blk-mq.c 74.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98
	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128 129
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	blk_mq_freeze_queue_wait(q);
}
165 166 167 168 169 170 171 172 173

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
174
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175

176
void blk_mq_unfreeze_queue(struct request_queue *q)
177
{
178
	int freeze_depth;
179

180 181 182
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
183
		percpu_ref_reinit(&q->q_usage_counter);
184
		wake_up_all(&q->mq_freeze_wq);
185
	}
186
}
187
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

203
/**
204
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 206 207
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
208 209 210
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
211 212 213 214 215 216 217
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

218
	blk_mq_quiesce_queue_nowait(q);
219

220 221
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
222
			synchronize_srcu(hctx->srcu);
223 224 225 226 227 228 229 230
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

231 232 233 234 235 236 237 238 239
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
240 241 242
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
243
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244
	spin_unlock_irqrestore(q->queue_lock, flags);
245

246 247
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
248 249 250
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

251 252 253 254 255 256 257 258 259 260
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

261 262 263 264 265 266
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

267 268
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
269
{
270 271 272
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

273 274
	rq->rq_flags = 0;

275 276 277 278 279 280 281 282 283 284 285 286 287
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

288 289
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
290 291
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
292
	rq->cmd_flags = op;
293 294
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
295
	if (blk_queue_io_stat(data->q))
296
		rq->rq_flags |= RQF_IO_STAT;
297 298 299 300 301 302
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
303
	rq->start_time = jiffies;
304 305
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
306
	set_start_time_ns(rq);
307 308 309 310 311 312 313 314 315 316 317
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
318 319
	rq->timeout = 0;

320 321 322 323
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

324 325
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
326 327
}

328 329 330 331 332 333
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
334
	unsigned int tag;
335
	bool put_ctx_on_error = false;
336 337 338

	blk_queue_enter_live(q);
	data->q = q;
339 340 341 342
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
343 344
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
345 346
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
347 348 349 350 351 352 353 354

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
355 356
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
357 358
	}

359 360
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
361 362
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
363 364
			data->ctx = NULL;
		}
365 366
		blk_queue_exit(q);
		return NULL;
367 368
	}

369
	rq = blk_mq_rq_ctx_init(data, tag, op);
370 371
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
372
		if (e && e->type->ops.mq.prepare_request) {
373 374 375
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

376 377
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
378
		}
379 380 381
	}
	data->hctx->queued++;
	return rq;
382 383
}

384
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
385
		blk_mq_req_flags_t flags)
386
{
387
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
388
	struct request *rq;
389
	int ret;
390

391
	ret = blk_queue_enter(q, flags);
392 393
	if (ret)
		return ERR_PTR(ret);
394

395
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
396
	blk_queue_exit(q);
397

398
	if (!rq)
399
		return ERR_PTR(-EWOULDBLOCK);
400

401 402
	blk_mq_put_ctx(alloc_data.ctx);

403 404 405
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
406 407
	return rq;
}
408
EXPORT_SYMBOL(blk_mq_alloc_request);
409

410
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
411
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
412
{
413
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
414
	struct request *rq;
415
	unsigned int cpu;
M
Ming Lin 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

430
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
431 432 433
	if (ret)
		return ERR_PTR(ret);

434 435 436 437
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
438 439 440 441
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
442
	}
443 444
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
445

446
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
447
	blk_queue_exit(q);
448

449 450 451 452
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
453 454 455
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

456
void blk_mq_free_request(struct request *rq)
457 458
{
	struct request_queue *q = rq->q;
459 460 461 462 463
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

464
	if (rq->rq_flags & RQF_ELVPRIV) {
465 466 467 468 469 470 471
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
472

473
	ctx->rq_completed[rq_is_sync(rq)]++;
474
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
475
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
476

477 478 479
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
480
	wbt_done(q->rq_wb, &rq->issue_stat);
481

S
Shaohua Li 已提交
482 483 484
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

485
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
486
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
487 488 489
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
490
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
491
	blk_mq_sched_restart(hctx);
492
	blk_queue_exit(q);
493
}
J
Jens Axboe 已提交
494
EXPORT_SYMBOL_GPL(blk_mq_free_request);
495

496
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
497
{
M
Ming Lei 已提交
498 499
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
500
	if (rq->end_io) {
J
Jens Axboe 已提交
501
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
502
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
503 504 505
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
506
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
507
	}
508
}
509
EXPORT_SYMBOL(__blk_mq_end_request);
510

511
void blk_mq_end_request(struct request *rq, blk_status_t error)
512 513 514
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
515
	__blk_mq_end_request(rq, error);
516
}
517
EXPORT_SYMBOL(blk_mq_end_request);
518

519
static void __blk_mq_complete_request_remote(void *data)
520
{
521
	struct request *rq = data;
522

523
	rq->q->softirq_done_fn(rq);
524 525
}

526
static void __blk_mq_complete_request(struct request *rq)
527 528
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
529
	bool shared = false;
530 531
	int cpu;

532
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
533
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
534

535 536 537 538 539 540 541
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
542
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 544 545
		rq->q->softirq_done_fn(rq);
		return;
	}
546 547

	cpu = get_cpu();
C
Christoph Hellwig 已提交
548 549 550 551
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552
		rq->csd.func = __blk_mq_complete_request_remote;
553 554
		rq->csd.info = rq;
		rq->csd.flags = 0;
555
		smp_call_function_single_async(ctx->cpu, &rq->csd);
556
	} else {
557
		rq->q->softirq_done_fn(rq);
558
	}
559 560
	put_cpu();
}
561

562 563 564 565 566
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
567
		srcu_read_unlock(hctx->srcu, srcu_idx);
568 569 570 571
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
{
572 573 574
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
575
		rcu_read_lock();
576
	} else
577
		*srcu_idx = srcu_read_lock(hctx->srcu);
578 579
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

610 611 612 613 614 615 616 617
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
618
void blk_mq_complete_request(struct request *rq)
619
{
620
	struct request_queue *q = rq->q;
621 622
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
623 624

	if (unlikely(blk_should_fake_timeout(q)))
625
		return;
626

627 628 629 630 631 632 633 634 635 636 637
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
638
	hctx_lock(hctx, &srcu_idx);
639
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
640
		__blk_mq_complete_request(rq);
641
	hctx_unlock(hctx, srcu_idx);
642 643
}
EXPORT_SYMBOL(blk_mq_complete_request);
644

645 646
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
647
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
648 649 650
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

651
void blk_mq_start_request(struct request *rq)
652 653 654
{
	struct request_queue *q = rq->q;

655 656
	blk_mq_sched_started_request(rq);

657 658
	trace_block_rq_issue(q, rq);

659
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
660
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
661
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
662
		wbt_issue(q->rq_wb, &rq->issue_stat);
663 664
	}

665
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
666

667
	/*
668 669 670 671
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
672
	 *
673 674 675 676
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
677
	 */
678 679 680 681 682 683 684 685 686
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();

687 688 689 690 691 692 693 694
	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
695
}
696
EXPORT_SYMBOL(blk_mq_start_request);
697

698
/*
T
Tejun Heo 已提交
699 700 701
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
702
 */
703
static void __blk_mq_requeue_request(struct request *rq)
704 705 706
{
	struct request_queue *q = rq->q;

707 708
	blk_mq_put_driver_tag(rq);

709
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
710
	wbt_requeue(q->rq_wb, &rq->issue_stat);
711
	blk_mq_sched_requeue_request(rq);
712

T
Tejun Heo 已提交
713
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
714
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
715 716 717
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
718 719
}

720
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
721 722 723 724
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
725
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
726 727 728
}
EXPORT_SYMBOL(blk_mq_requeue_request);

729 730 731
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
732
		container_of(work, struct request_queue, requeue_work.work);
733 734 735
	LIST_HEAD(rq_list);
	struct request *rq, *next;

736
	spin_lock_irq(&q->requeue_lock);
737
	list_splice_init(&q->requeue_list, &rq_list);
738
	spin_unlock_irq(&q->requeue_lock);
739 740

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
741
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
742 743
			continue;

744
		rq->rq_flags &= ~RQF_SOFTBARRIER;
745
		list_del_init(&rq->queuelist);
746
		blk_mq_sched_insert_request(rq, true, false, false, true);
747 748 749 750 751
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
752
		blk_mq_sched_insert_request(rq, false, false, false, true);
753 754
	}

755
	blk_mq_run_hw_queues(q, false);
756 757
}

758 759
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
760 761 762 763 764 765
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
766
	 * request head insertion from the workqueue.
767
	 */
768
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
769 770 771

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
772
		rq->rq_flags |= RQF_SOFTBARRIER;
773 774 775 776 777
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
778 779 780

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
781 782 783 784 785
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
786
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
787 788 789
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

790 791 792
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
793 794
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
795 796 797
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

798 799
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
800 801
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
802
		return tags->rqs[tag];
803
	}
804 805

	return NULL;
806 807 808
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

809
struct blk_mq_timeout_data {
810 811
	unsigned long next;
	unsigned int next_set;
812
	unsigned int nr_expired;
813 814
};

815
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
816
{
J
Jens Axboe 已提交
817
	const struct blk_mq_ops *ops = req->q->mq_ops;
818
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
819

820 821
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;

822
	if (ops->timeout)
823
		ret = ops->timeout(req, reserved);
824 825 826 827 828 829

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
830 831 832 833 834 835
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
836 837 838 839 840 841 842 843
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
844
}
845

846 847 848 849
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
850 851 852 853
	unsigned long gstate, deadline;
	int start;

	might_sleep();
854

T
Tejun Heo 已提交
855
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
856
		return;
857

858 859 860 861 862 863 864 865 866
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
		deadline = rq->deadline;
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
867

868 869 870 871 872 873
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
874 875
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
876 877
		data->next_set = 1;
	}
878 879
}

880 881 882 883 884 885 886 887 888 889
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
890 891
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
892 893 894
		blk_mq_rq_timed_out(rq, reserved);
}

895
static void blk_mq_timeout_work(struct work_struct *work)
896
{
897 898
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
899 900 901
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
902
		.nr_expired	= 0,
903
	};
904
	struct blk_mq_hw_ctx *hctx;
905
	int i;
906

907 908 909 910 911 912 913 914 915
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
916
	 * blk_freeze_queue_start, and the moment the last request is
917 918 919 920
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
921 922
		return;

923
	/* scan for the expired ones and set their ->aborted_gstate */
924
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
925

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
942
				synchronize_srcu(hctx->srcu);
943 944 945 946 947 948 949 950 951 952

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

953 954 955
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
956
	} else {
957 958 959 960 961
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
962
	}
963
	blk_queue_exit(q);
964 965
}

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

984 985 986 987
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
988
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
989
{
990 991 992 993
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
994

995
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
996
}
997
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1038 1039 1040 1041
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1042

1043
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1044 1045
}

1046 1047
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1048 1049 1050 1051 1052 1053 1054
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1055 1056
	might_sleep_if(wait);

1057 1058
	if (rq->tag != -1)
		goto done;
1059

1060 1061 1062
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1063 1064
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1065 1066 1067 1068
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1069 1070 1071
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1072 1073 1074 1075
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1076 1077
}

1078 1079
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1080 1081 1082 1083 1084
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1085
	list_del_init(&wait->entry);
1086 1087 1088 1089
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1090 1091
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1092 1093
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1094 1095 1096 1097
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1098
{
1099
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1100
	bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1101
	struct sbq_wait_state *ws;
1102 1103
	wait_queue_entry_t *wait;
	bool ret;
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	if (!shared_tags) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
	} else {
		wait = &this_hctx->dispatch_wait;
		if (!list_empty_careful(&wait->entry))
			return false;

		spin_lock(&this_hctx->lock);
		if (!list_empty(&wait->entry)) {
			spin_unlock(&this_hctx->lock);
			return false;
		}
1118

1119 1120
		ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
		add_wait_queue(&ws->wait, wait);
1121 1122
	}

1123
	/*
1124 1125 1126
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1127
	 */
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	ret = blk_mq_get_driver_tag(rq, hctx, false);

	if (!shared_tags) {
		/*
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return ret;
	} else {
		if (!ret) {
			spin_unlock(&this_hctx->lock);
			return false;
		}

		/*
		 * We got a tag, remove ourselves from the wait queue to ensure
		 * someone else gets the wakeup.
		 */
		spin_lock_irq(&ws->wait.lock);
		list_del_init(&wait->entry);
		spin_unlock_irq(&ws->wait.lock);
1149
		spin_unlock(&this_hctx->lock);
1150
		return true;
1151
	}
1152 1153
}

1154
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1155
			     bool got_budget)
1156
{
1157
	struct blk_mq_hw_ctx *hctx;
1158
	struct request *rq, *nxt;
1159
	bool no_tag = false;
1160
	int errors, queued;
1161

1162 1163 1164
	if (list_empty(list))
		return false;

1165 1166
	WARN_ON(!list_is_singular(list) && got_budget);

1167 1168 1169
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1170
	errors = queued = 0;
1171
	do {
1172
		struct blk_mq_queue_data bd;
1173
		blk_status_t ret;
1174

1175
		rq = list_first_entry(list, struct request, queuelist);
1176
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1177
			/*
1178
			 * The initial allocation attempt failed, so we need to
1179 1180 1181 1182
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1183
			 */
1184
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1185 1186
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1187 1188 1189 1190 1191 1192
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1193 1194 1195 1196
				break;
			}
		}

1197 1198
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1199
			break;
1200
		}
1201

1202 1203
		list_del_init(&rq->queuelist);

1204
		bd.rq = rq;
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1216 1217

		ret = q->mq_ops->queue_rq(hctx, &bd);
1218
		if (ret == BLK_STS_RESOURCE) {
1219 1220
			/*
			 * If an I/O scheduler has been configured and we got a
1221 1222
			 * driver tag for the next request already, free it
			 * again.
1223 1224 1225 1226 1227
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1228
			list_add(&rq->queuelist, list);
1229
			__blk_mq_requeue_request(rq);
1230
			break;
1231 1232 1233
		}

		if (unlikely(ret != BLK_STS_OK)) {
1234
			errors++;
1235
			blk_mq_end_request(rq, BLK_STS_IOERR);
1236
			continue;
1237 1238
		}

1239
		queued++;
1240
	} while (!list_empty(list));
1241

1242
	hctx->dispatched[queued_to_index(queued)]++;
1243 1244 1245 1246 1247

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1248
	if (!list_empty(list)) {
1249
		spin_lock(&hctx->lock);
1250
		list_splice_init(list, &hctx->dispatch);
1251
		spin_unlock(&hctx->lock);
1252

1253
		/*
1254 1255 1256
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1257
		 *
1258 1259 1260 1261
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1262
		 *
1263 1264 1265 1266 1267 1268 1269
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1270
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1271
		 *   and dm-rq.
1272
		 */
1273 1274
		if (!blk_mq_sched_needs_restart(hctx) ||
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1275
			blk_mq_run_hw_queue(hctx, true);
1276
	}
1277

1278
	return (queued + errors) != 0;
1279 1280
}

1281 1282 1283 1284
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1285 1286 1287 1288
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1289 1290 1291
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1292 1293 1294 1295 1296 1297
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1298
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1299

1300 1301 1302
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1303 1304
}

1305 1306 1307 1308 1309 1310 1311 1312
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1313 1314
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1315 1316

	if (--hctx->next_cpu_batch <= 0) {
1317
		int next_cpu;
1318 1319 1320 1321 1322 1323 1324 1325 1326

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1327
	return hctx->next_cpu;
1328 1329
}

1330 1331
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1332
{
1333 1334 1335 1336
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1337 1338
		return;

1339
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1340 1341
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1342
			__blk_mq_run_hw_queue(hctx);
1343
			put_cpu();
1344 1345
			return;
		}
1346

1347
		put_cpu();
1348
	}
1349

1350 1351 1352
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1353 1354 1355 1356 1357 1358 1359 1360
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1361
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1362
{
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1374 1375 1376 1377
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1378 1379

	if (need_run) {
1380 1381 1382 1383 1384
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1385
}
O
Omar Sandoval 已提交
1386
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1387

1388
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1389 1390 1391 1392 1393
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1394
		if (blk_mq_hctx_stopped(hctx))
1395 1396
			continue;

1397
		blk_mq_run_hw_queue(hctx, async);
1398 1399
	}
}
1400
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1422 1423 1424
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1425
 * BLK_STS_RESOURCE is usually returned.
1426 1427 1428 1429 1430
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1431 1432
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1433
	cancel_delayed_work(&hctx->run_work);
1434

1435
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1436
}
1437
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1438

1439 1440 1441
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1442
 * BLK_STS_RESOURCE is usually returned.
1443 1444 1445 1446 1447
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1448 1449
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1450 1451 1452 1453 1454
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1455 1456 1457
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1458 1459 1460
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1461

1462
	blk_mq_run_hw_queue(hctx, false);
1463 1464 1465
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1486
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1487 1488 1489 1490
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1491 1492
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1493 1494 1495
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1496
static void blk_mq_run_work_fn(struct work_struct *work)
1497 1498 1499
{
	struct blk_mq_hw_ctx *hctx;

1500
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1501

1502 1503 1504 1505 1506 1507 1508 1509
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1510

1511 1512 1513
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1514 1515 1516 1517

	__blk_mq_run_hw_queue(hctx);
}

1518 1519 1520

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1521
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1522
		return;
1523

1524 1525 1526 1527 1528
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1529
	blk_mq_stop_hw_queue(hctx);
1530 1531 1532 1533
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1534 1535 1536
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1537 1538 1539
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1540
{
J
Jens Axboe 已提交
1541 1542
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1543 1544
	lockdep_assert_held(&ctx->lock);

1545 1546
	trace_block_rq_insert(hctx->queue, rq);

1547 1548 1549 1550
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1551
}
1552

1553 1554
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1555 1556 1557
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1558 1559
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1560
	__blk_mq_insert_req_list(hctx, rq, at_head);
1561 1562 1563
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1564 1565 1566 1567
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1568
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1569 1570 1571 1572 1573 1574 1575 1576
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1577 1578
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1579 1580
}

1581 1582
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1594
		BUG_ON(rq->mq_ctx != ctx);
1595
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1596
		__blk_mq_insert_req_list(hctx, rq, false);
1597
	}
1598
	blk_mq_hctx_mark_pending(hctx, ctx);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1635 1636 1637 1638
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1655 1656 1657
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1658 1659 1660 1661 1662
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1663
	blk_init_request_from_bio(rq, bio);
1664

S
Shaohua Li 已提交
1665 1666
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1667
	blk_account_io_start(rq, true);
1668 1669
}

1670 1671 1672 1673 1674 1675 1676
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1677
}
1678

1679 1680
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1681 1682 1683 1684
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1685 1686
}

M
Ming Lei 已提交
1687 1688
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
1689
					blk_qc_t *cookie)
1690 1691 1692 1693
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1694
		.last = true,
1695
	};
1696
	blk_qc_t new_cookie;
1697
	blk_status_t ret;
M
Ming Lei 已提交
1698 1699
	bool run_queue = true;

1700 1701
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1702 1703 1704
		run_queue = false;
		goto insert;
	}
1705

1706
	if (q->elevator)
1707 1708
		goto insert;

M
Ming Lei 已提交
1709
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1710 1711
		goto insert;

1712
	if (!blk_mq_get_dispatch_budget(hctx)) {
1713 1714
		blk_mq_put_driver_tag(rq);
		goto insert;
1715
	}
1716

1717 1718
	new_cookie = request_to_qc_t(hctx, rq);

1719 1720 1721 1722 1723 1724
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1725 1726
	switch (ret) {
	case BLK_STS_OK:
1727
		*cookie = new_cookie;
1728
		return;
1729 1730 1731 1732
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1733
		*cookie = BLK_QC_T_NONE;
1734
		blk_mq_end_request(rq, ret);
1735
		return;
1736
	}
1737

1738
insert:
1739 1740
	blk_mq_sched_insert_request(rq, false, run_queue, false,
					hctx->flags & BLK_MQ_F_BLOCKING);
1741 1742
}

1743 1744 1745
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1746
	int srcu_idx;
1747

1748
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1749

1750 1751 1752
	hctx_lock(hctx, &srcu_idx);
	__blk_mq_try_issue_directly(hctx, rq, cookie);
	hctx_unlock(hctx, srcu_idx);
1753 1754
}

1755
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1756
{
1757
	const int is_sync = op_is_sync(bio->bi_opf);
1758
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1759
	struct blk_mq_alloc_data data = { .flags = 0 };
1760
	struct request *rq;
1761
	unsigned int request_count = 0;
1762
	struct blk_plug *plug;
1763
	struct request *same_queue_rq = NULL;
1764
	blk_qc_t cookie;
J
Jens Axboe 已提交
1765
	unsigned int wb_acct;
1766 1767 1768

	blk_queue_bounce(q, &bio);

1769
	blk_queue_split(q, &bio);
1770

1771
	if (!bio_integrity_prep(bio))
1772
		return BLK_QC_T_NONE;
1773

1774 1775 1776
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1777

1778 1779 1780
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1781 1782
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1783 1784
	trace_block_getrq(q, bio, bio->bi_opf);

1785
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1786 1787
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1788 1789
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1790
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1791 1792 1793
	}

	wbt_track(&rq->issue_stat, wb_acct);
1794

1795
	cookie = request_to_qc_t(data.hctx, rq);
1796

1797
	plug = current->plug;
1798
	if (unlikely(is_flush_fua)) {
1799
		blk_mq_put_ctx(data.ctx);
1800
		blk_mq_bio_to_request(rq, bio);
1801 1802 1803 1804

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1805
	} else if (plug && q->nr_hw_queues == 1) {
1806 1807
		struct request *last = NULL;

1808
		blk_mq_put_ctx(data.ctx);
1809
		blk_mq_bio_to_request(rq, bio);
1810 1811 1812 1813 1814 1815 1816

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1817 1818 1819
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1820
		if (!request_count)
1821
			trace_block_plug(q);
1822 1823
		else
			last = list_entry_rq(plug->mq_list.prev);
1824

1825 1826
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1827 1828
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1829
		}
1830

1831
		list_add_tail(&rq->queuelist, &plug->mq_list);
1832
	} else if (plug && !blk_queue_nomerges(q)) {
1833
		blk_mq_bio_to_request(rq, bio);
1834 1835

		/*
1836
		 * We do limited plugging. If the bio can be merged, do that.
1837 1838
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1839 1840
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1841
		 */
1842 1843 1844 1845 1846 1847
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1848 1849
		blk_mq_put_ctx(data.ctx);

1850 1851 1852
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1853 1854
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1855
		}
1856
	} else if (q->nr_hw_queues > 1 && is_sync) {
1857
		blk_mq_put_ctx(data.ctx);
1858 1859
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1860
	} else if (q->elevator) {
1861
		blk_mq_put_ctx(data.ctx);
1862
		blk_mq_bio_to_request(rq, bio);
1863
		blk_mq_sched_insert_request(rq, false, true, true, true);
1864
	} else {
1865
		blk_mq_put_ctx(data.ctx);
1866 1867
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1868
		blk_mq_run_hw_queue(data.hctx, true);
1869
	}
1870

1871
	return cookie;
1872 1873
}

1874 1875
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1876
{
1877
	struct page *page;
1878

1879
	if (tags->rqs && set->ops->exit_request) {
1880
		int i;
1881

1882
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1883 1884 1885
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1886
				continue;
1887
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1888
			tags->static_rqs[i] = NULL;
1889
		}
1890 1891
	}

1892 1893
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1894
		list_del_init(&page->lru);
1895 1896 1897 1898 1899
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1900 1901
		__free_pages(page, page->private);
	}
1902
}
1903

1904 1905
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1906
	kfree(tags->rqs);
1907
	tags->rqs = NULL;
J
Jens Axboe 已提交
1908 1909
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1910

1911
	blk_mq_free_tags(tags);
1912 1913
}

1914 1915 1916 1917
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1918
{
1919
	struct blk_mq_tags *tags;
1920
	int node;
1921

1922 1923 1924 1925 1926
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1927
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1928 1929
	if (!tags)
		return NULL;
1930

1931
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1932
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1933
				 node);
1934 1935 1936 1937
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1938

J
Jens Axboe 已提交
1939 1940
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1941
				 node);
J
Jens Axboe 已提交
1942 1943 1944 1945 1946 1947
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1948 1949 1950 1951 1952 1953 1954 1955
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
	return 0;
}

1972 1973 1974 1975 1976
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1977 1978 1979 1980 1981
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1982 1983 1984

	INIT_LIST_HEAD(&tags->page_list);

1985 1986 1987 1988
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1989
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1990
				cache_line_size());
1991
	left = rq_size * depth;
1992

1993
	for (i = 0; i < depth; ) {
1994 1995 1996 1997 1998
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1999
		while (this_order && left < order_to_size(this_order - 1))
2000 2001 2002
			this_order--;

		do {
2003
			page = alloc_pages_node(node,
2004
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2005
				this_order);
2006 2007 2008 2009 2010 2011 2012 2013 2014
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2015
			goto fail;
2016 2017

		page->private = this_order;
2018
		list_add_tail(&page->lru, &tags->page_list);
2019 2020

		p = page_address(page);
2021 2022 2023 2024
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2025
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2026
		entries_per_page = order_to_size(this_order) / rq_size;
2027
		to_do = min(entries_per_page, depth - i);
2028 2029
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2030 2031 2032
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2033 2034 2035
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2036 2037
			}

2038 2039 2040 2041
			p += rq_size;
			i++;
		}
	}
2042
	return 0;
2043

2044
fail:
2045 2046
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2047 2048
}

J
Jens Axboe 已提交
2049 2050 2051 2052 2053
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2054
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2055
{
2056
	struct blk_mq_hw_ctx *hctx;
2057 2058 2059
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2060
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2061
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2062 2063 2064 2065 2066 2067 2068 2069 2070

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2071
		return 0;
2072

J
Jens Axboe 已提交
2073 2074 2075
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2076 2077

	blk_mq_run_hw_queue(hctx, true);
2078
	return 0;
2079 2080
}

2081
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2082
{
2083 2084
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2085 2086
}

2087
/* hctx->ctxs will be freed in queue's release handler */
2088 2089 2090 2091
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2092 2093
	blk_mq_debugfs_unregister_hctx(hctx);

2094 2095
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2096

2097
	if (set->ops->exit_request)
2098
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2099

2100 2101
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2102 2103 2104
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2105
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2106
		cleanup_srcu_struct(hctx->srcu);
2107

2108
	blk_mq_remove_cpuhp(hctx);
2109
	blk_free_flush_queue(hctx->fq);
2110
	sbitmap_free(&hctx->ctx_map);
2111 2112
}

M
Ming Lei 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2122
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2123 2124 2125
	}
}

2126 2127 2128
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2129
{
2130 2131 2132 2133 2134 2135
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2136
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2137 2138 2139
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2140
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2141

2142
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2143 2144

	hctx->tags = set->tags[hctx_idx];
2145 2146

	/*
2147 2148
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2149
	 */
2150
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2151 2152 2153
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2154

2155 2156
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2157
		goto free_ctxs;
2158

2159
	hctx->nr_ctx = 0;
2160

2161 2162 2163
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2164 2165 2166
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2167

2168 2169 2170
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2171 2172
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2173
		goto sched_exit_hctx;
2174

2175
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2176
		goto free_fq;
2177

2178
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2179
		init_srcu_struct(hctx->srcu);
2180

2181 2182
	blk_mq_debugfs_register_hctx(q, hctx);

2183
	return 0;
2184

2185 2186
 free_fq:
	kfree(hctx->fq);
2187 2188
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2189 2190 2191
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2192
 free_bitmap:
2193
	sbitmap_free(&hctx->ctx_map);
2194 2195 2196
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2197
	blk_mq_remove_cpuhp(hctx);
2198 2199
	return -1;
}
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2215 2216
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2217 2218
			continue;

C
Christoph Hellwig 已提交
2219
		hctx = blk_mq_map_queue(q, i);
2220

2221 2222 2223 2224 2225
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2226
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2227 2228 2229
	}
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2252 2253 2254 2255 2256
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2257 2258
}

2259
static void blk_mq_map_swqueue(struct request_queue *q)
2260
{
2261
	unsigned int i, hctx_idx;
2262 2263
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2264
	struct blk_mq_tag_set *set = q->tag_set;
2265

2266 2267 2268 2269 2270
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2271
	queue_for_each_hw_ctx(q, hctx, i) {
2272
		cpumask_clear(hctx->cpumask);
2273 2274 2275 2276
		hctx->nr_ctx = 0;
	}

	/*
2277 2278 2279
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2280
	 */
2281
	for_each_present_cpu(i) {
2282 2283
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2284 2285
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2286 2287 2288 2289 2290 2291
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2292
			q->mq_map[i] = 0;
2293 2294
		}

2295
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2296
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2297

2298
		cpumask_set_cpu(i, hctx->cpumask);
2299 2300 2301
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2302

2303 2304
	mutex_unlock(&q->sysfs_lock);

2305
	queue_for_each_hw_ctx(q, hctx, i) {
2306
		/*
2307 2308
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2309 2310
		 */
		if (!hctx->nr_ctx) {
2311 2312 2313 2314
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2315 2316 2317
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2318
			hctx->tags = NULL;
2319 2320 2321
			continue;
		}

M
Ming Lei 已提交
2322 2323 2324
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2325 2326 2327 2328 2329
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2330
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2331

2332 2333 2334
		/*
		 * Initialize batch roundrobin counts
		 */
2335 2336 2337
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2338 2339
}

2340 2341 2342 2343
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2344
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2345 2346 2347 2348
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2349
	queue_for_each_hw_ctx(q, hctx, i) {
2350 2351 2352
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2353
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2354 2355 2356
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2357
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2358
		}
2359 2360 2361
	}
}

2362 2363
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2364 2365
{
	struct request_queue *q;
2366

2367 2368
	lockdep_assert_held(&set->tag_list_lock);

2369 2370
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2371
		queue_set_hctx_shared(q, shared);
2372 2373 2374 2375 2376 2377 2378 2379 2380
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2381 2382
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2383 2384 2385 2386 2387 2388
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2389
	mutex_unlock(&set->tag_list_lock);
2390 2391

	synchronize_rcu();
2392 2393 2394 2395 2396 2397 2398 2399
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2400

2401 2402 2403 2404 2405
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2406 2407 2408 2409 2410 2411
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2412
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2413

2414 2415 2416
	mutex_unlock(&set->tag_list_lock);
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2429 2430 2431
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2432
		kobject_put(&hctx->kobj);
2433
	}
2434

2435 2436
	q->mq_map = NULL;

2437 2438
	kfree(q->queue_hw_ctx);

2439 2440 2441 2442 2443 2444
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2445 2446 2447
	free_percpu(q->queue_ctx);
}

2448
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2464 2465 2466 2467
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2468
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2469 2470 2471 2472 2473 2474 2475 2476 2477
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2478 2479
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2480
{
K
Keith Busch 已提交
2481 2482
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2483

K
Keith Busch 已提交
2484
	blk_mq_sysfs_unregister(q);
2485 2486 2487

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2488
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2489
		int node;
2490

K
Keith Busch 已提交
2491 2492 2493 2494
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2495
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2496
					GFP_KERNEL, node);
2497
		if (!hctxs[i])
K
Keith Busch 已提交
2498
			break;
2499

2500
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2501 2502 2503 2504 2505
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2506

2507
		atomic_set(&hctxs[i]->nr_active, 0);
2508
		hctxs[i]->numa_node = node;
2509
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2510 2511 2512 2513 2514 2515 2516 2517

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2518
	}
K
Keith Busch 已提交
2519 2520 2521 2522
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2523 2524
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2525 2526 2527 2528 2529 2530 2531
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2532
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2533 2534 2535 2536 2537 2538
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2539 2540 2541
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2542
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2543 2544
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2545 2546 2547
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2548 2549
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2550
		goto err_exit;
K
Keith Busch 已提交
2551

2552 2553 2554
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2555 2556 2557 2558 2559
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2560
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2561 2562 2563 2564

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2565

2566
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2567
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2568 2569 2570

	q->nr_queues = nr_cpu_ids;

2571
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2572

2573 2574 2575
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2576 2577
	q->sg_reserved_size = INT_MAX;

2578
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2579 2580 2581
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2582
	blk_queue_make_request(q, blk_mq_make_request);
2583 2584
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2585

2586 2587 2588 2589 2590
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2591 2592 2593 2594 2595
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2596 2597
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2598

2599
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2600
	blk_mq_add_queue_tag_set(set, q);
2601
	blk_mq_map_swqueue(q);
2602

2603 2604 2605 2606 2607 2608 2609 2610
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2611
	return q;
2612

2613
err_hctxs:
K
Keith Busch 已提交
2614
	kfree(q->queue_hw_ctx);
2615
err_percpu:
K
Keith Busch 已提交
2616
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2617 2618
err_exit:
	q->mq_ops = NULL;
2619 2620
	return ERR_PTR(-ENOMEM);
}
2621
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2622 2623 2624

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2625
	struct blk_mq_tag_set	*set = q->tag_set;
2626

2627
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2628
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2629 2630 2631
}

/* Basically redo blk_mq_init_queue with queue frozen */
2632
static void blk_mq_queue_reinit(struct request_queue *q)
2633
{
2634
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2635

2636
	blk_mq_debugfs_unregister_hctxs(q);
2637 2638
	blk_mq_sysfs_unregister(q);

2639 2640
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2641 2642
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2643
	 */
2644
	blk_mq_map_swqueue(q);
2645

2646
	blk_mq_sysfs_register(q);
2647
	blk_mq_debugfs_register_hctxs(q);
2648 2649
}

2650 2651 2652 2653
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2654 2655
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2656 2657 2658 2659 2660 2661
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2662
		blk_mq_free_rq_map(set->tags[i]);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2702 2703
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2723
		return set->ops->map_queues(set);
2724
	} else
2725 2726 2727
		return blk_mq_map_queues(set);
}

2728 2729 2730 2731 2732 2733
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2734 2735
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2736 2737
	int ret;

B
Bart Van Assche 已提交
2738 2739
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2740 2741
	if (!set->nr_hw_queues)
		return -EINVAL;
2742
	if (!set->queue_depth)
2743 2744 2745 2746
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2747
	if (!set->ops->queue_rq)
2748 2749
		return -EINVAL;

2750 2751 2752
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2753 2754 2755 2756 2757
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2758

2759 2760 2761 2762 2763 2764 2765 2766 2767
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2768 2769 2770 2771 2772
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2773

K
Keith Busch 已提交
2774
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2775 2776
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2777
		return -ENOMEM;
2778

2779 2780 2781
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2782 2783 2784
	if (!set->mq_map)
		goto out_free_tags;

2785
	ret = blk_mq_update_queue_map(set);
2786 2787 2788 2789 2790
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2791
		goto out_free_mq_map;
2792

2793 2794 2795
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2796
	return 0;
2797 2798 2799 2800 2801

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2802 2803
	kfree(set->tags);
	set->tags = NULL;
2804
	return ret;
2805 2806 2807 2808 2809 2810 2811
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2812 2813
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2814

2815 2816 2817
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2818
	kfree(set->tags);
2819
	set->tags = NULL;
2820 2821 2822
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2823 2824 2825 2826 2827 2828
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2829
	if (!set)
2830 2831
		return -EINVAL;

2832
	blk_mq_freeze_queue(q);
2833
	blk_mq_quiesce_queue(q);
2834

2835 2836
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2837 2838
		if (!hctx->tags)
			continue;
2839 2840 2841 2842
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2843
		if (!hctx->sched_tags) {
2844
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2845 2846 2847 2848 2849
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2850 2851 2852 2853 2854 2855 2856
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2857
	blk_mq_unquiesce_queue(q);
2858 2859
	blk_mq_unfreeze_queue(q);

2860 2861 2862
	return ret;
}

2863 2864
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2865 2866 2867
{
	struct request_queue *q;

2868 2869
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2879
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2880 2881
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2882
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2883 2884 2885 2886 2887
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2888 2889 2890 2891 2892 2893 2894

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2895 2896
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2923
	int bucket;
2924

2925 2926 2927 2928
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2929 2930
}

2931 2932 2933 2934 2935
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2936
	int bucket;
2937 2938 2939 2940 2941

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2942
	if (!blk_poll_stats_enable(q))
2943 2944 2945 2946 2947 2948 2949 2950
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2951 2952
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2953
	 */
2954 2955 2956 2957 2958 2959
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2960 2961 2962 2963

	return ret;
}

2964
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2965
				     struct blk_mq_hw_ctx *hctx,
2966 2967 2968 2969
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2970
	unsigned int nsecs;
2971 2972
	ktime_t kt;

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2991 2992 2993 2994 2995 2996 2997 2998
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2999
	kt = nsecs;
3000 3001 3002 3003 3004 3005 3006

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3007
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3022 3023 3024 3025 3026
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3027 3028 3029 3030 3031 3032 3033
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3034
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3035 3036
		return true;

J
Jens Axboe 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

3065
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3066 3067 3068 3069
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3070
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3071 3072 3073
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3074 3075
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3076
	else {
3077
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3078 3079 3080 3081 3082 3083 3084 3085 3086
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3087 3088 3089 3090

	return __blk_mq_poll(hctx, rq);
}

3091 3092
static int __init blk_mq_init(void)
{
3093 3094
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3095 3096 3097
	return 0;
}
subsys_initcall(blk_mq_init);