blk-mq.c 57.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
42
	return sbitmap_any_bit_set(&hctx->ctx_map);
43 44
}

45 46 47 48 49 50
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
51 52
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 54 55 56 57
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
58
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 60
}

61
void blk_mq_freeze_queue_start(struct request_queue *q)
62
{
63
	int freeze_depth;
64

65 66
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
67
		percpu_ref_kill(&q->q_usage_counter);
68
		blk_mq_run_hw_queues(q, false);
69
	}
70
}
71
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72 73 74

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
75
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 77
}

78 79 80 81
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
82
void blk_freeze_queue(struct request_queue *q)
83
{
84 85 86 87 88 89 90
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
91 92 93
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
94 95 96 97 98 99 100 101 102

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
103
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104

105
void blk_mq_unfreeze_queue(struct request_queue *q)
106
{
107
	int freeze_depth;
108

109 110 111
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
112
		percpu_ref_reinit(&q->q_usage_counter);
113
		wake_up_all(&q->mq_freeze_wq);
114
	}
115
}
116
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

145 146 147 148 149 150 151 152
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
153 154 155 156 157 158 159

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
160 161
}

162 163 164 165 166 167
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

168
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
169
			       struct request *rq, unsigned int op)
170
{
171 172 173
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
174
	rq->mq_ctx = ctx;
175
	rq->cmd_flags = op;
176 177
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
178 179 180 181 182 183
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
184
	rq->start_time = jiffies;
185 186
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
187
	set_start_time_ns(rq);
188 189 190 191 192 193 194 195 196 197
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

198 199
	rq->cmd = rq->__cmd;

200 201 202 203 204 205
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
206 207
	rq->timeout = 0;

208 209 210 211
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

212
	ctx->rq_dispatched[op_is_sync(op)]++;
213 214
}

215
static struct request *
216
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
217 218 219 220
{
	struct request *rq;
	unsigned int tag;

221
	tag = blk_mq_get_tag(data);
222
	if (tag != BLK_MQ_TAG_FAIL) {
223
		rq = data->hctx->tags->rqs[tag];
224

225
		if (blk_mq_tag_busy(data->hctx)) {
226
			rq->rq_flags = RQF_MQ_INFLIGHT;
227
			atomic_inc(&data->hctx->nr_active);
228 229 230
		}

		rq->tag = tag;
231
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
232 233 234 235 236 237
		return rq;
	}

	return NULL;
}

238 239
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
240
{
241 242
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
243
	struct request *rq;
244
	struct blk_mq_alloc_data alloc_data;
245
	int ret;
246

247
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
248 249
	if (ret)
		return ERR_PTR(ret);
250

251
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
252
	hctx = blk_mq_map_queue(q, ctx->cpu);
253
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
254
	rq = __blk_mq_alloc_request(&alloc_data, rw);
255
	blk_mq_put_ctx(ctx);
256

K
Keith Busch 已提交
257
	if (!rq) {
258
		blk_queue_exit(q);
259
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
260
	}
261 262 263 264

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
265 266
	return rq;
}
267
EXPORT_SYMBOL(blk_mq_alloc_request);
268

M
Ming Lin 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

294 295 296 297
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
298
	hctx = q->queue_hw_ctx[hctx_idx];
299 300 301 302
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
303 304 305
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
306
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
307
	if (!rq) {
308 309
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
310 311 312
	}

	return rq;
313 314 315 316

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
317 318 319
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

320 321 322 323 324 325
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

326
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
327
		atomic_dec(&hctx->nr_active);
328
	rq->rq_flags = 0;
329

330
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
331
	blk_mq_put_tag(hctx, ctx, tag);
332
	blk_queue_exit(q);
333 334
}

335
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
336 337 338 339 340
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
341 342 343 344 345 346

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
C
Christoph Hellwig 已提交
347
	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
348
}
J
Jens Axboe 已提交
349
EXPORT_SYMBOL_GPL(blk_mq_free_request);
350

351
inline void __blk_mq_end_request(struct request *rq, int error)
352
{
M
Ming Lei 已提交
353 354
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
355
	if (rq->end_io) {
356
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
357 358 359
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
360
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
361
	}
362
}
363
EXPORT_SYMBOL(__blk_mq_end_request);
364

365
void blk_mq_end_request(struct request *rq, int error)
366 367 368
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
369
	__blk_mq_end_request(rq, error);
370
}
371
EXPORT_SYMBOL(blk_mq_end_request);
372

373
static void __blk_mq_complete_request_remote(void *data)
374
{
375
	struct request *rq = data;
376

377
	rq->q->softirq_done_fn(rq);
378 379
}

380
static void blk_mq_ipi_complete_request(struct request *rq)
381 382
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
383
	bool shared = false;
384 385
	int cpu;

C
Christoph Hellwig 已提交
386
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
387 388 389
		rq->q->softirq_done_fn(rq);
		return;
	}
390 391

	cpu = get_cpu();
C
Christoph Hellwig 已提交
392 393 394 395
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
396
		rq->csd.func = __blk_mq_complete_request_remote;
397 398
		rq->csd.info = rq;
		rq->csd.flags = 0;
399
		smp_call_function_single_async(ctx->cpu, &rq->csd);
400
	} else {
401
		rq->q->softirq_done_fn(rq);
402
	}
403 404
	put_cpu();
}
405

406
static void __blk_mq_complete_request(struct request *rq)
407 408 409 410
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
411
		blk_mq_end_request(rq, rq->errors);
412 413 414 415
	else
		blk_mq_ipi_complete_request(rq);
}

416 417 418 419 420 421 422 423
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
424
void blk_mq_complete_request(struct request *rq, int error)
425
{
426 427 428
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
429
		return;
430 431
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
432
		__blk_mq_complete_request(rq);
433
	}
434 435
}
EXPORT_SYMBOL(blk_mq_complete_request);
436

437 438 439 440 441 442
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

443
void blk_mq_start_request(struct request *rq)
444 445 446 447 448
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
449
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
450 451
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
452

453
	blk_add_timer(rq);
454

455 456 457 458 459 460
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

461 462 463 464 465 466
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
467 468 469 470
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
471 472 473 474 475 476 477 478 479

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
480
}
481
EXPORT_SYMBOL(blk_mq_start_request);
482

483
static void __blk_mq_requeue_request(struct request *rq)
484 485 486 487
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
488

489 490 491 492
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
493 494
}

495
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
496 497 498 499
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
500
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
501 502 503
}
EXPORT_SYMBOL(blk_mq_requeue_request);

504 505 506
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
507
		container_of(work, struct request_queue, requeue_work.work);
508 509 510 511 512 513 514 515 516
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
517
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
518 519
			continue;

520
		rq->rq_flags &= ~RQF_SOFTBARRIER;
521 522 523 524 525 526 527 528 529 530
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

531
	blk_mq_run_hw_queues(q, false);
532 533
}

534 535
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
536 537 538 539 540 541 542 543
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
544
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
545 546 547

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
548
		rq->rq_flags |= RQF_SOFTBARRIER;
549 550 551 552 553
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
554 555 556

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
557 558 559 560 561
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
562
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
563 564 565
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

566 567 568 569 570 571 572 573
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

594 595
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
596 597
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
598
		return tags->rqs[tag];
599
	}
600 601

	return NULL;
602 603 604
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

605
struct blk_mq_timeout_data {
606 607
	unsigned long next;
	unsigned int next_set;
608 609
};

610
void blk_mq_rq_timed_out(struct request *req, bool reserved)
611
{
612 613
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
614 615 616 617 618 619 620 621 622 623

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
624 625
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
626

627
	if (ops->timeout)
628
		ret = ops->timeout(req, reserved);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
644
}
645

646 647 648 649
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
650

651 652 653 654 655
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
656 657 658 659
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
660
		return;
661
	}
662

663 664
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
665
			blk_mq_rq_timed_out(rq, reserved);
666 667 668 669
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
670 671
}

672
static void blk_mq_timeout_work(struct work_struct *work)
673
{
674 675
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
676 677 678 679 680
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
681

682 683 684 685 686 687 688 689 690 691 692 693 694 695
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
696 697
		return;

698
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
699

700 701 702
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
703
	} else {
704 705
		struct blk_mq_hw_ctx *hctx;

706 707 708 709 710
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
711
	}
712
	blk_queue_exit(q);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

772 773 774 775 776 777
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
778 779 780 781
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
782

783
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
784 785
}

786 787 788 789
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
790

791
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
792 793
}

794 795 796 797 798 799
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
800
static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
801 802 803 804
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
805 806
	LIST_HEAD(driver_list);
	struct list_head *dptr;
807
	int queued;
808

809
	if (unlikely(blk_mq_hctx_stopped(hctx)))
810 811 812 813 814 815 816
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
817
	flush_busy_ctxs(hctx, &rq_list);
818 819 820 821 822 823 824 825 826 827 828 829

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

830 831 832 833 834 835
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

836 837 838
	/*
	 * Now process all the entries, sending them to the driver.
	 */
839
	queued = 0;
840
	while (!list_empty(&rq_list)) {
841
		struct blk_mq_queue_data bd;
842 843 844 845 846
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

847 848 849 850 851
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
852 853 854
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
855
			break;
856 857
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
858
			__blk_mq_requeue_request(rq);
859 860 861 862
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
863
			rq->errors = -EIO;
864
			blk_mq_end_request(rq, rq->errors);
865 866 867 868 869
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
870 871 872 873 874 875 876

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
877 878
	}

879
	hctx->dispatched[queued_to_index(queued)]++;
880 881 882 883 884 885 886 887 888

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
889 890 891 892 893 894 895 896 897 898
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
899 900 901
	}
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		blk_mq_process_rq_list(hctx);
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		blk_mq_process_rq_list(hctx);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

920 921 922 923 924 925 926 927
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
928 929
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
930 931

	if (--hctx->next_cpu_batch <= 0) {
932
		int cpu = hctx->next_cpu, next_cpu;
933 934 935 936 937 938 939

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
940 941

		return cpu;
942 943
	}

944
	return hctx->next_cpu;
945 946
}

947 948
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
949 950
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
951 952
		return;

953
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
954 955
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
956
			__blk_mq_run_hw_queue(hctx);
957
			put_cpu();
958 959
			return;
		}
960

961
		put_cpu();
962
	}
963

964
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
965 966
}

967
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
968 969 970 971 972 973 974
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
975
		    blk_mq_hctx_stopped(hctx))
976 977
			continue;

978
		blk_mq_run_hw_queue(hctx, async);
979 980
	}
}
981
EXPORT_SYMBOL(blk_mq_run_hw_queues);
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1003 1004
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1005
	cancel_work(&hctx->run_work);
1006
	cancel_delayed_work(&hctx->delay_work);
1007 1008 1009 1010
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1021 1022 1023
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1024

1025
	blk_mq_run_hw_queue(hctx, false);
1026 1027 1028
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1039
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1040 1041 1042 1043 1044
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1045
		if (!blk_mq_hctx_stopped(hctx))
1046 1047 1048
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1049
		blk_mq_run_hw_queue(hctx, async);
1050 1051 1052 1053
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1054
static void blk_mq_run_work_fn(struct work_struct *work)
1055 1056 1057
{
	struct blk_mq_hw_ctx *hctx;

1058
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1059

1060 1061 1062
	__blk_mq_run_hw_queue(hctx);
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1075 1076
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1077

1078 1079
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1080 1081 1082
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1083 1084 1085
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1086
{
J
Jens Axboe 已提交
1087 1088
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1089 1090
	trace_block_rq_insert(hctx->queue, rq);

1091 1092 1093 1094
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1095
}
1096

1097 1098 1099 1100 1101
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1102
	__blk_mq_insert_req_list(hctx, rq, at_head);
1103 1104 1105
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1106
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1107
			   bool async)
1108
{
J
Jens Axboe 已提交
1109
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1110
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1111
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1112

1113 1114 1115
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
C
Christoph Hellwig 已提交
1128
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

	trace_block_unplug(q, depth, !from_schedule);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1141
		BUG_ON(rq->mq_ctx != ctx);
1142
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1143
		__blk_mq_insert_req_list(hctx, rq, false);
1144
	}
1145
	blk_mq_hctx_mark_pending(hctx, ctx);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1211

1212
	blk_account_io_start(rq, 1);
1213 1214
}

1215 1216 1217 1218 1219 1220
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1221 1222 1223
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1224
{
1225
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1226 1227 1228 1229 1230 1231 1232
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1233 1234
		struct request_queue *q = hctx->queue;

1235 1236 1237 1238 1239
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1240

1241 1242 1243
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1244
	}
1245
}
1246

1247 1248
static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
1249
					  struct blk_mq_alloc_data *data)
1250 1251 1252 1253
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1254

1255
	blk_queue_enter_live(q);
1256
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1257
	hctx = blk_mq_map_queue(q, ctx->cpu);
1258

1259
	trace_block_getrq(q, bio, bio->bi_opf);
1260
	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1261
	rq = __blk_mq_alloc_request(data, bio->bi_opf);
1262

1263
	data->hctx->queued++;
1264 1265 1266
	return rq;
}

1267 1268
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, blk_qc_t *cookie)
1269 1270 1271 1272 1273 1274 1275 1276
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1277
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1278

1279 1280 1281
	if (blk_mq_hctx_stopped(hctx))
		goto insert;

1282 1283 1284 1285 1286 1287
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1288 1289
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1290
		return;
1291
	}
1292

1293 1294 1295 1296 1297 1298
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1299
		return;
1300
	}
1301

1302 1303
insert:
	blk_mq_insert_request(rq, false, true, true);
1304 1305
}

1306 1307 1308 1309 1310
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1311
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1312
{
1313
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1314
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1315
	struct blk_mq_alloc_data data;
1316
	struct request *rq;
1317
	unsigned int request_count = 0, srcu_idx;
1318
	struct blk_plug *plug;
1319
	struct request *same_queue_rq = NULL;
1320
	blk_qc_t cookie;
1321 1322 1323 1324

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1325
		bio_io_error(bio);
1326
		return BLK_QC_T_NONE;
1327 1328
	}

1329 1330
	blk_queue_split(q, &bio, q->bio_split);

1331 1332 1333
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1334

1335 1336
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1337
		return BLK_QC_T_NONE;
1338

1339
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1340 1341 1342 1343 1344 1345 1346

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1347
	plug = current->plug;
1348 1349 1350 1351 1352
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1353 1354 1355
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1356 1357 1358 1359

		blk_mq_bio_to_request(rq, bio);

		/*
1360
		 * We do limited plugging. If the bio can be merged, do that.
1361 1362
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1363
		 */
1364
		if (plug) {
1365 1366
			/*
			 * The plug list might get flushed before this. If that
1367 1368 1369
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1370 1371
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1372
				list_del_init(&old_rq->queuelist);
1373
			}
1374 1375 1376 1377 1378
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1379
			goto done;
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
			blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
			blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1390
		goto done;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1404 1405
done:
	return cookie;
1406 1407 1408 1409 1410 1411
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1412
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1413
{
1414
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1415
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1416 1417
	struct blk_plug *plug;
	unsigned int request_count = 0;
1418
	struct blk_mq_alloc_data data;
1419
	struct request *rq;
1420
	blk_qc_t cookie;
1421 1422 1423 1424

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1425
		bio_io_error(bio);
1426
		return BLK_QC_T_NONE;
1427 1428
	}

1429 1430
	blk_queue_split(q, &bio, q->bio_split);

1431 1432 1433 1434 1435
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1436 1437

	rq = blk_mq_map_request(q, bio, &data);
1438
	if (unlikely(!rq))
1439
		return BLK_QC_T_NONE;
1440

1441
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1454 1455 1456
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1457
		if (!request_count)
1458
			trace_block_plug(q);
1459 1460 1461 1462

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1463 1464
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1465
		}
1466

1467
		list_add_tail(&rq->queuelist, &plug->mq_list);
1468
		return cookie;
1469 1470
	}

1471 1472 1473 1474 1475 1476 1477 1478 1479
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1480 1481
	}

1482
	blk_mq_put_ctx(data.ctx);
1483
	return cookie;
1484 1485
}

1486 1487
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1488
{
1489
	struct page *page;
1490

1491
	if (tags->rqs && set->ops->exit_request) {
1492
		int i;
1493

1494 1495
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1496
				continue;
1497 1498
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1499
			tags->rqs[i] = NULL;
1500
		}
1501 1502
	}

1503 1504
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1505
		list_del_init(&page->lru);
1506 1507 1508 1509 1510
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1511 1512 1513
		__free_pages(page, page->private);
	}

1514
	kfree(tags->rqs);
1515

1516
	blk_mq_free_tags(tags);
1517 1518 1519 1520
}

static size_t order_to_size(unsigned int order)
{
1521
	return (size_t)PAGE_SIZE << order;
1522 1523
}

1524 1525
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1526
{
1527
	struct blk_mq_tags *tags;
1528 1529 1530
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1531
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1532 1533
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1534 1535
	if (!tags)
		return NULL;
1536

1537 1538
	INIT_LIST_HEAD(&tags->page_list);

1539 1540 1541
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1542 1543 1544 1545
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1546 1547 1548 1549 1550

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1551
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1552
				cache_line_size());
1553
	left = rq_size * set->queue_depth;
1554

1555
	for (i = 0; i < set->queue_depth; ) {
1556 1557 1558 1559 1560
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1561
		while (this_order && left < order_to_size(this_order - 1))
1562 1563 1564
			this_order--;

		do {
1565
			page = alloc_pages_node(set->numa_node,
1566
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1567
				this_order);
1568 1569 1570 1571 1572 1573 1574 1575 1576
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1577
			goto fail;
1578 1579

		page->private = this_order;
1580
		list_add_tail(&page->lru, &tags->page_list);
1581 1582

		p = page_address(page);
1583 1584 1585 1586 1587
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1588
		entries_per_page = order_to_size(this_order) / rq_size;
1589
		to_do = min(entries_per_page, set->queue_depth - i);
1590 1591
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1592 1593 1594 1595
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1596 1597
						set->numa_node)) {
					tags->rqs[i] = NULL;
1598
					goto fail;
1599
				}
1600 1601
			}

1602 1603 1604 1605
			p += rq_size;
			i++;
		}
	}
1606
	return tags;
1607

1608 1609 1610
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1611 1612
}

J
Jens Axboe 已提交
1613 1614 1615 1616 1617
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1618
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1619
{
1620
	struct blk_mq_hw_ctx *hctx;
1621 1622 1623
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1624
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1625
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1626 1627 1628 1629 1630 1631 1632 1633 1634

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1635
		return 0;
1636

J
Jens Axboe 已提交
1637 1638 1639
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1640 1641

	blk_mq_run_hw_queue(hctx, true);
1642
	return 0;
1643 1644
}

1645
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1646
{
1647 1648
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1649 1650
}

1651
/* hctx->ctxs will be freed in queue's release handler */
1652 1653 1654 1655
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1656 1657
	unsigned flush_start_tag = set->queue_depth;

1658 1659
	blk_mq_tag_idle(hctx);

1660 1661 1662 1663 1664
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1665 1666 1667
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1668 1669 1670
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1671
	blk_mq_remove_cpuhp(hctx);
1672
	blk_free_flush_queue(hctx->fq);
1673
	sbitmap_free(&hctx->ctx_map);
1674 1675
}

M
Ming Lei 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1685
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1695
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1696 1697 1698
		free_cpumask_var(hctx->cpumask);
}

1699 1700 1701
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1702
{
1703
	int node;
1704
	unsigned flush_start_tag = set->queue_depth;
1705 1706 1707 1708 1709

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1710
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1711 1712 1713 1714 1715
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1716
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1717

1718
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1719 1720

	hctx->tags = set->tags[hctx_idx];
1721 1722

	/*
1723 1724
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1725
	 */
1726 1727 1728 1729
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1730

1731 1732
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1733
		goto free_ctxs;
1734

1735
	hctx->nr_ctx = 0;
1736

1737 1738 1739
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1740

1741 1742 1743
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1744

1745 1746 1747 1748 1749
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1750

1751 1752 1753
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1754
	return 0;
1755

1756 1757 1758 1759 1760
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1761
 free_bitmap:
1762
	sbitmap_free(&hctx->ctx_map);
1763 1764 1765
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1766
	blk_mq_remove_cpuhp(hctx);
1767 1768
	return -1;
}
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1789
		hctx = blk_mq_map_queue(q, i);
1790

1791 1792 1793 1794 1795
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1796
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1797 1798 1799
	}
}

1800 1801
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1802 1803 1804 1805
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1806
	struct blk_mq_tag_set *set = q->tag_set;
1807

1808 1809 1810 1811 1812
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1813
	queue_for_each_hw_ctx(q, hctx, i) {
1814
		cpumask_clear(hctx->cpumask);
1815 1816 1817 1818 1819 1820
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1821
	for_each_possible_cpu(i) {
1822
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1823
		if (!cpumask_test_cpu(i, online_mask))
1824 1825
			continue;

1826
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1827
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1828

1829
		cpumask_set_cpu(i, hctx->cpumask);
1830 1831 1832
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1833

1834 1835
	mutex_unlock(&q->sysfs_lock);

1836
	queue_for_each_hw_ctx(q, hctx, i) {
1837
		/*
1838 1839
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1840 1841 1842 1843 1844 1845
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1846
			hctx->tags = NULL;
1847 1848 1849
			continue;
		}

M
Ming Lei 已提交
1850 1851 1852 1853 1854 1855
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1856 1857 1858 1859 1860
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1861
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1862

1863 1864 1865
		/*
		 * Initialize batch roundrobin counts
		 */
1866 1867 1868
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1869 1870
}

1871
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1872 1873 1874 1875
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1887 1888 1889

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1890
		queue_set_hctx_shared(q, shared);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1901 1902 1903 1904 1905 1906
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1907 1908 1909 1910 1911 1912 1913 1914 1915
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1916 1917 1918 1919 1920 1921 1922 1923 1924

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1925
	list_add_tail(&q->tag_set_list, &set->tag_list);
1926

1927 1928 1929
	mutex_unlock(&set->tag_list_lock);
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1942 1943 1944 1945
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1946
		kfree(hctx);
1947
	}
1948

1949 1950
	q->mq_map = NULL;

1951 1952 1953 1954 1955 1956
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1957
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1973 1974
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1975
{
K
Keith Busch 已提交
1976 1977
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1978

K
Keith Busch 已提交
1979
	blk_mq_sysfs_unregister(q);
1980
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1981
		int node;
1982

K
Keith Busch 已提交
1983 1984 1985 1986
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1987 1988
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1989
		if (!hctxs[i])
K
Keith Busch 已提交
1990
			break;
1991

1992
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
1993 1994 1995 1996 1997
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
1998

1999
		atomic_set(&hctxs[i]->nr_active, 0);
2000
		hctxs[i]->numa_node = node;
2001
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2002 2003 2004 2005 2006 2007 2008 2009

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2010
	}
K
Keith Busch 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2035 2036 2037
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2038 2039
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2040
		goto err_exit;
K
Keith Busch 已提交
2041 2042 2043 2044 2045 2046

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2047
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2048 2049 2050 2051

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2052

2053
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2054
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2055 2056 2057

	q->nr_queues = nr_cpu_ids;

2058
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2059

2060 2061 2062
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2063 2064
	q->sg_reserved_size = INT_MAX;

2065
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2066 2067 2068
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2069 2070 2071 2072 2073
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2074 2075 2076 2077 2078
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2079 2080
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2081

2082
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2083

2084
	get_online_cpus();
2085 2086
	mutex_lock(&all_q_mutex);

2087
	list_add_tail(&q->all_q_node, &all_q_list);
2088
	blk_mq_add_queue_tag_set(set, q);
2089
	blk_mq_map_swqueue(q, cpu_online_mask);
2090

2091
	mutex_unlock(&all_q_mutex);
2092
	put_online_cpus();
2093

2094
	return q;
2095

2096
err_hctxs:
K
Keith Busch 已提交
2097
	kfree(q->queue_hw_ctx);
2098
err_percpu:
K
Keith Busch 已提交
2099
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2100 2101
err_exit:
	q->mq_ops = NULL;
2102 2103
	return ERR_PTR(-ENOMEM);
}
2104
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2105 2106 2107

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2108
	struct blk_mq_tag_set	*set = q->tag_set;
2109

2110 2111 2112 2113
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2114 2115
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2116 2117
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2118 2119 2120
}

/* Basically redo blk_mq_init_queue with queue frozen */
2121 2122
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2123
{
2124
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2125

2126 2127
	blk_mq_sysfs_unregister(q);

2128 2129 2130 2131 2132 2133
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2134
	blk_mq_map_swqueue(q, online_mask);
2135

2136
	blk_mq_sysfs_register(q);
2137 2138
}

2139 2140 2141 2142 2143 2144 2145 2146
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2147 2148 2149 2150
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2151 2152 2153 2154 2155 2156 2157 2158 2159
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2160
	list_for_each_entry(q, &all_q_list, all_q_node) {
2161 2162
		blk_mq_freeze_queue_wait(q);

2163 2164 2165 2166 2167 2168 2169
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2170
	list_for_each_entry(q, &all_q_list, all_q_node)
2171
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2172 2173 2174 2175

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2176
	mutex_unlock(&all_q_mutex);
2177 2178 2179 2180
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2181
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
 * is ignored.
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2264 2265 2266 2267 2268 2269
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2270 2271
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2272 2273
	int ret;

B
Bart Van Assche 已提交
2274 2275
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2276 2277
	if (!set->nr_hw_queues)
		return -EINVAL;
2278
	if (!set->queue_depth)
2279 2280 2281 2282
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2283
	if (!set->ops->queue_rq)
2284 2285
		return -EINVAL;

2286 2287 2288 2289 2290
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2291

2292 2293 2294 2295 2296 2297 2298 2299 2300
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2301 2302 2303 2304 2305
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2306

K
Keith Busch 已提交
2307
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2308 2309
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2310
		return -ENOMEM;
2311

2312 2313 2314
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2315 2316 2317
	if (!set->mq_map)
		goto out_free_tags;

2318 2319 2320 2321 2322 2323 2324 2325 2326
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2327
		goto out_free_mq_map;
2328

2329 2330 2331
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2332
	return 0;
2333 2334 2335 2336 2337

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2338 2339
	kfree(set->tags);
	set->tags = NULL;
2340
	return ret;
2341 2342 2343 2344 2345 2346 2347
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2348
	for (i = 0; i < nr_cpu_ids; i++) {
2349
		if (set->tags[i])
2350 2351 2352
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

2353 2354 2355
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2356
	kfree(set->tags);
2357
	set->tags = NULL;
2358 2359 2360
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2372 2373
		if (!hctx->tags)
			continue;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2424 2425
static int __init blk_mq_init(void)
{
2426 2427
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2428

2429 2430 2431
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2432 2433 2434
	return 0;
}
subsys_initcall(blk_mq_init);