blk-mq.c 58.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

46
	for (i = 0; i < hctx->ctx_map.size; i++)
47
		if (hctx->ctx_map.map[i].word)
48 49 50 51 52
			return true;

	return false;
}

53 54 55 56 57 58 59 60 61
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

62 63 64 65 66 67
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
68 69 70 71 72 73 74 75 76 77 78 79
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 81
}

82
void blk_mq_freeze_queue_start(struct request_queue *q)
83
{
84
	int freeze_depth;
85

86 87
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
88
		percpu_ref_kill(&q->q_usage_counter);
89
		blk_mq_run_hw_queues(q, false);
90
	}
91
}
92
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
93 94 95

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
96
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
97 98
}

99 100 101 102
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
103
void blk_freeze_queue(struct request_queue *q)
104
{
105 106 107 108 109 110 111
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
112 113 114
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
115 116 117 118 119 120 121 122 123

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
124
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
125

126
void blk_mq_unfreeze_queue(struct request_queue *q)
127
{
128
	int freeze_depth;
129

130 131 132
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
133
		percpu_ref_reinit(&q->q_usage_counter);
134
		wake_up_all(&q->mq_freeze_wq);
135
	}
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
138

139 140 141 142 143 144 145 146
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
147 148 149 150 151 152 153

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
154 155
}

156 157 158 159 160 161
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

162
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
163 164
			       struct request *rq, int op,
			       unsigned int op_flags)
165
{
166
	if (blk_queue_io_stat(q))
167
		op_flags |= REQ_IO_STAT;
168

169 170 171
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
172
	rq->mq_ctx = ctx;
173
	req_set_op_attrs(rq, op, op_flags);
174 175 176 177 178 179
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
180
	rq->start_time = jiffies;
181 182
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
183
	set_start_time_ns(rq);
184 185 186 187 188 189 190 191 192 193
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

194 195
	rq->cmd = rq->__cmd;

196 197 198 199 200 201
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
202 203
	rq->timeout = 0;

204 205 206 207
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

208
	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
209 210
}

211
static struct request *
212
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
213 214 215 216
{
	struct request *rq;
	unsigned int tag;

217
	tag = blk_mq_get_tag(data);
218
	if (tag != BLK_MQ_TAG_FAIL) {
219
		rq = data->hctx->tags->rqs[tag];
220

221
		if (blk_mq_tag_busy(data->hctx)) {
222
			rq->cmd_flags = REQ_MQ_INFLIGHT;
223
			atomic_inc(&data->hctx->nr_active);
224 225 226
		}

		rq->tag = tag;
227
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
228 229 230 231 232 233
		return rq;
	}

	return NULL;
}

234 235
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
236
{
237 238
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
239
	struct request *rq;
240
	struct blk_mq_alloc_data alloc_data;
241
	int ret;
242

243
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
244 245
	if (ret)
		return ERR_PTR(ret);
246

247 248
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
249
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
250

251
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
252
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
253 254 255 256 257
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
258
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
259
		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
260
		ctx = alloc_data.ctx;
261 262
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
263
	if (!rq) {
264
		blk_queue_exit(q);
265
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
266
	}
267 268 269 270

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
271 272
	return rq;
}
273
EXPORT_SYMBOL(blk_mq_alloc_request);
274

M
Ming Lin 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

	hctx = q->queue_hw_ctx[hctx_idx];
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
	if (!rq) {
		blk_queue_exit(q);
		return ERR_PTR(-EWOULDBLOCK);
	}

	return rq;
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

314 315 316 317 318 319
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

320 321
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
322
	rq->cmd_flags = 0;
323

324
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
325
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
326
	blk_queue_exit(q);
327 328
}

329
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
330 331 332 333 334
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
335 336 337 338 339 340 341 342 343 344 345

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
346
}
J
Jens Axboe 已提交
347
EXPORT_SYMBOL_GPL(blk_mq_free_request);
348

349
inline void __blk_mq_end_request(struct request *rq, int error)
350
{
M
Ming Lei 已提交
351 352
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
353
	if (rq->end_io) {
354
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
355 356 357
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
358
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
359
	}
360
}
361
EXPORT_SYMBOL(__blk_mq_end_request);
362

363
void blk_mq_end_request(struct request *rq, int error)
364 365 366
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
367
	__blk_mq_end_request(rq, error);
368
}
369
EXPORT_SYMBOL(blk_mq_end_request);
370

371
static void __blk_mq_complete_request_remote(void *data)
372
{
373
	struct request *rq = data;
374

375
	rq->q->softirq_done_fn(rq);
376 377
}

378
static void blk_mq_ipi_complete_request(struct request *rq)
379 380
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
381
	bool shared = false;
382 383
	int cpu;

C
Christoph Hellwig 已提交
384
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
385 386 387
		rq->q->softirq_done_fn(rq);
		return;
	}
388 389

	cpu = get_cpu();
C
Christoph Hellwig 已提交
390 391 392 393
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
394
		rq->csd.func = __blk_mq_complete_request_remote;
395 396
		rq->csd.info = rq;
		rq->csd.flags = 0;
397
		smp_call_function_single_async(ctx->cpu, &rq->csd);
398
	} else {
399
		rq->q->softirq_done_fn(rq);
400
	}
401 402
	put_cpu();
}
403

404
static void __blk_mq_complete_request(struct request *rq)
405 406 407 408
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
409
		blk_mq_end_request(rq, rq->errors);
410 411 412 413
	else
		blk_mq_ipi_complete_request(rq);
}

414 415 416 417 418 419 420 421
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
422
void blk_mq_complete_request(struct request *rq, int error)
423
{
424 425 426
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
427
		return;
428 429
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
430
		__blk_mq_complete_request(rq);
431
	}
432 433
}
EXPORT_SYMBOL(blk_mq_complete_request);
434

435 436 437 438 439 440
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

441
void blk_mq_start_request(struct request *rq)
442 443 444 445 446
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
447
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
448 449
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
450

451
	blk_add_timer(rq);
452

453 454 455 456 457 458
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

459 460 461 462 463 464
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
465 466 467 468
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
469 470 471 472 473 474 475 476 477

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
478
}
479
EXPORT_SYMBOL(blk_mq_start_request);
480

481
static void __blk_mq_requeue_request(struct request *rq)
482 483 484 485
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
486

487 488 489 490
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
491 492
}

493 494 495 496 497
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
498
	blk_mq_add_to_requeue_list(rq, true);
499 500 501
}
EXPORT_SYMBOL(blk_mq_requeue_request);

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

529 530 531 532 533
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

558 559 560 561 562 563
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

564 565 566 567 568 569
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

590 591
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
592 593
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
594
		return tags->rqs[tag];
595
	}
596 597

	return NULL;
598 599 600
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

601
struct blk_mq_timeout_data {
602 603
	unsigned long next;
	unsigned int next_set;
604 605
};

606
void blk_mq_rq_timed_out(struct request *req, bool reserved)
607
{
608 609
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
610 611 612 613 614 615 616 617 618 619

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
620 621
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
622

623
	if (ops->timeout)
624
		ret = ops->timeout(req, reserved);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
640
}
641

642 643 644 645
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
646

647 648 649 650 651
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
652 653 654 655
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
656
		return;
657
	}
658

659 660
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
661
			blk_mq_rq_timed_out(rq, reserved);
662 663 664 665
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
666 667
}

668
static void blk_mq_timeout_work(struct work_struct *work)
669
{
670 671
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
672 673 674 675 676
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
677

678 679 680 681 682 683 684 685 686 687 688 689 690 691
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
692 693
		return;

694
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
695

696 697 698
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
699
	} else {
700 701
		struct blk_mq_hw_ctx *hctx;

702 703 704 705 706
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
707
	}
708
	blk_queue_exit(q);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

750 751 752 753 754 755 756 757 758
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

759
	for (i = 0; i < hctx->ctx_map.size; i++) {
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

784 785 786 787 788 789 790 791 792 793 794
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
795 796
	LIST_HEAD(driver_list);
	struct list_head *dptr;
797
	int queued;
798

799
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
800 801
		return;

802 803 804
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

805 806 807 808 809
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
810
	flush_busy_ctxs(hctx, &rq_list);
811 812 813 814 815 816 817 818 819 820 821 822

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

823 824 825 826 827 828
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

829 830 831
	/*
	 * Now process all the entries, sending them to the driver.
	 */
832
	queued = 0;
833
	while (!list_empty(&rq_list)) {
834
		struct blk_mq_queue_data bd;
835 836 837 838 839
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

840 841 842 843 844
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
845 846 847
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
848
			break;
849 850
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
851
			__blk_mq_requeue_request(rq);
852 853 854 855
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
856
			rq->errors = -EIO;
857
			blk_mq_end_request(rq, rq->errors);
858 859 860 861 862
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
863 864 865 866 867 868 869

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
885 886 887 888 889 890 891 892 893 894
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
895 896 897
	}
}

898 899 900 901 902 903 904 905
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
906 907
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
908 909

	if (--hctx->next_cpu_batch <= 0) {
910
		int cpu = hctx->next_cpu, next_cpu;
911 912 913 914 915 916 917

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
918 919

		return cpu;
920 921
	}

922
	return hctx->next_cpu;
923 924
}

925 926
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
927 928
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
929 930
		return;

931
	if (!async) {
932 933
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
934
			__blk_mq_run_hw_queue(hctx);
935
			put_cpu();
936 937
			return;
		}
938

939
		put_cpu();
940
	}
941

942
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
943 944
}

945
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
946 947 948 949 950 951 952
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
953
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
954 955
			continue;

956
		blk_mq_run_hw_queue(hctx, async);
957 958
	}
}
959
EXPORT_SYMBOL(blk_mq_run_hw_queues);
960 961 962

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
963
	cancel_work(&hctx->run_work);
964
	cancel_delayed_work(&hctx->delay_work);
965 966 967 968
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

969 970 971 972 973 974 975 976 977 978
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

979 980 981
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
982

983
	blk_mq_run_hw_queue(hctx, false);
984 985 986
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

987 988 989 990 991 992 993 994 995 996
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

997
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
998 999 1000 1001 1002 1003 1004 1005 1006
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1007
		blk_mq_run_hw_queue(hctx, async);
1008 1009 1010 1011
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1012
static void blk_mq_run_work_fn(struct work_struct *work)
1013 1014 1015
{
	struct blk_mq_hw_ctx *hctx;

1016
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1017

1018 1019 1020
	__blk_mq_run_hw_queue(hctx);
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1033 1034
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1035

1036 1037
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1038 1039 1040
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1041 1042 1043
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1044
{
J
Jens Axboe 已提交
1045 1046
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1047 1048
	trace_block_rq_insert(hctx->queue, rq);

1049 1050 1051 1052
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1053
}
1054

1055 1056 1057 1058 1059
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1060
	__blk_mq_insert_req_list(hctx, rq, at_head);
1061 1062 1063
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1064
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1065
			   bool async)
1066
{
J
Jens Axboe 已提交
1067
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1068
	struct request_queue *q = rq->q;
1069 1070 1071 1072
	struct blk_mq_hw_ctx *hctx;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1073 1074 1075
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;

	trace_block_unplug(q, depth, !from_schedule);

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1103
		BUG_ON(rq->mq_ctx != ctx);
1104
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1105
		__blk_mq_insert_req_list(hctx, rq, false);
1106
	}
1107
	blk_mq_hctx_mark_pending(hctx, ctx);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1173

1174
	blk_account_io_start(rq, 1);
1175 1176
}

1177 1178 1179 1180 1181 1182
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1183 1184 1185
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1186
{
1187
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1188 1189 1190 1191 1192 1193 1194
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1195 1196
		struct request_queue *q = hctx->queue;

1197 1198 1199 1200 1201
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1202

1203 1204 1205
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1206
	}
1207
}
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1221 1222
	int op = bio_data_dir(bio);
	int op_flags = 0;
1223
	struct blk_mq_alloc_data alloc_data;
1224

1225
	blk_queue_enter_live(q);
1226 1227 1228
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

J
Jens Axboe 已提交
1229
	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1230
		op_flags |= REQ_SYNC;
1231

1232
	trace_block_getrq(q, bio, op);
1233
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1234
	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1235
	if (unlikely(!rq)) {
1236
		__blk_mq_run_hw_queue(hctx);
1237
		blk_mq_put_ctx(ctx);
1238
		trace_block_sleeprq(q, bio, op);
1239 1240

		ctx = blk_mq_get_ctx(q);
1241
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1242
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1243
		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1244 1245
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1246 1247 1248
	}

	hctx->queued++;
1249 1250 1251 1252 1253
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1254
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1265
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1266 1267 1268 1269 1270 1271 1272

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1273 1274
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1275
		return 0;
1276
	}
1277

1278 1279 1280 1281 1282 1283 1284
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1285
	}
1286 1287

	return -1;
1288 1289
}

1290 1291 1292 1293 1294
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1295
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1296
{
J
Jens Axboe 已提交
1297 1298
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1299 1300
	struct blk_map_ctx data;
	struct request *rq;
1301 1302
	unsigned int request_count = 0;
	struct blk_plug *plug;
1303
	struct request *same_queue_rq = NULL;
1304
	blk_qc_t cookie;
1305 1306 1307 1308

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1309
		bio_io_error(bio);
1310
		return BLK_QC_T_NONE;
1311 1312
	}

1313 1314
	blk_queue_split(q, &bio, q->bio_split);

1315 1316 1317
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1318

1319 1320
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1321
		return BLK_QC_T_NONE;
1322

1323
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1324 1325 1326 1327 1328 1329 1330

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1331
	plug = current->plug;
1332 1333 1334 1335 1336
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1337 1338 1339
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1340 1341 1342 1343

		blk_mq_bio_to_request(rq, bio);

		/*
1344
		 * We do limited pluging. If the bio can be merged, do that.
1345 1346
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1347
		 */
1348
		if (plug) {
1349 1350
			/*
			 * The plug list might get flushed before this. If that
1351 1352 1353
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1354 1355
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1356
				list_del_init(&old_rq->queuelist);
1357
			}
1358 1359 1360 1361 1362
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1363 1364 1365
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1366
		blk_mq_insert_request(old_rq, false, true, true);
1367
		goto done;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1381 1382
done:
	return cookie;
1383 1384 1385 1386 1387 1388
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1389
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1390
{
J
Jens Axboe 已提交
1391 1392
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1393 1394
	struct blk_plug *plug;
	unsigned int request_count = 0;
1395 1396
	struct blk_map_ctx data;
	struct request *rq;
1397
	blk_qc_t cookie;
1398 1399 1400 1401

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1402
		bio_io_error(bio);
1403
		return BLK_QC_T_NONE;
1404 1405
	}

1406 1407
	blk_queue_split(q, &bio, q->bio_split);

1408 1409 1410 1411 1412
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1413 1414

	rq = blk_mq_map_request(q, bio, &data);
1415
	if (unlikely(!rq))
1416
		return BLK_QC_T_NONE;
1417

1418
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1431 1432 1433
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1434
		if (!request_count)
1435
			trace_block_plug(q);
1436 1437 1438 1439

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1440 1441
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1442
		}
1443

1444
		list_add_tail(&rq->queuelist, &plug->mq_list);
1445
		return cookie;
1446 1447
	}

1448 1449 1450 1451 1452 1453 1454 1455 1456
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1457 1458
	}

1459
	blk_mq_put_ctx(data.ctx);
1460
	return cookie;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1472 1473
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1474
{
1475
	struct page *page;
1476

1477
	if (tags->rqs && set->ops->exit_request) {
1478
		int i;
1479

1480 1481
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1482
				continue;
1483 1484
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1485
			tags->rqs[i] = NULL;
1486
		}
1487 1488
	}

1489 1490
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1491
		list_del_init(&page->lru);
1492 1493 1494 1495 1496
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1497 1498 1499
		__free_pages(page, page->private);
	}

1500
	kfree(tags->rqs);
1501

1502
	blk_mq_free_tags(tags);
1503 1504 1505 1506
}

static size_t order_to_size(unsigned int order)
{
1507
	return (size_t)PAGE_SIZE << order;
1508 1509
}

1510 1511
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1512
{
1513
	struct blk_mq_tags *tags;
1514 1515 1516
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1517
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1518 1519
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1520 1521
	if (!tags)
		return NULL;
1522

1523 1524
	INIT_LIST_HEAD(&tags->page_list);

1525 1526 1527
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1528 1529 1530 1531
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1532 1533 1534 1535 1536

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1537
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1538
				cache_line_size());
1539
	left = rq_size * set->queue_depth;
1540

1541
	for (i = 0; i < set->queue_depth; ) {
1542 1543 1544 1545 1546
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1547
		while (this_order && left < order_to_size(this_order - 1))
1548 1549 1550
			this_order--;

		do {
1551
			page = alloc_pages_node(set->numa_node,
1552
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1553
				this_order);
1554 1555 1556 1557 1558 1559 1560 1561 1562
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1563
			goto fail;
1564 1565

		page->private = this_order;
1566
		list_add_tail(&page->lru, &tags->page_list);
1567 1568

		p = page_address(page);
1569 1570 1571 1572 1573
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1574
		entries_per_page = order_to_size(this_order) / rq_size;
1575
		to_do = min(entries_per_page, set->queue_depth - i);
1576 1577
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1578 1579 1580 1581
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1582 1583
						set->numa_node)) {
					tags->rqs[i] = NULL;
1584
					goto fail;
1585
				}
1586 1587
			}

1588 1589 1590 1591
			p += rq_size;
			i++;
		}
	}
1592
	return tags;
1593

1594 1595 1596
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1597 1598
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

J
Jens Axboe 已提交
1625 1626 1627 1628 1629
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1630 1631 1632 1633 1634
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

J
Jens Axboe 已提交
1635
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

J
Jens Axboe 已提交
1647 1648 1649
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

	blk_mq_run_hw_queue(hctx, true);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1662 1663 1664 1665 1666

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1667 1668 1669 1670

	return NOTIFY_OK;
}

1671
/* hctx->ctxs will be freed in queue's release handler */
1672 1673 1674 1675
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1676 1677
	unsigned flush_start_tag = set->queue_depth;

1678 1679
	blk_mq_tag_idle(hctx);

1680 1681 1682 1683 1684
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1685 1686 1687 1688
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1689
	blk_free_flush_queue(hctx->fq);
1690 1691 1692
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1702
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1712
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1713 1714 1715
		free_cpumask_var(hctx->cpumask);
}

1716 1717 1718
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1719
{
1720
	int node;
1721
	unsigned flush_start_tag = set->queue_depth;
1722 1723 1724 1725 1726

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1727
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1728 1729 1730 1731 1732
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1733
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1734 1735 1736 1737 1738 1739

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1740 1741

	/*
1742 1743
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1744
	 */
1745 1746 1747 1748
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1749

1750 1751
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1752

1753
	hctx->nr_ctx = 0;
1754

1755 1756 1757
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1758

1759 1760 1761
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1762

1763 1764 1765 1766 1767
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1768

1769
	return 0;
1770

1771 1772 1773 1774 1775
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1776 1777 1778 1779 1780 1781
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1782

1783 1784
	return -1;
}
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1805 1806
		hctx = q->mq_ops->map_queue(q, i);

1807 1808 1809 1810 1811
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1812
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1813 1814 1815
	}
}

1816 1817
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1818 1819 1820 1821
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1822
	struct blk_mq_tag_set *set = q->tag_set;
1823

1824 1825 1826 1827 1828
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1829
	queue_for_each_hw_ctx(q, hctx, i) {
1830
		cpumask_clear(hctx->cpumask);
1831 1832 1833 1834 1835 1836
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1837
	for_each_possible_cpu(i) {
1838
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1839
		if (!cpumask_test_cpu(i, online_mask))
1840 1841
			continue;

1842
		ctx = per_cpu_ptr(q->queue_ctx, i);
1843
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1844

1845
		cpumask_set_cpu(i, hctx->cpumask);
1846 1847 1848
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1849

1850 1851
	mutex_unlock(&q->sysfs_lock);

1852
	queue_for_each_hw_ctx(q, hctx, i) {
1853 1854
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1855
		/*
1856 1857
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1858 1859 1860 1861 1862 1863
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1864
			hctx->tags = NULL;
1865 1866 1867
			continue;
		}

M
Ming Lei 已提交
1868 1869 1870 1871 1872 1873
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1874
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1875 1876 1877 1878 1879
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1880
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1881

1882 1883 1884
		/*
		 * Initialize batch roundrobin counts
		 */
1885 1886 1887
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1888 1889
}

1890
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1891 1892 1893 1894
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1906 1907 1908

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1909
		queue_set_hctx_shared(q, shared);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1920 1921 1922 1923 1924 1925
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1926 1927 1928 1929 1930 1931 1932 1933 1934
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1935 1936 1937 1938 1939 1940 1941 1942 1943

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1944
	list_add_tail(&q->tag_set_list, &set->tag_list);
1945

1946 1947 1948
	mutex_unlock(&set->tag_list_lock);
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1961 1962 1963 1964
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1965
		kfree(hctx);
1966
	}
1967

1968 1969 1970
	kfree(q->mq_map);
	q->mq_map = NULL;

1971 1972 1973 1974 1975 1976
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1977
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1993 1994
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1995
{
K
Keith Busch 已提交
1996 1997
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1998

K
Keith Busch 已提交
1999
	blk_mq_sysfs_unregister(q);
2000
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2001
		int node;
2002

K
Keith Busch 已提交
2003 2004 2005 2006
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2007 2008
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2009
		if (!hctxs[i])
K
Keith Busch 已提交
2010
			break;
2011

2012
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2013 2014 2015 2016 2017
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2018

2019
		atomic_set(&hctxs[i]->nr_active, 0);
2020
		hctxs[i]->numa_node = node;
2021
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2022 2023 2024 2025 2026 2027 2028 2029

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2030
	}
K
Keith Busch 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2055 2056 2057
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2058 2059
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2060
		goto err_exit;
K
Keith Busch 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2074

2075
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2076
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2077 2078 2079

	q->nr_queues = nr_cpu_ids;

2080
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2081

2082 2083 2084
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2085 2086
	q->sg_reserved_size = INT_MAX;

2087 2088 2089 2090
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2091 2092 2093 2094 2095
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2096 2097 2098 2099 2100
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2101 2102
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2103

2104
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2105

2106
	get_online_cpus();
2107 2108
	mutex_lock(&all_q_mutex);

2109
	list_add_tail(&q->all_q_node, &all_q_list);
2110
	blk_mq_add_queue_tag_set(set, q);
2111
	blk_mq_map_swqueue(q, cpu_online_mask);
2112

2113
	mutex_unlock(&all_q_mutex);
2114
	put_online_cpus();
2115

2116
	return q;
2117

2118
err_hctxs:
K
Keith Busch 已提交
2119
	kfree(q->mq_map);
2120
err_map:
K
Keith Busch 已提交
2121
	kfree(q->queue_hw_ctx);
2122
err_percpu:
K
Keith Busch 已提交
2123
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2124 2125
err_exit:
	q->mq_ops = NULL;
2126 2127
	return ERR_PTR(-ENOMEM);
}
2128
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2129 2130 2131

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2132
	struct blk_mq_tag_set	*set = q->tag_set;
2133

2134 2135 2136 2137
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2138 2139
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2140 2141
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2142 2143 2144
}

/* Basically redo blk_mq_init_queue with queue frozen */
2145 2146
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2147
{
2148
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2149

2150 2151
	blk_mq_sysfs_unregister(q);

2152
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2153 2154 2155 2156 2157 2158 2159

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2160
	blk_mq_map_swqueue(q, online_mask);
2161

2162
	blk_mq_sysfs_register(q);
2163 2164
}

2165 2166
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2167 2168
{
	struct request_queue *q;
2169 2170 2171 2172 2173 2174 2175
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2176 2177

	/*
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2193
	 */
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2204
		return NOTIFY_OK;
2205
	}
2206 2207

	mutex_lock(&all_q_mutex);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2218
	list_for_each_entry(q, &all_q_list, all_q_node) {
2219 2220
		blk_mq_freeze_queue_wait(q);

2221 2222 2223 2224 2225 2226 2227
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2228
	list_for_each_entry(q, &all_q_list, all_q_node)
2229
		blk_mq_queue_reinit(q, &online_new);
2230 2231 2232 2233

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2234 2235 2236 2237
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2292 2293 2294 2295 2296 2297
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2298 2299 2300 2301 2302 2303
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2304 2305
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2306 2307
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2308 2309
	if (!set->nr_hw_queues)
		return -EINVAL;
2310
	if (!set->queue_depth)
2311 2312 2313 2314
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2315
	if (!set->ops->queue_rq || !set->ops->map_queue)
2316 2317
		return -EINVAL;

2318 2319 2320 2321 2322
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2333 2334 2335 2336 2337
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2338

K
Keith Busch 已提交
2339
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2340 2341
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2342
		return -ENOMEM;
2343

2344 2345
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2346

2347 2348 2349
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2350
	return 0;
2351
enomem:
2352 2353
	kfree(set->tags);
	set->tags = NULL;
2354 2355 2356 2357 2358 2359 2360 2361
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2362
	for (i = 0; i < nr_cpu_ids; i++) {
2363
		if (set->tags[i])
2364 2365 2366
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2367
	kfree(set->tags);
2368
	set->tags = NULL;
2369 2370 2371
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2383 2384
		if (!hctx->tags)
			continue;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2435 2436 2437 2438
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2439
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2440 2441 2442 2443

	return 0;
}
subsys_initcall(blk_mq_init);