2377 2378
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2379
	blk_mq_map_swqueue(q, online_mask);
2380

2381
	blk_mq_sysfs_register(q);
2382
	blk_mq_debugfs_register_hctxs(q);
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2393 2394 2395 2396
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2397 2398 2399 2400 2401 2402 2403 2404
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2405
		blk_freeze_queue_start(q);
2406
	list_for_each_entry(q, &all_q_list, all_q_node)
2407 2408
		blk_mq_freeze_queue_wait(q);

2409
	list_for_each_entry(q, &all_q_list, all_q_node)
2410
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2411 2412 2413 2414

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2415
	mutex_unlock(&all_q_mutex);
2416 2417 2418 2419
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2420
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2436 2437 2438 2439
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2440 2441 2442 2443 2444 2445 2446
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2447 2448
}

2449 2450 2451 2452
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2453 2454
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2455 2456 2457 2458 2459 2460
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2461
		blk_mq_free_rq_map(set->tags[i]);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2501 2502 2503 2504 2505 2506 2507 2508
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2509 2510 2511 2512 2513 2514
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2515 2516
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2517 2518
	int ret;

B
Bart Van Assche 已提交
2519 2520
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2521 2522
	if (!set->nr_hw_queues)
		return -EINVAL;
2523
	if (!set->queue_depth)
2524 2525 2526 2527
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2528
	if (!set->ops->queue_rq)
2529 2530
		return -EINVAL;

2531 2532 2533 2534 2535
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2536

2537 2538 2539 2540 2541 2542 2543 2544 2545
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2546 2547 2548 2549 2550
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2551

K
Keith Busch 已提交
2552
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2553 2554
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2555
		return -ENOMEM;
2556

2557 2558 2559
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2560 2561 2562
	if (!set->mq_map)
		goto out_free_tags;

2563
	ret = blk_mq_update_queue_map(set);
2564 2565 2566 2567 2568
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2569
		goto out_free_mq_map;
2570

2571 2572 2573
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2574
	return 0;
2575 2576 2577 2578 2579

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2580 2581
	kfree(set->tags);
	set->tags = NULL;
2582
	return ret;
2583 2584 2585 2586 2587 2588 2589
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2590 2591
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2592

2593 2594 2595
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2596
	kfree(set->tags);
2597
	set->tags = NULL;
2598 2599 2600
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2601 2602 2603 2604 2605 2606
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2607
	if (!set)
2608 2609
		return -EINVAL;

2610 2611
	blk_mq_freeze_queue(q);

2612 2613
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2614 2615
		if (!hctx->tags)
			continue;
2616 2617 2618 2619
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2620 2621 2622 2623 2624 2625 2626 2627
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2628 2629 2630 2631 2632 2633 2634
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2635 2636
	blk_mq_unfreeze_queue(q);

2637 2638 2639
	return ret;
}

2640 2641
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2642 2643 2644
{
	struct request_queue *q;

2645 2646
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2656
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2657 2658 2659 2660 2661 2662 2663 2664
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2665 2666 2667 2668 2669 2670 2671

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2672 2673
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2700
	int bucket;
2701

2702 2703 2704 2705
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2706 2707
}

2708 2709 2710 2711 2712
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2713
	int bucket;
2714 2715 2716 2717 2718

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2719
	if (!blk_poll_stats_enable(q))
2720 2721 2722 2723 2724 2725 2726 2727
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2728 2729
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2730
	 */
2731 2732 2733 2734 2735 2736
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2737 2738 2739 2740

	return ret;
}

2741
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2742
				     struct blk_mq_hw_ctx *hctx,
2743 2744 2745 2746
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2747
	unsigned int nsecs;
2748 2749
	ktime_t kt;

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2768 2769 2770 2771 2772 2773 2774 2775
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2776
	kt = nsecs;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2799 2800 2801 2802 2803
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2804 2805 2806 2807 2808 2809 2810
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2811
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2812 2813
		return true;

J
Jens Axboe 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2857 2858
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2859
	else {
2860
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2861 2862 2863 2864 2865 2866 2867 2868 2869
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2870 2871 2872 2873 2874

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2885 2886
static int __init blk_mq_init(void)
{
2887 2888
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2889

2890 2891 2892
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2893 2894 2895
	return 0;
}
subsys_initcall(blk_mq_init);