blk-mq.c 78.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98
	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128 129
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	if (!q->mq_ops)
		blk_drain_queue(q);
165 166
	blk_mq_freeze_queue_wait(q);
}
167 168 169 170 171 172 173 174 175

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
176
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177

178
void blk_mq_unfreeze_queue(struct request_queue *q)
179
{
180
	int freeze_depth;
181

182 183 184
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
185
		percpu_ref_reinit(&q->q_usage_counter);
186
		wake_up_all(&q->mq_freeze_wq);
187
	}
188
}
189
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

205
/**
206
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
207 208 209
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
210 211 212
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
213 214 215 216 217 218 219
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

220
	blk_mq_quiesce_queue_nowait(q);
221

222 223
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
224
			synchronize_srcu(hctx->srcu);
225 226 227 228 229 230 231 232
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

233 234 235 236 237 238 239 240 241
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
242 243 244
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
245
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
246
	spin_unlock_irqrestore(q->queue_lock, flags);
247

248 249
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
250 251 252
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

253 254 255 256 257 258 259 260 261 262
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

263 264 265 266 267 268
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

269 270
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
271
{
272 273
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
274
	req_flags_t rq_flags = 0;
275

276 277 278 279 280
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
281
			rq_flags = RQF_MQ_INFLIGHT;
282 283 284 285 286 287 288
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

289
	/* csd/requeue_work/fifo_time is initialized before use */
290 291
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
292
	rq->rq_flags = rq_flags;
293
	rq->cpu = -1;
294
	rq->cmd_flags = op;
295 296
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
297
	if (blk_queue_io_stat(data->q))
298
		rq->rq_flags |= RQF_IO_STAT;
299
	INIT_LIST_HEAD(&rq->queuelist);
300 301 302 303
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
304
	rq->start_time = jiffies;
305 306 307 308 309 310 311
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
312
	rq->__deadline = 0;
313 314

	INIT_LIST_HEAD(&rq->timeout_list);
315 316
	rq->timeout = 0;

317 318 319 320
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

321 322 323 324 325 326
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
	set_start_time_ns(rq);
	rq->io_start_time_ns = 0;
#endif

327 328
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
329 330
}

331 332 333 334 335 336
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
337
	unsigned int tag;
338
	bool put_ctx_on_error = false;
339 340 341

	blk_queue_enter_live(q);
	data->q = q;
342 343 344 345
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
346 347
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 349
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
350 351 352 353 354 355 356 357

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
358 359
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
360 361
	}

362 363
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
364 365
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
366 367
			data->ctx = NULL;
		}
368 369
		blk_queue_exit(q);
		return NULL;
370 371
	}

372
	rq = blk_mq_rq_ctx_init(data, tag, op);
373 374
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
375
		if (e && e->type->ops.mq.prepare_request) {
376 377 378
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

379 380
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
381
		}
382 383 384
	}
	data->hctx->queued++;
	return rq;
385 386
}

387
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388
		blk_mq_req_flags_t flags)
389
{
390
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
391
	struct request *rq;
392
	int ret;
393

394
	ret = blk_queue_enter(q, flags);
395 396
	if (ret)
		return ERR_PTR(ret);
397

398
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399
	blk_queue_exit(q);
400

401
	if (!rq)
402
		return ERR_PTR(-EWOULDBLOCK);
403

404 405
	blk_mq_put_ctx(alloc_data.ctx);

406 407 408
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
409 410
	return rq;
}
411
EXPORT_SYMBOL(blk_mq_alloc_request);
412

413
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
415
{
416
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
417
	struct request *rq;
418
	unsigned int cpu;
M
Ming Lin 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

433
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
434 435 436
	if (ret)
		return ERR_PTR(ret);

437 438 439 440
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
441 442 443 444
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
445
	}
446
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
448

449
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450
	blk_queue_exit(q);
451

452 453 454 455
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
456 457 458
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

459
void blk_mq_free_request(struct request *rq)
460 461
{
	struct request_queue *q = rq->q;
462 463 464 465 466
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

467
	if (rq->rq_flags & RQF_ELVPRIV) {
468 469 470 471 472 473 474
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
475

476
	ctx->rq_completed[rq_is_sync(rq)]++;
477
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
478
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
479

480 481 482
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
483
	wbt_done(q->rq_wb, &rq->issue_stat);
484

S
Shaohua Li 已提交
485 486 487
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

488
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
489 490 491
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
492
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493
	blk_mq_sched_restart(hctx);
494
	blk_queue_exit(q);
495
}
J
Jens Axboe 已提交
496
EXPORT_SYMBOL_GPL(blk_mq_free_request);
497

498
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499
{
M
Ming Lei 已提交
500 501
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
502
	if (rq->end_io) {
J
Jens Axboe 已提交
503
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
504
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
505 506 507
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
508
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
509
	}
510
}
511
EXPORT_SYMBOL(__blk_mq_end_request);
512

513
void blk_mq_end_request(struct request *rq, blk_status_t error)
514 515 516
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
517
	__blk_mq_end_request(rq, error);
518
}
519
EXPORT_SYMBOL(blk_mq_end_request);
520

521
static void __blk_mq_complete_request_remote(void *data)
522
{
523
	struct request *rq = data;
524

525
	rq->q->softirq_done_fn(rq);
526 527
}

528
static void __blk_mq_complete_request(struct request *rq)
529 530
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
531
	bool shared = false;
532 533
	int cpu;

534
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
535
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
536

537 538 539 540 541 542 543
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
544
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 546 547
		rq->q->softirq_done_fn(rq);
		return;
	}
548 549

	cpu = get_cpu();
C
Christoph Hellwig 已提交
550 551 552 553
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554
		rq->csd.func = __blk_mq_complete_request_remote;
555 556
		rq->csd.info = rq;
		rq->csd.flags = 0;
557
		smp_call_function_single_async(ctx->cpu, &rq->csd);
558
	} else {
559
		rq->q->softirq_done_fn(rq);
560
	}
561 562
	put_cpu();
}
563

564
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
565
	__releases(hctx->srcu)
566 567 568 569
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
570
		srcu_read_unlock(hctx->srcu, srcu_idx);
571 572 573
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
574
	__acquires(hctx->srcu)
575
{
576 577 578
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
579
		rcu_read_lock();
580
	} else
581
		*srcu_idx = srcu_read_lock(hctx->srcu);
582 583
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

614 615 616 617 618 619 620 621
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
622
void blk_mq_complete_request(struct request *rq)
623
{
624
	struct request_queue *q = rq->q;
625 626
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
627 628

	if (unlikely(blk_should_fake_timeout(q)))
629
		return;
630

631 632 633 634 635 636 637 638 639 640 641
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
642
	hctx_lock(hctx, &srcu_idx);
643
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
644
		__blk_mq_complete_request(rq);
645
	hctx_unlock(hctx, srcu_idx);
646 647
}
EXPORT_SYMBOL(blk_mq_complete_request);
648

649 650
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
651
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
652 653 654
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

655
void blk_mq_start_request(struct request *rq)
656 657 658
{
	struct request_queue *q = rq->q;

659 660
	blk_mq_sched_started_request(rq);

661 662
	trace_block_rq_issue(q, rq);

663
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
664
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
665
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
666
		wbt_issue(q->rq_wb, &rq->issue_stat);
667 668
	}

669
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
670

671
	/*
672 673 674 675
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
676
	 *
677 678 679 680
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
681
	 */
682 683 684 685 686 687 688 689
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();
690 691 692 693 694 695 696 697 698

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
699
}
700
EXPORT_SYMBOL(blk_mq_start_request);
701

702
/*
T
Tejun Heo 已提交
703 704 705
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
706
 */
707
static void __blk_mq_requeue_request(struct request *rq)
708 709 710
{
	struct request_queue *q = rq->q;

711 712
	blk_mq_put_driver_tag(rq);

713
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
714
	wbt_requeue(q->rq_wb, &rq->issue_stat);
715

T
Tejun Heo 已提交
716
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
717
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
718 719 720
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
721 722
}

723
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
724 725 726
{
	__blk_mq_requeue_request(rq);

727 728 729
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

730
	BUG_ON(blk_queued_rq(rq));
731
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
732 733 734
}
EXPORT_SYMBOL(blk_mq_requeue_request);

735 736 737
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
738
		container_of(work, struct request_queue, requeue_work.work);
739 740 741
	LIST_HEAD(rq_list);
	struct request *rq, *next;

742
	spin_lock_irq(&q->requeue_lock);
743
	list_splice_init(&q->requeue_list, &rq_list);
744
	spin_unlock_irq(&q->requeue_lock);
745 746

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
747
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
748 749
			continue;

750
		rq->rq_flags &= ~RQF_SOFTBARRIER;
751
		list_del_init(&rq->queuelist);
752
		blk_mq_sched_insert_request(rq, true, false, false);
753 754 755 756 757
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
758
		blk_mq_sched_insert_request(rq, false, false, false);
759 760
	}

761
	blk_mq_run_hw_queues(q, false);
762 763
}

764 765
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
766 767 768 769 770 771
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
772
	 * request head insertion from the workqueue.
773
	 */
774
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
775 776 777

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
778
		rq->rq_flags |= RQF_SOFTBARRIER;
779 780 781 782 783
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
784 785 786

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
787 788 789 790 791
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
792
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
793 794 795
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

796 797 798
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
799 800
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
801 802 803
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

804 805
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
806 807
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
808
		return tags->rqs[tag];
809
	}
810 811

	return NULL;
812 813 814
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

815
struct blk_mq_timeout_data {
816 817
	unsigned long next;
	unsigned int next_set;
818
	unsigned int nr_expired;
819 820
};

821
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
822
{
J
Jens Axboe 已提交
823
	const struct blk_mq_ops *ops = req->q->mq_ops;
824
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
825

826
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
827

828
	if (ops->timeout)
829
		ret = ops->timeout(req, reserved);
830 831 832 833 834 835

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
836 837 838 839 840 841
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
842 843 844 845 846 847 848 849
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
850
}
851

852 853 854 855
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
856 857
	unsigned long gstate, deadline;
	int start;
858

859
	might_sleep();
860

T
Tejun Heo 已提交
861
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
862
		return;
863

864 865 866 867
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
868
		deadline = blk_rq_deadline(rq);
869 870 871 872
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
873

874 875 876 877 878 879
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
880 881
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
882 883
		data->next_set = 1;
	}
884 885
}

886 887 888 889 890 891 892 893 894 895
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
896 897
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
898 899 900
		blk_mq_rq_timed_out(rq, reserved);
}

901
static void blk_mq_timeout_work(struct work_struct *work)
902
{
903 904
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
905 906 907
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
908
		.nr_expired	= 0,
909
	};
910
	struct blk_mq_hw_ctx *hctx;
911
	int i;
912

913 914 915 916 917 918 919 920 921
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
922
	 * blk_freeze_queue_start, and the moment the last request is
923 924 925 926
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
927 928
		return;

929
	/* scan for the expired ones and set their ->aborted_gstate */
930
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
931

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
948
				synchronize_srcu(hctx->srcu);
949 950 951 952 953 954 955 956 957 958

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

959 960 961
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
962
	} else {
963 964 965 966 967 968
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
969 970 971 972 973
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
974
	}
975
	blk_queue_exit(q);
976 977
}

978 979 980 981 982 983 984 985 986 987 988 989 990
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
991
	sbitmap_clear_bit(sb, bitnr);
992 993 994 995
	spin_unlock(&ctx->lock);
	return true;
}

996 997 998 999
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1000
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1001
{
1002 1003 1004 1005
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1006

1007
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1008
}
1009
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1050 1051 1052 1053
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1054

1055
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1056 1057
}

1058 1059
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1060 1061 1062 1063 1064 1065 1066
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1067 1068
	might_sleep_if(wait);

1069 1070
	if (rq->tag != -1)
		goto done;
1071

1072 1073 1074
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1075 1076
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1077 1078 1079 1080
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1081 1082 1083
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1084 1085 1086 1087
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1088 1089
}

1090 1091
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1092 1093 1094 1095 1096
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1097
	list_del_init(&wait->entry);
1098 1099 1100 1101
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1102 1103
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1104 1105
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1106 1107 1108 1109
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1110
{
1111
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1112
	struct sbq_wait_state *ws;
1113 1114
	wait_queue_entry_t *wait;
	bool ret;
1115

1116
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1117 1118 1119
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1120 1121 1122 1123 1124 1125 1126 1127 1128
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1129 1130
	}

1131 1132 1133 1134 1135 1136 1137 1138
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1139 1140
	}

1141 1142 1143
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1144
	/*
1145 1146 1147
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1148
	 */
1149
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1150
	if (!ret) {
1151
		spin_unlock(&this_hctx->lock);
1152
		return false;
1153
	}
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1165 1166
}

1167 1168
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1169
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1170
			     bool got_budget)
1171
{
1172
	struct blk_mq_hw_ctx *hctx;
1173
	struct request *rq, *nxt;
1174
	bool no_tag = false;
1175
	int errors, queued;
1176
	blk_status_t ret = BLK_STS_OK;
1177

1178 1179 1180
	if (list_empty(list))
		return false;

1181 1182
	WARN_ON(!list_is_singular(list) && got_budget);

1183 1184 1185
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1186
	errors = queued = 0;
1187
	do {
1188
		struct blk_mq_queue_data bd;
1189

1190
		rq = list_first_entry(list, struct request, queuelist);
1191
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1192
			/*
1193
			 * The initial allocation attempt failed, so we need to
1194 1195 1196 1197
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1198
			 */
1199
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1200 1201
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1202 1203 1204 1205 1206 1207
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1208 1209 1210 1211
				break;
			}
		}

1212 1213
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1214
			break;
1215
		}
1216

1217 1218
		list_del_init(&rq->queuelist);

1219
		bd.rq = rq;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1231 1232

		ret = q->mq_ops->queue_rq(hctx, &bd);
1233
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1234 1235
			/*
			 * If an I/O scheduler has been configured and we got a
1236 1237
			 * driver tag for the next request already, free it
			 * again.
1238 1239 1240 1241 1242
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1243
			list_add(&rq->queuelist, list);
1244
			__blk_mq_requeue_request(rq);
1245
			break;
1246 1247 1248
		}

		if (unlikely(ret != BLK_STS_OK)) {
1249
			errors++;
1250
			blk_mq_end_request(rq, BLK_STS_IOERR);
1251
			continue;
1252 1253
		}

1254
		queued++;
1255
	} while (!list_empty(list));
1256

1257
	hctx->dispatched[queued_to_index(queued)]++;
1258 1259 1260 1261 1262

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1263
	if (!list_empty(list)) {
1264 1265
		bool needs_restart;

1266
		spin_lock(&hctx->lock);
1267
		list_splice_init(list, &hctx->dispatch);
1268
		spin_unlock(&hctx->lock);
1269

1270
		/*
1271 1272 1273
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1274
		 *
1275 1276 1277 1278
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1279
		 *
1280 1281 1282 1283 1284 1285 1286
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1287
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1288
		 *   and dm-rq.
1289 1290 1291 1292
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1293
		 */
1294 1295
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1296
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1297
			blk_mq_run_hw_queue(hctx, true);
1298 1299
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1300
	}
1301

1302
	return (queued + errors) != 0;
1303 1304
}

1305 1306 1307 1308
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1309 1310 1311
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1325
	 */
1326 1327 1328 1329 1330 1331 1332
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1333

1334 1335 1336 1337 1338 1339
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1340
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1341

1342 1343 1344
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1345 1346
}

1347 1348 1349 1350 1351 1352 1353 1354
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1355 1356
	bool tried = false;

1357 1358
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1359 1360

	if (--hctx->next_cpu_batch <= 0) {
1361
		int next_cpu;
1362
select_cpu:
1363 1364
		next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
				cpu_online_mask);
1365
		if (next_cpu >= nr_cpu_ids)
1366
			next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1367

1368 1369 1370 1371 1372 1373 1374 1375
		/*
		 * No online CPU is found, so have to make sure hctx->next_cpu
		 * is set correctly for not breaking workqueue.
		 */
		if (next_cpu >= nr_cpu_ids)
			hctx->next_cpu = cpumask_first(hctx->cpumask);
		else
			hctx->next_cpu = next_cpu;
1376 1377 1378
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
	if (!cpu_online(hctx->next_cpu)) {
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1396
	return hctx->next_cpu;
1397 1398
}

1399 1400
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1401
{
1402 1403 1404 1405
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1406 1407
		return;

1408
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1409 1410
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1411
			__blk_mq_run_hw_queue(hctx);
1412
			put_cpu();
1413 1414
			return;
		}
1415

1416
		put_cpu();
1417
	}
1418

1419 1420
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1421 1422 1423 1424 1425 1426 1427 1428
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1429
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1430
{
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1442 1443 1444 1445
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1446 1447

	if (need_run) {
1448 1449 1450 1451 1452
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1453
}
O
Omar Sandoval 已提交
1454
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1455

1456
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1457 1458 1459 1460 1461
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1462
		if (blk_mq_hctx_stopped(hctx))
1463 1464
			continue;

1465
		blk_mq_run_hw_queue(hctx, async);
1466 1467
	}
}
1468
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1469

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1490 1491 1492
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1493
 * BLK_STS_RESOURCE is usually returned.
1494 1495 1496 1497 1498
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1499 1500
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1501
	cancel_delayed_work(&hctx->run_work);
1502

1503
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1504
}
1505
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1506

1507 1508 1509
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1510
 * BLK_STS_RESOURCE is usually returned.
1511 1512 1513 1514 1515
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1516 1517
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1518 1519 1520 1521 1522
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1523 1524 1525
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1526 1527 1528
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1529

1530
	blk_mq_run_hw_queue(hctx, false);
1531 1532 1533
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1554
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1555 1556 1557 1558
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1559 1560
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1561 1562 1563
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1564
static void blk_mq_run_work_fn(struct work_struct *work)
1565 1566 1567
{
	struct blk_mq_hw_ctx *hctx;

1568
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1569

1570 1571 1572 1573 1574 1575 1576 1577
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1578

1579 1580 1581
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1582 1583 1584 1585

	__blk_mq_run_hw_queue(hctx);
}

1586 1587 1588

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1589
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1590
		return;
1591

1592 1593 1594 1595 1596
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1597
	blk_mq_stop_hw_queue(hctx);
1598 1599 1600 1601
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1602 1603 1604
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1605 1606 1607
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1608
{
J
Jens Axboe 已提交
1609 1610
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1611 1612
	lockdep_assert_held(&ctx->lock);

1613 1614
	trace_block_rq_insert(hctx->queue, rq);

1615 1616 1617 1618
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1619
}
1620

1621 1622
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1623 1624 1625
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1626 1627
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1628
	__blk_mq_insert_req_list(hctx, rq, at_head);
1629 1630 1631
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1632 1633 1634 1635
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1636
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1637 1638 1639 1640 1641 1642 1643 1644
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1645 1646
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1647 1648
}

1649 1650
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1662
		BUG_ON(rq->mq_ctx != ctx);
1663
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1664
		__blk_mq_insert_req_list(hctx, rq, false);
1665
	}
1666
	blk_mq_hctx_mark_pending(hctx, ctx);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1703 1704 1705 1706
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1723 1724 1725
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1726 1727 1728 1729 1730
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1731
	blk_init_request_from_bio(rq, bio);
1732

S
Shaohua Li 已提交
1733 1734
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1735
	blk_account_io_start(rq, true);
1736 1737
}

1738 1739 1740 1741 1742 1743 1744
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1745
}
1746

1747 1748
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1749 1750 1751 1752
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1753 1754
}

1755 1756 1757
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1758 1759 1760 1761
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1762
		.last = true,
1763
	};
1764
	blk_qc_t new_cookie;
1765
	blk_status_t ret;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1780
	case BLK_STS_DEV_RESOURCE:
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1793 1794
						blk_qc_t *cookie,
						bool bypass_insert)
1795 1796
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1797 1798
	bool run_queue = true;

1799 1800 1801 1802
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1803
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1804 1805
	 * and avoid driver to try to dispatch again.
	 */
1806
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1807
		run_queue = false;
1808
		bypass_insert = false;
M
Ming Lei 已提交
1809 1810
		goto insert;
	}
1811

1812
	if (q->elevator && !bypass_insert)
1813 1814
		goto insert;

M
Ming Lei 已提交
1815
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1816 1817
		goto insert;

1818
	if (!blk_mq_get_dispatch_budget(hctx)) {
1819 1820
		blk_mq_put_driver_tag(rq);
		goto insert;
1821
	}
1822

1823
	return __blk_mq_issue_directly(hctx, rq, cookie);
1824
insert:
1825 1826
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1827

1828
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1829
	return BLK_STS_OK;
1830 1831
}

1832 1833 1834
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1835
	blk_status_t ret;
1836
	int srcu_idx;
1837

1838
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1839

1840
	hctx_lock(hctx, &srcu_idx);
1841

1842
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1843
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1844
		blk_mq_sched_insert_request(rq, false, true, false);
1845 1846 1847
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1848
	hctx_unlock(hctx, srcu_idx);
1849 1850
}

1851
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1864 1865
}

1866
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1867
{
1868
	const int is_sync = op_is_sync(bio->bi_opf);
1869
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1870
	struct blk_mq_alloc_data data = { .flags = 0 };
1871
	struct request *rq;
1872
	unsigned int request_count = 0;
1873
	struct blk_plug *plug;
1874
	struct request *same_queue_rq = NULL;
1875
	blk_qc_t cookie;
J
Jens Axboe 已提交
1876
	unsigned int wb_acct;
1877 1878 1879

	blk_queue_bounce(q, &bio);

1880
	blk_queue_split(q, &bio);
1881

1882
	if (!bio_integrity_prep(bio))
1883
		return BLK_QC_T_NONE;
1884

1885 1886 1887
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1888

1889 1890 1891
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1892 1893
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1894 1895
	trace_block_getrq(q, bio, bio->bi_opf);

1896
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1897 1898
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1899 1900
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1901
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1902 1903 1904
	}

	wbt_track(&rq->issue_stat, wb_acct);
1905

1906
	cookie = request_to_qc_t(data.hctx, rq);
1907

1908
	plug = current->plug;
1909
	if (unlikely(is_flush_fua)) {
1910
		blk_mq_put_ctx(data.ctx);
1911
		blk_mq_bio_to_request(rq, bio);
1912 1913 1914 1915

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1916
	} else if (plug && q->nr_hw_queues == 1) {
1917 1918
		struct request *last = NULL;

1919
		blk_mq_put_ctx(data.ctx);
1920
		blk_mq_bio_to_request(rq, bio);
1921 1922 1923 1924 1925 1926 1927

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1928 1929 1930
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1931
		if (!request_count)
1932
			trace_block_plug(q);
1933 1934
		else
			last = list_entry_rq(plug->mq_list.prev);
1935

1936 1937
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1938 1939
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1940
		}
1941

1942
		list_add_tail(&rq->queuelist, &plug->mq_list);
1943
	} else if (plug && !blk_queue_nomerges(q)) {
1944
		blk_mq_bio_to_request(rq, bio);
1945 1946

		/*
1947
		 * We do limited plugging. If the bio can be merged, do that.
1948 1949
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1950 1951
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1952
		 */
1953 1954 1955 1956 1957 1958
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1959 1960
		blk_mq_put_ctx(data.ctx);

1961 1962 1963
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1964 1965
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1966
		}
1967
	} else if (q->nr_hw_queues > 1 && is_sync) {
1968
		blk_mq_put_ctx(data.ctx);
1969 1970
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1971
	} else if (q->elevator) {
1972
		blk_mq_put_ctx(data.ctx);
1973
		blk_mq_bio_to_request(rq, bio);
1974
		blk_mq_sched_insert_request(rq, false, true, true);
1975
	} else {
1976
		blk_mq_put_ctx(data.ctx);
1977 1978
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1979
		blk_mq_run_hw_queue(data.hctx, true);
1980
	}
1981

1982
	return cookie;
1983 1984
}

1985 1986
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1987
{
1988
	struct page *page;
1989

1990
	if (tags->rqs && set->ops->exit_request) {
1991
		int i;
1992

1993
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1994 1995 1996
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1997
				continue;
1998
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1999
			tags->static_rqs[i] = NULL;
2000
		}
2001 2002
	}

2003 2004
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2005
		list_del_init(&page->lru);
2006 2007 2008 2009 2010
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
2011 2012
		__free_pages(page, page->private);
	}
2013
}
2014

2015 2016
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2017
	kfree(tags->rqs);
2018
	tags->rqs = NULL;
J
Jens Axboe 已提交
2019 2020
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2021

2022
	blk_mq_free_tags(tags);
2023 2024
}

2025 2026 2027 2028
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2029
{
2030
	struct blk_mq_tags *tags;
2031
	int node;
2032

2033 2034 2035 2036 2037
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2038
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2039 2040
	if (!tags)
		return NULL;
2041

2042
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2043
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2044
				 node);
2045 2046 2047 2048
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2049

J
Jens Axboe 已提交
2050 2051
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2052
				 node);
J
Jens Axboe 已提交
2053 2054 2055 2056 2057 2058
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2059 2060 2061 2062 2063 2064 2065 2066
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
	return 0;
}

2083 2084 2085 2086 2087
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2088 2089 2090 2091 2092
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2093 2094 2095

	INIT_LIST_HEAD(&tags->page_list);

2096 2097 2098 2099
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2100
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2101
				cache_line_size());
2102
	left = rq_size * depth;
2103

2104
	for (i = 0; i < depth; ) {
2105 2106 2107 2108 2109
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2110
		while (this_order && left < order_to_size(this_order - 1))
2111 2112 2113
			this_order--;

		do {
2114
			page = alloc_pages_node(node,
2115
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2116
				this_order);
2117 2118 2119 2120 2121 2122 2123 2124 2125
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2126
			goto fail;
2127 2128

		page->private = this_order;
2129
		list_add_tail(&page->lru, &tags->page_list);
2130 2131

		p = page_address(page);
2132 2133 2134 2135
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2136
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2137
		entries_per_page = order_to_size(this_order) / rq_size;
2138
		to_do = min(entries_per_page, depth - i);
2139 2140
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2141 2142 2143
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2144 2145 2146
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2147 2148
			}

2149 2150 2151 2152
			p += rq_size;
			i++;
		}
	}
2153
	return 0;
2154

2155
fail:
2156 2157
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2158 2159
}

J
Jens Axboe 已提交
2160 2161 2162 2163 2164
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2165
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2166
{
2167
	struct blk_mq_hw_ctx *hctx;
2168 2169 2170
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2171
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2172
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2173 2174 2175 2176 2177 2178 2179 2180 2181

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2182
		return 0;
2183

J
Jens Axboe 已提交
2184 2185 2186
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2187 2188

	blk_mq_run_hw_queue(hctx, true);
2189
	return 0;
2190 2191
}

2192
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2193
{
2194 2195
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2196 2197
}

2198
/* hctx->ctxs will be freed in queue's release handler */
2199 2200 2201 2202
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2203 2204
	blk_mq_debugfs_unregister_hctx(hctx);

2205 2206
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2207

2208
	if (set->ops->exit_request)
2209
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2210

2211 2212
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2213 2214 2215
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2216
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2217
		cleanup_srcu_struct(hctx->srcu);
2218

2219
	blk_mq_remove_cpuhp(hctx);
2220
	blk_free_flush_queue(hctx->fq);
2221
	sbitmap_free(&hctx->ctx_map);
2222 2223
}

M
Ming Lei 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2233
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2234 2235 2236
	}
}

2237 2238 2239
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2240
{
2241 2242 2243 2244 2245 2246
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2247
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2248 2249 2250
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2251
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2252

2253
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2254 2255

	hctx->tags = set->tags[hctx_idx];
2256 2257

	/*
2258 2259
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2260
	 */
2261
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2262 2263 2264
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2265

2266 2267
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2268
		goto free_ctxs;
2269

2270
	hctx->nr_ctx = 0;
2271

2272 2273 2274
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2275 2276 2277
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2278

2279 2280 2281
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2282 2283
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2284
		goto sched_exit_hctx;
2285

2286
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2287
		goto free_fq;
2288

2289
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2290
		init_srcu_struct(hctx->srcu);
2291

2292 2293
	blk_mq_debugfs_register_hctx(q, hctx);

2294
	return 0;
2295

2296 2297
 free_fq:
	kfree(hctx->fq);
2298 2299
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2300 2301 2302
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2303
 free_bitmap:
2304
	sbitmap_free(&hctx->ctx_map);
2305 2306 2307
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2308
	blk_mq_remove_cpuhp(hctx);
2309 2310
	return -1;
}
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2330
		hctx = blk_mq_map_queue(q, i);
2331
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2332
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2333 2334 2335
	}
}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2358 2359 2360 2361 2362
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2363 2364
}

2365
static void blk_mq_map_swqueue(struct request_queue *q)
2366
{
2367
	unsigned int i, hctx_idx;
2368 2369
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2370
	struct blk_mq_tag_set *set = q->tag_set;
2371

2372 2373 2374 2375 2376
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2377
	queue_for_each_hw_ctx(q, hctx, i) {
2378
		cpumask_clear(hctx->cpumask);
2379 2380 2381 2382
		hctx->nr_ctx = 0;
	}

	/*
2383 2384 2385
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2386
	 */
2387
	for_each_possible_cpu(i) {
2388 2389
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2390 2391
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2392 2393 2394 2395 2396 2397
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2398
			q->mq_map[i] = 0;
2399 2400
		}

2401
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2402
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2403

2404
		cpumask_set_cpu(i, hctx->cpumask);
2405 2406 2407
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2408

2409 2410
	mutex_unlock(&q->sysfs_lock);

2411
	queue_for_each_hw_ctx(q, hctx, i) {
2412
		/*
2413 2414
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2415 2416
		 */
		if (!hctx->nr_ctx) {
2417 2418 2419 2420
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2421 2422 2423
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2424
			hctx->tags = NULL;
2425 2426 2427
			continue;
		}

M
Ming Lei 已提交
2428 2429 2430
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2431 2432 2433 2434 2435
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2436
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2437

2438 2439 2440
		/*
		 * Initialize batch roundrobin counts
		 */
2441 2442
		hctx->next_cpu = cpumask_first_and(hctx->cpumask,
				cpu_online_mask);
2443 2444
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2445 2446
}

2447 2448 2449 2450
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2451
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2452 2453 2454 2455
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2456
	queue_for_each_hw_ctx(q, hctx, i) {
2457 2458 2459
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2460
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2461 2462 2463
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2464
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2465
		}
2466 2467 2468
	}
}

2469 2470
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2471 2472
{
	struct request_queue *q;
2473

2474 2475
	lockdep_assert_held(&set->tag_list_lock);

2476 2477
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2478
		queue_set_hctx_shared(q, shared);
2479 2480 2481 2482 2483 2484 2485 2486 2487
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2488 2489
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2490 2491 2492 2493 2494 2495
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2496
	mutex_unlock(&set->tag_list_lock);
2497 2498

	synchronize_rcu();
2499 2500 2501 2502 2503 2504 2505 2506
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2507

2508 2509 2510 2511 2512
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2513 2514 2515 2516 2517 2518
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2519
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2520

2521 2522 2523
	mutex_unlock(&set->tag_list_lock);
}

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2536 2537 2538
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2539
		kobject_put(&hctx->kobj);
2540
	}
2541

2542 2543
	q->mq_map = NULL;

2544 2545
	kfree(q->queue_hw_ctx);

2546 2547 2548 2549 2550 2551
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2552 2553 2554
	free_percpu(q->queue_ctx);
}

2555
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2556 2557 2558
{
	struct request_queue *uninit_q, *q;

2559
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2571 2572 2573 2574
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2575
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2576 2577 2578 2579 2580 2581 2582 2583 2584
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2585 2586
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2587
{
K
Keith Busch 已提交
2588 2589
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2590

K
Keith Busch 已提交
2591
	blk_mq_sysfs_unregister(q);
2592 2593 2594

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2595
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2596
		int node;
2597

K
Keith Busch 已提交
2598 2599 2600 2601
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2602
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2603
					GFP_KERNEL, node);
2604
		if (!hctxs[i])
K
Keith Busch 已提交
2605
			break;
2606

2607
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2608 2609 2610 2611 2612
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2613

2614
		atomic_set(&hctxs[i]->nr_active, 0);
2615
		hctxs[i]->numa_node = node;
2616
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2617 2618 2619 2620 2621 2622 2623 2624

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2625
	}
K
Keith Busch 已提交
2626 2627 2628 2629
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2630 2631
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2632 2633 2634 2635 2636 2637 2638
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2639
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2640 2641 2642 2643 2644 2645
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2646 2647 2648
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2649
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2650 2651
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2652 2653 2654
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2655 2656
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2657
		goto err_exit;
K
Keith Busch 已提交
2658

2659 2660 2661
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2662 2663 2664 2665 2666
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2667
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2668 2669 2670 2671

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2672

2673
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2674
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2675 2676 2677

	q->nr_queues = nr_cpu_ids;

2678
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2679

2680 2681 2682
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2683 2684
	q->sg_reserved_size = INT_MAX;

2685
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2686 2687 2688
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2689
	blk_queue_make_request(q, blk_mq_make_request);
2690 2691
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2692

2693 2694 2695 2696 2697
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2698 2699 2700 2701 2702
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2703 2704
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2705

2706
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2707
	blk_mq_add_queue_tag_set(set, q);
2708
	blk_mq_map_swqueue(q);
2709

2710 2711 2712 2713 2714 2715 2716 2717
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2718
	return q;
2719

2720
err_hctxs:
K
Keith Busch 已提交
2721
	kfree(q->queue_hw_ctx);
2722
err_percpu:
K
Keith Busch 已提交
2723
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2724 2725
err_exit:
	q->mq_ops = NULL;
2726 2727
	return ERR_PTR(-ENOMEM);
}
2728
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2729 2730 2731

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2732
	struct blk_mq_tag_set	*set = q->tag_set;
2733

2734
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2735
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2736 2737 2738
}

/* Basically redo blk_mq_init_queue with queue frozen */
2739
static void blk_mq_queue_reinit(struct request_queue *q)
2740
{
2741
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2742

2743
	blk_mq_debugfs_unregister_hctxs(q);
2744 2745
	blk_mq_sysfs_unregister(q);

2746 2747
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2748 2749
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2750
	 */
2751
	blk_mq_map_swqueue(q);
2752

2753
	blk_mq_sysfs_register(q);
2754
	blk_mq_debugfs_register_hctxs(q);
2755 2756
}

2757 2758 2759 2760
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2761 2762
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2763 2764 2765 2766 2767 2768
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2769
		blk_mq_free_rq_map(set->tags[i]);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2809 2810
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2830
		return set->ops->map_queues(set);
2831
	} else
2832 2833 2834
		return blk_mq_map_queues(set);
}

2835 2836 2837 2838 2839 2840
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2841 2842
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2843 2844
	int ret;

B
Bart Van Assche 已提交
2845 2846
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2847 2848
	if (!set->nr_hw_queues)
		return -EINVAL;
2849
	if (!set->queue_depth)
2850 2851 2852 2853
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2854
	if (!set->ops->queue_rq)
2855 2856
		return -EINVAL;

2857 2858 2859
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2860 2861 2862 2863 2864
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2865

2866 2867 2868 2869 2870 2871 2872 2873 2874
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2875 2876 2877 2878 2879
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2880

K
Keith Busch 已提交
2881
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2882 2883
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2884
		return -ENOMEM;
2885

2886 2887 2888
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2889 2890 2891
	if (!set->mq_map)
		goto out_free_tags;

2892
	ret = blk_mq_update_queue_map(set);
2893 2894 2895 2896 2897
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2898
		goto out_free_mq_map;
2899

2900 2901 2902
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2903
	return 0;
2904 2905 2906 2907 2908

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2909 2910
	kfree(set->tags);
	set->tags = NULL;
2911
	return ret;
2912 2913 2914 2915 2916 2917 2918
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2919 2920
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2921

2922 2923 2924
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2925
	kfree(set->tags);
2926
	set->tags = NULL;
2927 2928 2929
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2930 2931 2932 2933 2934 2935
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2936
	if (!set)
2937 2938
		return -EINVAL;

2939
	blk_mq_freeze_queue(q);
2940
	blk_mq_quiesce_queue(q);
2941

2942 2943
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2944 2945
		if (!hctx->tags)
			continue;
2946 2947 2948 2949
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2950
		if (!hctx->sched_tags) {
2951
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2952 2953 2954 2955 2956
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2957 2958 2959 2960 2961 2962 2963
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2964
	blk_mq_unquiesce_queue(q);
2965 2966
	blk_mq_unfreeze_queue(q);

2967 2968 2969
	return ret;
}

2970 2971
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2972 2973 2974
{
	struct request_queue *q;

2975 2976
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2986
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2987 2988
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2989
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2990 2991 2992 2993 2994
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2995 2996 2997 2998 2999 3000 3001

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3002 3003
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3030
	int bucket;
3031

3032 3033 3034 3035
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3036 3037
}

3038 3039 3040 3041 3042
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3043
	int bucket;
3044 3045 3046 3047 3048

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3049
	if (!blk_poll_stats_enable(q))
3050 3051 3052 3053 3054 3055 3056 3057
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3058 3059
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3060
	 */
3061 3062 3063 3064 3065 3066
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3067 3068 3069 3070

	return ret;
}

3071
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3072
				     struct blk_mq_hw_ctx *hctx,
3073 3074 3075 3076
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3077
	unsigned int nsecs;
3078 3079
	ktime_t kt;

J
Jens Axboe 已提交
3080
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3098 3099
		return false;

J
Jens Axboe 已提交
3100
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3101 3102 3103 3104 3105

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3106
	kt = nsecs;
3107 3108 3109 3110 3111 3112 3113

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3114
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3129 3130 3131 3132 3133
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3134 3135 3136 3137 3138 3139 3140
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3141
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3142 3143
		return true;

J
Jens Axboe 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3169
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3170 3171 3172
	return false;
}

3173
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3174 3175 3176 3177
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3178
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3179 3180 3181
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3182 3183
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3184
	else {
3185
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3186 3187 3188 3189 3190 3191 3192 3193 3194
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3195 3196 3197 3198

	return __blk_mq_poll(hctx, rq);
}

3199 3200
static int __init blk_mq_init(void)
{
3201 3202
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3203 3204 3205
	return 0;
}
subsys_initcall(blk_mq_init);