blk-mq.c 72.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67 68
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129
		blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	blk_mq_freeze_queue_wait(q);
}
165 166 167 168 169 170 171 172 173

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
174
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175

176
void blk_mq_unfreeze_queue(struct request_queue *q)
177
{
178
	int freeze_depth;
179

180 181 182
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
183
		percpu_ref_reinit(&q->q_usage_counter);
184
		wake_up_all(&q->mq_freeze_wq);
185
	}
186
}
187
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

203
/**
204
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 206 207
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
208 209 210
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
211 212 213 214 215 216 217
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

218
	blk_mq_quiesce_queue_nowait(q);
219

220 221
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
222
			synchronize_srcu(hctx->queue_rq_srcu);
223 224 225 226 227 228 229 230
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

231 232 233 234 235 236 237 238 239
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
240 241 242
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
243
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244
	spin_unlock_irqrestore(q->queue_lock, flags);
245

246 247
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
248 249 250
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

251 252 253 254 255 256 257 258
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
259 260 261 262 263 264 265

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
266 267
}

268 269 270 271 272 273
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

274 275
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
276
{
277 278 279
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

280 281
	rq->rq_flags = 0;

282 283 284 285 286 287 288 289 290 291 292 293 294
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

295 296
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
297 298
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
299
	rq->cmd_flags = op;
300
	if (blk_queue_io_stat(data->q))
301
		rq->rq_flags |= RQF_IO_STAT;
302 303 304 305 306 307
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
308
	rq->start_time = jiffies;
309 310
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
311
	set_start_time_ns(rq);
312 313 314 315 316 317 318 319 320 321 322
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
323 324
	rq->timeout = 0;

325 326 327 328
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

329 330
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
331 332
}

333 334 335 336 337 338
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
339
	unsigned int tag;
340
	bool put_ctx_on_error = false;
341 342 343

	blk_queue_enter_live(q);
	data->q = q;
344 345 346 347
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
348 349
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
350 351
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
352 353 354 355 356 357 358 359

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
360 361
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
362 363
	}

364 365
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
366 367
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
368 369
			data->ctx = NULL;
		}
370 371
		blk_queue_exit(q);
		return NULL;
372 373
	}

374
	rq = blk_mq_rq_ctx_init(data, tag, op);
375 376
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
377
		if (e && e->type->ops.mq.prepare_request) {
378 379 380
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

381 382
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
383
		}
384 385 386
	}
	data->hctx->queued++;
	return rq;
387 388
}

389
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
390
		unsigned int flags)
391
{
392
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
393
	struct request *rq;
394
	int ret;
395

396
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
397 398
	if (ret)
		return ERR_PTR(ret);
399

400
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
401
	blk_queue_exit(q);
402

403
	if (!rq)
404
		return ERR_PTR(-EWOULDBLOCK);
405

406 407
	blk_mq_put_ctx(alloc_data.ctx);

408 409 410
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
411 412
	return rq;
}
413
EXPORT_SYMBOL(blk_mq_alloc_request);
414

415 416
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
417
{
418
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
419
	struct request *rq;
420
	unsigned int cpu;
M
Ming Lin 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

439 440 441 442
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
443 444 445 446
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
447
	}
448 449
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
450

451
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
452
	blk_queue_exit(q);
453

454 455 456 457
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
458 459 460
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

461
void blk_mq_free_request(struct request *rq)
462 463
{
	struct request_queue *q = rq->q;
464 465 466 467 468
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

469
	if (rq->rq_flags & RQF_ELVPRIV) {
470 471 472 473 474 475 476
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
477

478
	ctx->rq_completed[rq_is_sync(rq)]++;
479
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
480
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
481

482 483 484
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
485
	wbt_done(q->rq_wb, &rq->issue_stat);
486

S
Shaohua Li 已提交
487 488 489
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

490
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
491
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
492 493 494
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
495
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496
	blk_mq_sched_restart(hctx);
497
	blk_queue_exit(q);
498
}
J
Jens Axboe 已提交
499
EXPORT_SYMBOL_GPL(blk_mq_free_request);
500

501
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
502
{
M
Ming Lei 已提交
503 504
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
505
	if (rq->end_io) {
J
Jens Axboe 已提交
506
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
507
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
508 509 510
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
511
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
512
	}
513
}
514
EXPORT_SYMBOL(__blk_mq_end_request);
515

516
void blk_mq_end_request(struct request *rq, blk_status_t error)
517 518 519
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
520
	__blk_mq_end_request(rq, error);
521
}
522
EXPORT_SYMBOL(blk_mq_end_request);
523

524
static void __blk_mq_complete_request_remote(void *data)
525
{
526
	struct request *rq = data;
527

528
	rq->q->softirq_done_fn(rq);
529 530
}

531
static void __blk_mq_complete_request(struct request *rq)
532 533
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
534
	bool shared = false;
535 536
	int cpu;

537 538 539 540 541 542 543
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
544
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 546 547
		rq->q->softirq_done_fn(rq);
		return;
	}
548 549

	cpu = get_cpu();
C
Christoph Hellwig 已提交
550 551 552 553
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554
		rq->csd.func = __blk_mq_complete_request_remote;
555 556
		rq->csd.info = rq;
		rq->csd.flags = 0;
557
		smp_call_function_single_async(ctx->cpu, &rq->csd);
558
	} else {
559
		rq->q->softirq_done_fn(rq);
560
	}
561 562
	put_cpu();
}
563 564 565 566 567 568 569 570 571

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
572
void blk_mq_complete_request(struct request *rq)
573
{
574 575 576
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
577
		return;
578
	if (!blk_mark_rq_complete(rq))
579
		__blk_mq_complete_request(rq);
580 581
}
EXPORT_SYMBOL(blk_mq_complete_request);
582

583 584 585 586 587 588
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

589
void blk_mq_start_request(struct request *rq)
590 591 592
{
	struct request_queue *q = rq->q;

593 594
	blk_mq_sched_started_request(rq);

595 596
	trace_block_rq_issue(q, rq);

597
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
598
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
599
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
600
		wbt_issue(q->rq_wb, &rq->issue_stat);
601 602
	}

603
	blk_add_timer(rq);
604

605
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
606

607 608 609 610 611
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
612 613 614 615
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
616
	 */
617 618 619 620 621 622 623 624 625 626 627 628
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
629
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
630
	}
631 632 633 634 635 636 637 638 639

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
640
}
641
EXPORT_SYMBOL(blk_mq_start_request);
642

643 644
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
645
 * flag isn't set yet, so there may be race with timeout handler,
646 647 648 649 650 651
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
652
static void __blk_mq_requeue_request(struct request *rq)
653 654 655 656
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
657
	wbt_requeue(q->rq_wb, &rq->issue_stat);
658
	blk_mq_sched_requeue_request(rq);
659

660 661 662 663
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
664 665
}

666
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
667 668 669 670
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
671
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
672 673 674
}
EXPORT_SYMBOL(blk_mq_requeue_request);

675 676 677
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
678
		container_of(work, struct request_queue, requeue_work.work);
679 680 681
	LIST_HEAD(rq_list);
	struct request *rq, *next;

682
	spin_lock_irq(&q->requeue_lock);
683
	list_splice_init(&q->requeue_list, &rq_list);
684
	spin_unlock_irq(&q->requeue_lock);
685 686

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
687
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
688 689
			continue;

690
		rq->rq_flags &= ~RQF_SOFTBARRIER;
691
		list_del_init(&rq->queuelist);
692
		blk_mq_sched_insert_request(rq, true, false, false, true);
693 694 695 696 697
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
698
		blk_mq_sched_insert_request(rq, false, false, false, true);
699 700
	}

701
	blk_mq_run_hw_queues(q, false);
702 703
}

704 705
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
706 707 708 709 710 711 712 713
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
714
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
715 716 717

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
718
		rq->rq_flags |= RQF_SOFTBARRIER;
719 720 721 722 723
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
724 725 726

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
727 728 729 730 731
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
732
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
733 734 735
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

736 737 738
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
739 740
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
741 742 743
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

744 745
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
746 747
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
748
		return tags->rqs[tag];
749
	}
750 751

	return NULL;
752 753 754
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

755
struct blk_mq_timeout_data {
756 757
	unsigned long next;
	unsigned int next_set;
758 759
};

760
void blk_mq_rq_timed_out(struct request *req, bool reserved)
761
{
J
Jens Axboe 已提交
762
	const struct blk_mq_ops *ops = req->q->mq_ops;
763
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
764 765 766 767 768 769 770

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
771
	 * both flags will get cleared. So check here again, and ignore
772 773
	 * a timeout event with a request that isn't active.
	 */
774 775
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
776

777
	if (ops->timeout)
778
		ret = ops->timeout(req, reserved);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
794
}
795

796 797 798 799
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
800
	unsigned long deadline;
801

802
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
803
		return;
804

805 806 807 808 809 810 811 812
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

813 814 815 816 817 818 819 820 821 822 823 824 825
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
826 827 828 829 830 831 832 833 834 835
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
836
			blk_mq_rq_timed_out(rq, reserved);
837 838 839
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
840 841
		data->next_set = 1;
	}
842 843
}

844
static void blk_mq_timeout_work(struct work_struct *work)
845
{
846 847
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
848 849 850 851 852
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
853

854 855 856 857 858 859 860 861 862
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
863
	 * blk_freeze_queue_start, and the moment the last request is
864 865 866 867
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
868 869
		return;

870
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
871

872 873 874
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
875
	} else {
876 877
		struct blk_mq_hw_ctx *hctx;

878 879 880 881 882
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
883
	}
884
	blk_queue_exit(q);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

905 906 907 908
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
909
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910
{
911 912 913 914
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
915

916
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917
}
918
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

959 960 961 962
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
963

964
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 966
}

967 968
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
969 970 971 972 973 974 975
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

976 977
	might_sleep_if(wait);

978 979
	if (rq->tag != -1)
		goto done;
980

981 982 983
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

984 985
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
986 987 988 989
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
990 991 992
		data.hctx->tags->rqs[rq->tag] = rq;
	}

993 994 995 996
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
997 998
}

999 1000
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

1055
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1056 1057 1058 1059 1060 1061
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1062
	list_del(&wait->entry);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1093 1094
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
		bool got_budget)
1095
{
1096
	struct blk_mq_hw_ctx *hctx;
1097
	struct request *rq;
1098
	int errors, queued;
1099

1100 1101 1102
	if (list_empty(list))
		return false;

1103 1104
	WARN_ON(!list_is_singular(list) && got_budget);

1105 1106 1107
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1108
	errors = queued = 0;
1109
	do {
1110
		struct blk_mq_queue_data bd;
1111
		blk_status_t ret;
1112

1113
		rq = list_first_entry(list, struct request, queuelist);
1114 1115 1116
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1117 1118

			/*
1119 1120
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1121
			 */
1122 1123 1124
			if (!blk_mq_dispatch_wait_add(hctx)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1125
				break;
1126
			}
1127 1128 1129 1130 1131 1132

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
1133 1134 1135 1136 1137 1138 1139
			if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
				break;
			}
		}

1140 1141
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;
1142

1143 1144
		list_del_init(&rq->queuelist);

1145
		bd.rq = rq;
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1159 1160

		ret = q->mq_ops->queue_rq(hctx, &bd);
1161
		if (ret == BLK_STS_RESOURCE) {
1162
			blk_mq_put_driver_tag_hctx(hctx, rq);
1163
			list_add(&rq->queuelist, list);
1164
			__blk_mq_requeue_request(rq);
1165
			break;
1166 1167 1168
		}

		if (unlikely(ret != BLK_STS_OK)) {
1169
			errors++;
1170
			blk_mq_end_request(rq, BLK_STS_IOERR);
1171
			continue;
1172 1173
		}

1174
		queued++;
1175
	} while (!list_empty(list));
1176

1177
	hctx->dispatched[queued_to_index(queued)]++;
1178 1179 1180 1181 1182

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1183
	if (!list_empty(list)) {
1184
		/*
1185 1186
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1187 1188 1189 1190
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1191
		spin_lock(&hctx->lock);
1192
		list_splice_init(list, &hctx->dispatch);
1193
		spin_unlock(&hctx->lock);
1194

1195
		/*
1196 1197 1198
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1199
		 *
1200 1201 1202 1203
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1204
		 *
1205 1206 1207 1208 1209 1210 1211
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1212
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1213
		 *   and dm-rq.
1214
		 */
1215 1216
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1217
			blk_mq_run_hw_queue(hctx, true);
1218
	}
1219

1220
	return (queued + errors) != 0;
1221 1222
}

1223 1224 1225 1226
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1227 1228 1229 1230
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1231 1232 1233
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1234 1235 1236 1237 1238 1239
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1240 1241
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1242
		blk_mq_sched_dispatch_requests(hctx);
1243 1244
		rcu_read_unlock();
	} else {
1245 1246
		might_sleep();

1247
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1248
		blk_mq_sched_dispatch_requests(hctx);
1249
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1250 1251 1252
	}
}

1253 1254 1255 1256 1257 1258 1259 1260
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1261 1262
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1263 1264

	if (--hctx->next_cpu_batch <= 0) {
1265
		int next_cpu;
1266 1267 1268 1269 1270 1271 1272 1273 1274

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1275
	return hctx->next_cpu;
1276 1277
}

1278 1279
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1280
{
1281 1282 1283 1284
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1285 1286
		return;

1287
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1288 1289
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1290
			__blk_mq_run_hw_queue(hctx);
1291
			put_cpu();
1292 1293
			return;
		}
1294

1295
		put_cpu();
1296
	}
1297

1298 1299 1300
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1312
}
O
Omar Sandoval 已提交
1313
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1314

1315
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1316 1317 1318 1319 1320
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1321
		if (!blk_mq_hctx_has_pending(hctx) ||
1322
		    blk_mq_hctx_stopped(hctx))
1323 1324
			continue;

1325
		blk_mq_run_hw_queue(hctx, async);
1326 1327
	}
}
1328
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1350 1351 1352
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1353
 * BLK_STS_RESOURCE is usually returned.
1354 1355 1356 1357 1358
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1359 1360
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1361
	cancel_delayed_work(&hctx->run_work);
1362

1363
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1364
}
1365
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1366

1367 1368 1369
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1370
 * BLK_STS_RESOURCE is usually returned.
1371 1372 1373 1374 1375
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1376 1377
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1378 1379 1380 1381 1382
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1383 1384 1385
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1386 1387 1388
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1389

1390
	blk_mq_run_hw_queue(hctx, false);
1391 1392 1393
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1414
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1415 1416 1417 1418
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1419 1420
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1421 1422 1423
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1424
static void blk_mq_run_work_fn(struct work_struct *work)
1425 1426 1427
{
	struct blk_mq_hw_ctx *hctx;

1428
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1429

1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1438

1439 1440 1441
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1442 1443 1444 1445

	__blk_mq_run_hw_queue(hctx);
}

1446 1447 1448

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1449
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1450
		return;
1451

1452 1453 1454 1455 1456
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1457
	blk_mq_stop_hw_queue(hctx);
1458 1459 1460 1461
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1462 1463 1464
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1465 1466 1467
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1468
{
J
Jens Axboe 已提交
1469 1470
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1471 1472
	lockdep_assert_held(&ctx->lock);

1473 1474
	trace_block_rq_insert(hctx->queue, rq);

1475 1476 1477 1478
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1479
}
1480

1481 1482
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1483 1484 1485
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1486 1487
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1488
	__blk_mq_insert_req_list(hctx, rq, at_head);
1489 1490 1491
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
void blk_mq_request_bypass_insert(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, false);
}

1508 1509
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1521
		BUG_ON(rq->mq_ctx != ctx);
1522
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1523
		__blk_mq_insert_req_list(hctx, rq, false);
1524
	}
1525
	blk_mq_hctx_mark_pending(hctx, ctx);
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1562 1563 1564 1565
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1582 1583 1584
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1585 1586 1587 1588 1589
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1590
	blk_init_request_from_bio(rq, bio);
1591

S
Shaohua Li 已提交
1592 1593
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1594
	blk_account_io_start(rq, true);
1595 1596
}

1597 1598 1599 1600 1601 1602 1603
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1604
}
1605

1606 1607
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1608 1609 1610 1611
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1612 1613
}

M
Ming Lei 已提交
1614 1615 1616
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1617 1618 1619 1620
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1621
		.last = true,
1622
	};
1623
	blk_qc_t new_cookie;
1624
	blk_status_t ret;
M
Ming Lei 已提交
1625 1626
	bool run_queue = true;

1627 1628
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1629 1630 1631
		run_queue = false;
		goto insert;
	}
1632

1633
	if (q->elevator)
1634 1635
		goto insert;

M
Ming Lei 已提交
1636
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1637 1638
		goto insert;

1639
	if (!blk_mq_get_dispatch_budget(hctx)) {
1640 1641
		blk_mq_put_driver_tag(rq);
		goto insert;
1642
	}
1643

1644 1645
	new_cookie = request_to_qc_t(hctx, rq);

1646 1647 1648 1649 1650 1651
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1652 1653
	switch (ret) {
	case BLK_STS_OK:
1654
		*cookie = new_cookie;
1655
		return;
1656 1657 1658 1659
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1660
		*cookie = BLK_QC_T_NONE;
1661
		blk_mq_end_request(rq, ret);
1662
		return;
1663
	}
1664

1665
insert:
M
Ming Lei 已提交
1666
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1667 1668
}

1669 1670 1671 1672 1673
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1674
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1675 1676
		rcu_read_unlock();
	} else {
1677 1678 1679 1680
		unsigned int srcu_idx;

		might_sleep();

1681
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1682
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1683
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1684 1685 1686
	}
}

1687
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1688
{
1689
	const int is_sync = op_is_sync(bio->bi_opf);
1690
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1691
	struct blk_mq_alloc_data data = { .flags = 0 };
1692
	struct request *rq;
1693
	unsigned int request_count = 0;
1694
	struct blk_plug *plug;
1695
	struct request *same_queue_rq = NULL;
1696
	blk_qc_t cookie;
J
Jens Axboe 已提交
1697
	unsigned int wb_acct;
1698 1699 1700

	blk_queue_bounce(q, &bio);

1701
	blk_queue_split(q, &bio);
1702

1703
	if (!bio_integrity_prep(bio))
1704
		return BLK_QC_T_NONE;
1705

1706 1707 1708
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1709

1710 1711 1712
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1713 1714
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1715 1716
	trace_block_getrq(q, bio, bio->bi_opf);

1717
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1718 1719
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1720 1721
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1722
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1723 1724 1725
	}

	wbt_track(&rq->issue_stat, wb_acct);
1726

1727
	cookie = request_to_qc_t(data.hctx, rq);
1728

1729
	plug = current->plug;
1730
	if (unlikely(is_flush_fua)) {
1731
		blk_mq_put_ctx(data.ctx);
1732
		blk_mq_bio_to_request(rq, bio);
1733 1734 1735
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1736
		} else {
1737 1738
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1739
		}
1740
	} else if (plug && q->nr_hw_queues == 1) {
1741 1742
		struct request *last = NULL;

1743
		blk_mq_put_ctx(data.ctx);
1744
		blk_mq_bio_to_request(rq, bio);
1745 1746 1747 1748 1749 1750 1751

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1752 1753 1754
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1755
		if (!request_count)
1756
			trace_block_plug(q);
1757 1758
		else
			last = list_entry_rq(plug->mq_list.prev);
1759

1760 1761
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1762 1763
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1764
		}
1765

1766
		list_add_tail(&rq->queuelist, &plug->mq_list);
1767
	} else if (plug && !blk_queue_nomerges(q)) {
1768
		blk_mq_bio_to_request(rq, bio);
1769 1770

		/*
1771
		 * We do limited plugging. If the bio can be merged, do that.
1772 1773
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1774 1775
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1776
		 */
1777 1778 1779 1780 1781 1782
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1783 1784
		blk_mq_put_ctx(data.ctx);

1785 1786 1787
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1788 1789
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1790
		}
1791
	} else if (q->nr_hw_queues > 1 && is_sync) {
1792
		blk_mq_put_ctx(data.ctx);
1793 1794
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1795
	} else if (q->elevator) {
1796
		blk_mq_put_ctx(data.ctx);
1797
		blk_mq_bio_to_request(rq, bio);
1798
		blk_mq_sched_insert_request(rq, false, true, true, true);
1799
	} else {
1800
		blk_mq_put_ctx(data.ctx);
1801 1802
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1803
		blk_mq_run_hw_queue(data.hctx, true);
1804
	}
1805

1806
	return cookie;
1807 1808
}

1809 1810
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1811
{
1812
	struct page *page;
1813

1814
	if (tags->rqs && set->ops->exit_request) {
1815
		int i;
1816

1817
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1818 1819 1820
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1821
				continue;
1822
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1823
			tags->static_rqs[i] = NULL;
1824
		}
1825 1826
	}

1827 1828
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1829
		list_del_init(&page->lru);
1830 1831 1832 1833 1834
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1835 1836
		__free_pages(page, page->private);
	}
1837
}
1838

1839 1840
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1841
	kfree(tags->rqs);
1842
	tags->rqs = NULL;
J
Jens Axboe 已提交
1843 1844
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1845

1846
	blk_mq_free_tags(tags);
1847 1848
}

1849 1850 1851 1852
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1853
{
1854
	struct blk_mq_tags *tags;
1855
	int node;
1856

1857 1858 1859 1860 1861
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1862
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1863 1864
	if (!tags)
		return NULL;
1865

1866
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1867
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1868
				 node);
1869 1870 1871 1872
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1873

J
Jens Axboe 已提交
1874 1875
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1876
				 node);
J
Jens Axboe 已提交
1877 1878 1879 1880 1881 1882
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1896 1897 1898 1899 1900
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1901 1902 1903

	INIT_LIST_HEAD(&tags->page_list);

1904 1905 1906 1907
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1908
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1909
				cache_line_size());
1910
	left = rq_size * depth;
1911

1912
	for (i = 0; i < depth; ) {
1913 1914 1915 1916 1917
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1918
		while (this_order && left < order_to_size(this_order - 1))
1919 1920 1921
			this_order--;

		do {
1922
			page = alloc_pages_node(node,
1923
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1924
				this_order);
1925 1926 1927 1928 1929 1930 1931 1932 1933
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1934
			goto fail;
1935 1936

		page->private = this_order;
1937
		list_add_tail(&page->lru, &tags->page_list);
1938 1939

		p = page_address(page);
1940 1941 1942 1943
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1944
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1945
		entries_per_page = order_to_size(this_order) / rq_size;
1946
		to_do = min(entries_per_page, depth - i);
1947 1948
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1949 1950 1951
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1952
			if (set->ops->init_request) {
1953
				if (set->ops->init_request(set, rq, hctx_idx,
1954
						node)) {
J
Jens Axboe 已提交
1955
					tags->static_rqs[i] = NULL;
1956
					goto fail;
1957
				}
1958 1959
			}

1960 1961 1962 1963
			p += rq_size;
			i++;
		}
	}
1964
	return 0;
1965

1966
fail:
1967 1968
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1969 1970
}

J
Jens Axboe 已提交
1971 1972 1973 1974 1975
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1976
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1977
{
1978
	struct blk_mq_hw_ctx *hctx;
1979 1980 1981
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1982
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1983
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1984 1985 1986 1987 1988 1989 1990 1991 1992

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1993
		return 0;
1994

J
Jens Axboe 已提交
1995 1996 1997
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1998 1999

	blk_mq_run_hw_queue(hctx, true);
2000
	return 0;
2001 2002
}

2003
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2004
{
2005 2006
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2007 2008
}

2009
/* hctx->ctxs will be freed in queue's release handler */
2010 2011 2012 2013
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2014 2015
	blk_mq_debugfs_unregister_hctx(hctx);

2016 2017
	blk_mq_tag_idle(hctx);

2018
	if (set->ops->exit_request)
2019
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2020

2021 2022
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2023 2024 2025
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2026
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2027
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2028

2029
	blk_mq_remove_cpuhp(hctx);
2030
	blk_free_flush_queue(hctx->fq);
2031
	sbitmap_free(&hctx->ctx_map);
2032 2033
}

M
Ming Lei 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2043
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2044 2045 2046
	}
}

2047 2048 2049
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2050
{
2051 2052 2053 2054 2055 2056
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2057
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2058 2059 2060
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2061
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2062

2063
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2064 2065

	hctx->tags = set->tags[hctx_idx];
2066 2067

	/*
2068 2069
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2070
	 */
2071 2072 2073 2074
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2075

2076 2077
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2078
		goto free_ctxs;
2079

2080
	hctx->nr_ctx = 0;
2081

2082 2083 2084
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2085

2086 2087 2088
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2089 2090
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2091
		goto sched_exit_hctx;
2092

2093
	if (set->ops->init_request &&
2094 2095
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2096
		goto free_fq;
2097

2098
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2099
		init_srcu_struct(hctx->queue_rq_srcu);
2100

2101 2102
	blk_mq_debugfs_register_hctx(q, hctx);

2103
	return 0;
2104

2105 2106
 free_fq:
	kfree(hctx->fq);
2107 2108
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2109 2110 2111
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2112
 free_bitmap:
2113
	sbitmap_free(&hctx->ctx_map);
2114 2115 2116
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2117
	blk_mq_remove_cpuhp(hctx);
2118 2119
	return -1;
}
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2135 2136
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2137 2138
			continue;

C
Christoph Hellwig 已提交
2139
		hctx = blk_mq_map_queue(q, i);
2140

2141 2142 2143 2144 2145
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2146
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2147 2148 2149
	}
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2172 2173 2174 2175 2176
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2177 2178
}

2179
static void blk_mq_map_swqueue(struct request_queue *q)
2180
{
2181
	unsigned int i, hctx_idx;
2182 2183
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2184
	struct blk_mq_tag_set *set = q->tag_set;
2185

2186 2187 2188 2189 2190
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2191
	queue_for_each_hw_ctx(q, hctx, i) {
2192
		cpumask_clear(hctx->cpumask);
2193 2194 2195 2196
		hctx->nr_ctx = 0;
	}

	/*
2197 2198 2199
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2200
	 */
2201
	for_each_present_cpu(i) {
2202 2203
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2204 2205
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2206 2207 2208 2209 2210 2211
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2212
			q->mq_map[i] = 0;
2213 2214
		}

2215
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2216
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2217

2218
		cpumask_set_cpu(i, hctx->cpumask);
2219 2220 2221
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2222

2223 2224
	mutex_unlock(&q->sysfs_lock);

2225
	queue_for_each_hw_ctx(q, hctx, i) {
2226
		/*
2227 2228
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2229 2230
		 */
		if (!hctx->nr_ctx) {
2231 2232 2233 2234
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2235 2236 2237
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2238
			hctx->tags = NULL;
2239 2240 2241
			continue;
		}

M
Ming Lei 已提交
2242 2243 2244
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2245 2246 2247 2248 2249
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2250
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2251

2252 2253 2254
		/*
		 * Initialize batch roundrobin counts
		 */
2255 2256 2257
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2258 2259
}

2260 2261 2262 2263
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2264
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2265 2266 2267 2268
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2269
	queue_for_each_hw_ctx(q, hctx, i) {
2270 2271 2272
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2273
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2274 2275 2276
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2277
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2278
		}
2279 2280 2281
	}
}

2282 2283
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2284 2285
{
	struct request_queue *q;
2286

2287 2288
	lockdep_assert_held(&set->tag_list_lock);

2289 2290
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2291
		queue_set_hctx_shared(q, shared);
2292 2293 2294 2295 2296 2297 2298 2299 2300
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2301 2302
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2303 2304 2305 2306 2307 2308
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2309
	mutex_unlock(&set->tag_list_lock);
2310 2311

	synchronize_rcu();
2312 2313 2314 2315 2316 2317 2318 2319
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2320 2321 2322 2323 2324 2325 2326 2327 2328

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2329
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2330

2331 2332 2333
	mutex_unlock(&set->tag_list_lock);
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2346 2347 2348
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2349
		kobject_put(&hctx->kobj);
2350
	}
2351

2352 2353
	q->mq_map = NULL;

2354 2355
	kfree(q->queue_hw_ctx);

2356 2357 2358 2359 2360 2361
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2362 2363 2364
	free_percpu(q->queue_ctx);
}

2365
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2395 2396
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2397
{
K
Keith Busch 已提交
2398 2399
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2400

K
Keith Busch 已提交
2401
	blk_mq_sysfs_unregister(q);
2402
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2403
		int node;
2404

K
Keith Busch 已提交
2405 2406 2407 2408
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2409
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2410
					GFP_KERNEL, node);
2411
		if (!hctxs[i])
K
Keith Busch 已提交
2412
			break;
2413

2414
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2415 2416 2417 2418 2419
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2420

2421
		atomic_set(&hctxs[i]->nr_active, 0);
2422
		hctxs[i]->numa_node = node;
2423
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2424 2425 2426 2427 2428 2429 2430 2431

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2432
	}
K
Keith Busch 已提交
2433 2434 2435 2436
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2437 2438
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2452 2453 2454
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2455
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2456 2457
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2458 2459 2460
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2461 2462
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2463
		goto err_exit;
K
Keith Busch 已提交
2464

2465 2466 2467
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2468 2469 2470 2471 2472
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2473
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2474 2475 2476 2477

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2478

2479
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2480
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2481 2482 2483

	q->nr_queues = nr_cpu_ids;

2484
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2485

2486 2487 2488
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2489 2490
	q->sg_reserved_size = INT_MAX;

2491
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2492 2493 2494
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2495
	blk_queue_make_request(q, blk_mq_make_request);
2496 2497
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2498

2499 2500 2501 2502 2503
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2504 2505 2506 2507 2508
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2509 2510
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2511

2512
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2513
	blk_mq_add_queue_tag_set(set, q);
2514
	blk_mq_map_swqueue(q);
2515

2516 2517 2518 2519 2520 2521 2522 2523
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2524
	return q;
2525

2526
err_hctxs:
K
Keith Busch 已提交
2527
	kfree(q->queue_hw_ctx);
2528
err_percpu:
K
Keith Busch 已提交
2529
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2530 2531
err_exit:
	q->mq_ops = NULL;
2532 2533
	return ERR_PTR(-ENOMEM);
}
2534
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2535 2536 2537

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2538
	struct blk_mq_tag_set	*set = q->tag_set;
2539

2540
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2541
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2542 2543 2544
}

/* Basically redo blk_mq_init_queue with queue frozen */
2545
static void blk_mq_queue_reinit(struct request_queue *q)
2546
{
2547
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2548

2549
	blk_mq_debugfs_unregister_hctxs(q);
2550 2551
	blk_mq_sysfs_unregister(q);

2552 2553 2554 2555 2556 2557
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2558
	blk_mq_map_swqueue(q);
2559

2560
	blk_mq_sysfs_register(q);
2561
	blk_mq_debugfs_register_hctxs(q);
2562 2563
}

2564 2565 2566 2567
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2568 2569
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2570 2571 2572 2573 2574 2575
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2576
		blk_mq_free_rq_map(set->tags[i]);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2616 2617 2618 2619 2620 2621 2622 2623
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2624 2625 2626 2627 2628 2629
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2630 2631
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2632 2633
	int ret;

B
Bart Van Assche 已提交
2634 2635
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2636 2637
	if (!set->nr_hw_queues)
		return -EINVAL;
2638
	if (!set->queue_depth)
2639 2640 2641 2642
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2643
	if (!set->ops->queue_rq)
2644 2645
		return -EINVAL;

2646 2647 2648
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2649 2650 2651 2652 2653
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2654

2655 2656 2657 2658 2659 2660 2661 2662 2663
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2664 2665 2666 2667 2668
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2669

K
Keith Busch 已提交
2670
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2671 2672
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2673
		return -ENOMEM;
2674

2675 2676 2677
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2678 2679 2680
	if (!set->mq_map)
		goto out_free_tags;

2681
	ret = blk_mq_update_queue_map(set);
2682 2683 2684 2685 2686
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2687
		goto out_free_mq_map;
2688

2689 2690 2691
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2692
	return 0;
2693 2694 2695 2696 2697

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2698 2699
	kfree(set->tags);
	set->tags = NULL;
2700
	return ret;
2701 2702 2703 2704 2705 2706 2707
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2708 2709
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2710

2711 2712 2713
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2714
	kfree(set->tags);
2715
	set->tags = NULL;
2716 2717 2718
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2719 2720 2721 2722 2723 2724
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2725
	if (!set)
2726 2727
		return -EINVAL;

2728 2729
	blk_mq_freeze_queue(q);

2730 2731
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2732 2733
		if (!hctx->tags)
			continue;
2734 2735 2736 2737
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2738
		if (!hctx->sched_tags) {
2739
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2740 2741 2742 2743 2744
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2745 2746 2747 2748 2749 2750 2751
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2752 2753
	blk_mq_unfreeze_queue(q);

2754 2755 2756
	return ret;
}

2757 2758
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2759 2760 2761
{
	struct request_queue *q;

2762 2763
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2773
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2774 2775
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2776
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2777 2778 2779 2780 2781
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2782 2783 2784 2785 2786 2787 2788

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2789 2790
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2817
	int bucket;
2818

2819 2820 2821 2822
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2823 2824
}

2825 2826 2827 2828 2829
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2830
	int bucket;
2831 2832 2833 2834 2835

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2836
	if (!blk_poll_stats_enable(q))
2837 2838 2839 2840 2841 2842 2843 2844
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2845 2846
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2847
	 */
2848 2849 2850 2851 2852 2853
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2854 2855 2856 2857

	return ret;
}

2858
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2859
				     struct blk_mq_hw_ctx *hctx,
2860 2861 2862 2863
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2864
	unsigned int nsecs;
2865 2866
	ktime_t kt;

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2885 2886 2887 2888 2889 2890 2891 2892
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2893
	kt = nsecs;
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2916 2917 2918 2919 2920
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2921 2922 2923 2924 2925 2926 2927
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2928
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2929 2930
		return true;

J
Jens Axboe 已提交
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2959
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
2960 2961 2962 2963
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2964
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
2965 2966 2967
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2968 2969
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2970
	else {
2971
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2972 2973 2974 2975 2976 2977 2978 2979 2980
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2981 2982 2983 2984

	return __blk_mq_poll(hctx, rq);
}

2985 2986
static int __init blk_mq_init(void)
{
2987 2988 2989 2990 2991 2992
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

2993 2994
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2995 2996 2997
	return 0;
}
subsys_initcall(blk_mq_init);